因式分解练习题及答案

合集下载

因式分解练习100题及答案

因式分解练习100题及答案
因式分解练习100题及答案
一、 提取公因式
( 1) (9a+5)(-4b+5)+(b+2)(9a+5) (2) (3m-2)(-2n+3)+(3m-2)(-9n-1)+(3m-2)(-6n+4) (3) (9a-4)(2b+3)+(9a-4)(2b-2) (4) I4a3x4 -35a4x3y3 (5) 18x千-I2x 3y 千 (6) 2ab4c2— 8bc2 (7) x 3y4+5ax3y4 (8) (9x— 4)(—8x+l)+(9x— 4)(9x+2)
(57) (3a2+2ab-2b2 )(3a2 -2ab-2b2 ) (58) (2x2 +5x+9)(2x 2 -5x + 9) (59) (8x+7y-3)(8x-7y-1 1) (60) (9m + 7n-7)(9m-7n-3)
五、 十字相乘法
(6 1) 2(3b+2)(1lb-4) (62) -(4m+I)(2m-9) (63) (b+3)(8b+l) (64) 6(9a+4)(a+2) (65) 2(4x-5y)(l lx+5y) (66) -6(a-b)(4a+5b) (67) (x+17)(x+2) (68) -(b+4)(l lb-2) (69) (2a+9)(13a— 4) (70) —(7n— 5)(2n— 5) (7 1) 2(8x-1)(5x-4) (72) (12b+19)(4b + 3) (73) 4(y+5)(5y+3) (74) 13(x-l)(4x+15) (75) —24(m— 2n)(m+2n) (76) -6(5y+l)(y+2)

《因式分解500题》(含答案)

《因式分解500题》(含答案)
2
服务内核部-初数教研
\ 3 /
25. 因式分解:−4 3 2 + 6 2 3 − 12 2 2
26. 分解因式:−6 − 142 3 + 123
27. 分解因式:−26 3 2 + 13 2 2 + 52 5 2 4
28. 因式分解:
\ 5 /
43. 分解因式:( − )5 + ( − )5
44. 分解因式:(1 − + 2 ) − 1 + − 2
45. 将下列各式因式分解:
①53 ( − )3 − 104 3 ( − )2 ;
②( − )2 + ( − ) + ( − );
6. 分解因式:32 + 6 2
7. 因式分解:2 2 −
8. 分解因式:32 − 6
9. 分解因式:12 − 3 2
10. 用提公因式法因式分解:22 3 + 6 2
11. 因式分解:2( − ) − ( − )
12. 分解因式:( − ) − ( − )
29. 分解因式:( − 3)2 − (2 − 6);
30. 分解因式:18( − )2 − 12( − )3
31. 因式分解:10( − )2 + 5( − )
32. 计算:( + )2 − ( + )( − )
33. 分解因式:( + 1)( − 1) + ( − 1)
19. 因式分解:−43 + 162 − 26
20. 分解因式:6 2 − 9 + 3
21. 分解因式:−82 − 2 + 6 2
22. 因式分解:−14 − 7 + 49 2

因式分解练习题加答案200道分解因解题目

因式分解练习题加答案200道分解因解题目

因式分解练习题加答案200道分解因解题目因式分解3a3b2c—6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac +3c^2)3.因式分解xy+6—2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y—x)=(x+y)(x-y)^25。

因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x—1得因式,试分解x3+3x2-4=(x—1)(x+2)^28、因式分解ab(x2-y2)+xy(a2—b2)=(ay+bx)(ax—by)9、因式分解(x+y)(a-b-c)+(x-y)(b+c—a)=2y(a—b-c) 10、因式分解a2-a-b2-b=(a+b)(a—b—1)11。

因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a—7b)^212、因式分解(a+3)2-6(a+3)=(a+3)(a-3)13、因式分解(x+1)2(x+2)—(x+1)(x+2)2=-(x+1)(x+2)abc+ab—4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2—30x+25=(3x-5)^2(4)x2-7x—30=(x—10)(x+3)35。

因式分解x2-25=(x+5)(x-5)36。

因式分解x2-20x+100=(x-10)^237。

因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x—1)(2x—5)39、因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)—x=x(x+1)(3)x2-4x—ax+4a=(x—4)(x—a)(4)25x2—49=(5x-9)(5x+9)(5)36x2—60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x—3)(x-6)(8)2x2-5x—3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x—4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

因式分解习题50道及答案

因式分解习题50道及答案

因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。

通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。

下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。

1. 将x^2 + 4x + 4因式分解。

答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。

答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。

答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。

答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。

答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。

答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。

答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。

答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。

10. 将x^2 + 6x + 9因式分解。

答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。

答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。

答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。

答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。

答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。

答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。

答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。

答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。

答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。

答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。

因式分解练习题加答案_200道-分解因解题目

因式分解练习题加答案_200道-分解因解题目

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)之杨若古兰创作3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解以下各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内没法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解以下各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 .1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( B )A.2B. 4C.6D.82.若9x2−12xy+m是两数和的平方式,那么m的值是( B ) A.2y2B.4y 2C.±4y2D.±16y23.把多项式a4− 2a2b2+b4因式分解的结果为( D )A.a2(a2−2b2)+b4 B.(a2−b2)2C.(a−b)4 D.(a+b)2(a−b)24.把(a+b)2−4(a2−b2)+4(a−b)2分解因式为( C )A.( 3a−b)2 B.(3b+a)2C.(3b−a)2 D.( 3a+b)26.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为(B )A.M>N B.M≥NC.M≤ND.不克不及确定7.对于任何整数m,多项式( 4m+5)2−9都能( A ) A.被8整除B.被m整除C.被(m−1)整除 D.被(2n−1)整除9.以下变形中,是准确的因式分解的是(D )A.0.09m2− n2 = ( 0.03m+ n )( 0.03m−n)B.x2−10 = x2−9−1 = (x+3)(x−3)−1C.x4−x2 = (x2+x)(x2−x)D.(x+a)2−(x−a)2 = 4ax10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( A ) A.x+y−z B.x−y+z C.y+z−x D.不存在11.已知x为任意有理数,则多项式x−1−x2的值( ) A.必定为负数B.不成能为负数C.必定为负数D.可能为负数或负数或零二、解答题:分解因式:(1)(ab+b)2−(a+b)2(2)(a2−x2)2−4ax(x−a)2(3)7xn+1−14xn+7xn−1(n为不小于1的整数)答案:一、选择题:1.B说明:右侧进行整式乘法后得16x4−81 = (2x)4−81,所以n 应为4,答案为B.2.B说明:因为9x2−12xy+m是两数和的平方式,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到a = 3,b = −2;或a = −3,b = 2;此时b2 = 4,是以,m = b2y2 = 4y2,答案为B.3.D说明:先应用完整平方公式,a4− 2a2b2+b4 = (a2−b2)2,再应用两数和的平方公式,两数分别是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,留意因式分解要分解到不克不及分解为止;答案为D.4.C说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.6.B说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.7.A说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).9.D说明:选项A,,则0.09m2− n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右侧不是乘积的方式;选项C右侧(x2+x)(x2−x)可继续分解为x2(x+1)(x−1);所以答案为D.10.A说明:本题的关键是符号的变更:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.11.B说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非负数,准确答案应当是B.二、解答题:(1) 答案:a(b−1)(ab+2b+a)说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).(2) 答案:(x−a)4说明:(a2−x2)2−4ax(x−a)2= [(a+x)(a−x)]2−4ax(x−a)2= (a+x)2(a−x)2−4ax(x−a)2= (x−a)2[(a+x)2−4ax]= (x−a)2(a2+2ax+x2−4ax)= (x−a)2(x−a)2 = (x−a)4.(3) 答案:7xn−1(x−1)2说明:原式= 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.因式分解之十字相乘法专项练习题(1)a2-7a+6; (2)8x2+6x-35;(3)18x2-21x+5; (4) 20-9y-20y2;(5)2x2+3x+1; (6)2y2+y-6;(7)6x2-13x+6; (8)3a2-7a-6;(9)6x2-11x+3; (10)4m2+8m+3;(11)10x2-21x+2; (12)8m2-22m+15;(13)4n2+4n-15; (14)6a2+a-35;(15)5x2-8x-13; (16)4x2+15x+9;(17)15x2+x-2; (18)6y2+19y+10;(19) 2(a+b) 2+(a+b)(a-b)-6(a-b) 2; (20)7(x-1) 2+4(x-1)-20;(1)(a-6)(a-1),(2)(2x+5)(4x-7)(3)(3x-1)(6x-5),(4)-(4y-5)(5y+4)(5)(x+1)(2x+1),(6)(y+2)(2y-3)(7)(2x-3)(3x-2),(8)(a-3)(3a+2)(9)(2x-3)(3x-1),(10)(2m+1)(2m+3)(11)(x-2)(10x-1),(12)(2m-3)(4m-5)(13)(2n+5)(2n-3),(14)(2a+5)(3a-7)(15)(x+1)(5x-13),(16)(x+3)(4x+3)(17)(3x-1)(5x=2),(18)(2y+5)(3y+2)(19)(3a-b)(5b-a),(20)(x+1)(7x-17)例1 分解因式思路1 因为所以设原式的分解式是然后睁开,利用多项式的恒等,求出m, n,的值.解法1因为所以可设比较系数,得由①、②解得把代入③式同样成立.∴思路2 前面同思路1,然后给x,y取特殊值,求出m,n 的值.解法2 因为所以可设因为该式是恒等式,所以它对所有使式子成心义的x,y都成立,那么不妨令得令得解①、②得或把它们分别代入恒等式检验,得∴说明:本题解法中方程的个数多于未知数的个数,必须把求得的值代入多余的方程一一检验.若有的解对某个方程或所设的等式不成立,则需将此解舍去;若得方程组无解,则说明原式不克不及分解成所设构成的因式.例2 分解因式思路本题是关于x的四次多项式,可考虑用待定系数法将其分解为两个二次式之积.解设由恒等式性质有:由①、③解得代入②中,②式成立.∴说明若设原式由待定系数法解题知关于a与b的方程组无解,故设原式例3 在关于x的二次三项式中,当时,其值为0;当时,其值为0;当时,其值为10,求这个二次三项式.思路1 先设出关于x的二次三项式的表达式,然后利用已知条件求出各项的系数.可考虑利用恒待式的性质.解法1 设关于x的二次三项式为把已知条件分别代入,得解得故所求的二次三项为思路2 根据已知时,其值0这一条件可设二次三项式为然后再求出a的值.解法2 由已知条件知当时,这个二次三项式的值都为0,故可设这个二次三项式为把代入上式,得解得故所求的二次三项式为即说明要留意利用已知条件,巧设二次三项式的表达式.例4 已知多项式的系数都是整数.若是奇数,证实这个多项式不克不及分解为两个整系数多项式的乘积.思路先设这个多项式能分解为两个整系数多项式的乘积,然后利用已知条件及其他常识推出这类分解是不成能的.证实:设(m,n,r都是整数).比较系数,得因为是奇数,则与d都为奇数,那么mr 也是奇数,由奇数的性质得出m,r也都是奇数.在①式中令,得②由是奇数,得是奇数.而m为奇数,故是偶数,所所以偶数.如许②的右边是奇数,右侧是偶数.这是不成能的.是以,题中的多项式不克不及分解为两个整系数多项式的乘积.说明:所要证的命题涉及到“不克不及”时,经常考虑用反证法来证实.例5 已知能被整除,求证:思路:可用待定系数法来求睁开前后系数之间的关系.证实:设睁开,比较系数,得由①、②,得,代入③、④得:,∴例6若a是天然数,且的值是一个质数,求这个质数.思路:因为质数只能分解为1和它本人,故可用待定系数法将多项式分解因式,且使得因式中值较小的为1,即可求a的值.进而解决成绩.解:由待定系数法可解得因为a是天然数,且是一个质数,∴解得当时,不是质数.当时,是质数.∴=11 .1、分解因式_______.2、若多项式能被整除,则n=_______.2、-4.提示:设原式=比较系数,得由①、②解得代入③得3、二次三项式当时其值为-3,当时其值为2,当时其值为5 ,这个二次三项式是_______.4、m, n是什么数时,多项式能被整除?5、多项式能分解为两个一次因式的积,则k=_____.6、若多项式能被整除,则_______.7、若多项式当 2 时的值均为0,则当x=_____时,多项式的值也是0.8、求证:不克不及分解为两个一次因式的积.参考答案或提示:1.提示:设原式比较两边系数,得由①、②解得将代入③式成立.∴原式3、提示:设二次三项式为把已知条件代入,得解得∴所求二次三项式为4.设比较系数,得解得∴当m=-11,n=4已知多项式能被整除.提示:设原式.比较系数,得解得提示:设原式比较系数,得解得∴7.3.提示:设原式比较系数,得解得c=3.∴当x=3时,多项式的值也是0.且睁开后比较系数,得由④、⑤得代入③,再由①、③得将上述入②得.而这与③矛盾,即方程组无解.故命题得证.。

因式分解练习题加答案_200道

因式分解练习题加答案_200道

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

因式分解练习题加答案_200道-分解因解题目

因式分解练习题加答案_200道-分解因解题目

因式分解3a3b2c- 6a2b2c2+ 9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy + 6-2x- 3y =(x-3)(y-2)4.因式分解x2(x - y)+ y2(y -x) =(x+y)(x-y)^25.因式分解2x2 - (a- 2b)x -ab= (2x-a)(x+b)6.因式分解a4- 9a2b2= a^2(a+3b)(a-3b)7.若已知 x3+ 3x2 -4 含有 x-1 的因式,试分解x3 + 3x2- 4= (x-1)(x+2)^28.因式分解ab(x2- y2)+ xy(a2 -b2)= (ay+bx)(ax-by)9.因式分解 (x+y)(a- b- c)+ (x- y)(b + c- a)= 2y(a-b-c)10.因式分解a2- a- b2- b= (a+b)(a-b-1)11.因式分解 (3a- b)2- 4(3a- b)(a+ 3b)+ 4(a+ 3b)2= [3a-b-2(a+3b)]^2=(a-7b)^212.因式分解 (a+3)2- 6(a+ 3)= (a+3)(a-3)13.因式分解 (x+ 1)2(x + 2)- (x+ 1)(x + 2)2= -(x+1)(x+2)abc+ ab- 4a= a(bc+b-4)(2)16x2 -81= (4x+9)(4x-9)(3)9x2 -30x + 25=(3x-5)^2(4)x2 - 7x- 30= (x-10)(x+3)35.因式分解x2- 25= (x+5)(x-5)36.因式分解x2- 20x+ 100=(x-10)^237.因式分解x2+ 4x+ 3= (x+1)(x+3)38.因式分解4x2- 12x+ 5= (2x-1)(2x-5)39.因式分解下列各式:(1)3ax2 -6ax= 3ax(x-2)(2)x(x + 2)- x=x(x+1)(3)x2 - 4x- ax+ 4a= (x-4)(x-a)(4)25x2 -49= (5x-9)(5x+9)(5)36x2 -60x + 25= (6x-5)^2(6)4x2 +12x + 9=(2x+3)^2(7)x2 - 9x+ 18= (x-3)(x-6)(8)2x2 -5x - 3= (x-3)(2x+1)(9)12x2 -50x + 8=2(6x-1)(x-4)40.因式分解 (x+ 2)(x - 3)+ (x+ 2)(x + 4)= (x+2)(2x-1)41.因式分解2ax2- 3x+ 2ax- 3= (x+1)(2ax-3)42.因式分解9x2- 66x+ 121=(3x-11)^243.因式分解8- 2x2= 2(2+x)(2-x)44.因式分解x2- x+14 =整数内无法分解45.因式分解9x2- 30x+ 25=(3x-5)^246.因式分解- 20x2+ 9x+ 20=(-4x+5)(5x+4)47.因式分解12x2- 29x+ 15=(4x-3)(3x-5)48.因式分解36x2+ 39x+ 9=3(3x+1)(4x+3)49.因式分解21x2- 31x- 22=(21x+11)(x-2)50.因式分解9x4- 35x2- 4=(9x^2+1)(x+2)(x-2)51.因式分解 (2x + 1)(x + 1)+ (2x + 1)(x - 3)= 2(x-1)(2x+1)52.因式分解2ax2- 3x+ 2ax- 3= (x+1)(2ax-3)53.因式分解x(y + 2)- x- y- 1= (x-1)(y+1)54.因式分解 (x2 - 3x) + (x- 3)2= (x-3)(2x-3)55.因式分解9x2- 66x+ 121=(3x-11)^256.因式分解8- 2x2= 2(2-x)(2+x)57.因式分解x4- 1= (x-1)(x+1)(x^2+1)58.因式分解x2+ 4x- xy - 2y+ 4= (x+2)(x-y+2)59.因式分解4x2- 12x+ 5= (2x-1)(2x-5)60.因式分解21x2- 31x- 22=(21x+11)(x-2)61.因式分解4x2+ 4xy+ y2 -4x- 2y- 3= (2x+y-3)(2x+y+1)62.因式分解9x5- 35x3- 4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2 -6x = 3x(x-2)(2)49x2 -25= (7x+5)(7x-5)(3)6x2 -13x + 5=(2x-1)(3x-5)(4)x2 + 2- 3x= (x-1)(x-2)(5)12x2 -23x - 24= (3x-8)(4x+3)(6)(x + 6)(x - 6)- (x- 6)= (x-6)(x+5)(7)3(x + 2)(x - 5)- (x+ 2)(x -3) =2(x-6)(x+2)(8)9x2 +42x + 49=(3x+7)^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解练习题及答案篇一:因式分解练习题因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1)][C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a +2b-3c) 2.多项式m(n-2)-m2(2-n)分解因式等于A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1)D.m(n -2)(m-1) 3.在下列等式中,属于因式分解的是A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a -b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x -7)-84.下列各式中,能用平方差公式分解因式的是A.a2+b2 B.-a2+b2 C.-a2-b2D.-(-a2)+b2 5.若9x2+mxy+16y2是一个完全平方式,那么m的值是A.-12B.±24 C.12 D.±12 6.把多项式an+4-an+1分解得A.an(a4-a) B.an-1(a3-1) C.an+1(a-1)(a2-a+1) D.an+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a +3的值为[ ][ ][ ][ ][ ]A.8B.7 C.10 D.12 8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2) C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2 10.把x2-7x-60分解因式,得A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x -5)(x+12) 11.把3x2-2xy-8y2分解因式,得A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y)D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b) 13.把x4-3x2+2分解因式,得[ ][ ][ ][ ][ ][ ][ ]A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1) C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1) 14.多项式x2-ax-bx+ab可分解因式为[ ]A.-(x+a)(x+b)B.(x-a)(x+b) C.(x-a)(x-b) D.(x +a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是[ ]A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12 C.x2-4x-12或x2+4x-12 D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有[ ]A.1个B.2个 C.3个D.4个 17.把9-x2+12xy-36y2分解因式为[ ]A.(x-6y+3)(x-6x-3) B.-(x-6y+3)(x-6y-3) C.-(x-6y+3)(x+6y-3) D.-(x-6y+3)(x-6y+3) 18.下列因式分解错误的是[ ]A.a2-bc+ac-ab=(a-b)(a+c) B.ab-5a+3b-15=(b-5)(a +3) C.x2+3xy-2x-6y=(x+3y)(x-2) D.x2-6xy-1+9y2=(x +3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a 与b的关系为A.互为倒数或互为负倒数 B.互为相反数C.相等的数 D.任意有理数 20.对x4+4进行因式分解,所得的正确结论是A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8)D.(xy -2)(xy-8) 21.把a4+2a2b2+b4-a2b2分解因式为A.(a2+b2+ab)2B.(a2+b2+ab)(a2+b2-ab) C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)2 22.-(3x-1)(x+2y)是下列哪个多项式的分解结果A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为[ ][ ][ ][ ][ ]篇二:因式分解练习题加答案 200道因式分解3a3b2c-6a2b2c2+9ab2c3=3ab c(a -2ac+3c )3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a (a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)] =(a-7b)12.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)37.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)(6)4x2+12x+9=(2x+3)(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)43.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)46.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x +1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)56.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x +1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x +1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7) 。

1.若(2x)n?81 = (4x2+9)(2x+3)(2x?3),那么n的值是( A.2 B. 4 C.6 D.82.若9x2?12xy+m是两数和的平方式,那么m的值是( A.2y2 B.4y 2 C.±4y2 D.±16y23.把多项式a4? 2a2b2+b4因式分解的结果为( )A.a2(a2?2b2)+b4B.(a2?b2)2C.(a?b)4 D.(a+b)2(a?b)24.把(a+b)2?4(a2?b2)+4(a?b)2分解因式为( ) A.( 3a?b)2 B.(3b+a)2C.(3b?a)2D.( 3a+b)25.计算:(?)2001+(?)2000的结果为( )A.(?)2003 B.?(?)2001C.D.?) )6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( )A.M>N B.M≥N C.M≤N D.不能确定7.对于任何整数m,多项式( 4m+5)2?9都能( )A.被8整除B.被m整除C.被(m?1)整除 D.被(2n?1)整除8.将?3x2n?6xn分解因式,结果是( )A.?3xn(xn+2)B.?3(x2n+2xn)C.?3xn(x2+2)D.3(?x2n?2xn)9.下列变形中,是正确的因式分解的是( )A. ? n2 = ( + )( ?)B.x2?10 = x2?9?1 = (x+3)(x?3)?1C.x4?x2 = (x2+x)(x2?x)D.(x+a)2?(x?a)2 = 4ax10.多项式(x+y?z)(x?y+z)?(y+z?x)(z?x?y)的公因式是(A.x+y?zB.x?y+zC.y+z?xD.不存在11.已知x为任意有理数,则多项式x?1?x2的值( )A.一定为负数B.不可能为正数C.一定为正数D.可能为正数或负数或零二、解答题:分解因式:)(1)(ab+b)2?(a+b)2(2)(a2?x2)2?4ax(x?a)2(3)7xn+1?14xn+7xn?1(n为不小于1的整数)答案:一、选择题:1.B 说明:右边进行整式乘法后得16x4?81 = (2x)4?81,所以n应为4,答案为B.2.B 说明:因为9x2?12xy+m是两数和的平方式,所以可设9x2?12xy+m = (ax+by)2,则有9x2?12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = ?12,b2y2 = m;得到a = 3,b = ?2;或a = ?3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B.3.D说明:先运用完全平方公式,a4? 2a2b2+b4 = (a2?b2)2,再运用两数和的平方公式,两数分别是a2、?b2,则有(a2?b2)2 = (a+b)2(a?b)2,在这里,注意因式分解要分解到不能分解为止;答案为D.4. C 说明:(a+b)2?4(a2?b2)+4(a?b)2 = (a+b)2?2(a+b)[2(a?b)]+[2(a?b)]2 =[a+b?2(a?b)]2 = (3b?a)2;所以答案为C.5.B 说明:(?)2001+(?)2000 = (?)2000[(?)+1] = ()2000 ?=()2001 = ?(?)2001,所以答案为B.6.B 说明:因为M?N = x2+y2?2xy = (x?y)2≥0,所以M≥N.7.A 说明:( 4m+5)2?9 = ( 4m+5+3)( 4m+5?3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).8.A9.D说明:选项A, = ,则 ? n2 = ( +n)( ?n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2?x)可继续分解为x2(x+1)(x?1);所以答案为D.10.A 说明:本题的关键是符号的变化:z?x?y = ?(x+y?z),而x?y+z≠y+z?x,同时x?y+z≠?(y+z?x),所以公因式为x+y?z.11.B 说明:x?1?x2 = ?(1?x+x2) = ?(1?x)2≤0,即多项式x?1?x2的值为非正数,正确答案应该是B.二、解答题:(1) 答案:a(b?1)(ab+2b+a)说明:(ab+b)2?(a+b)2 = (ab+b+a+b)(ab+b?a?b) = (ab+2b+a)(ab?a) = a(b?1)(ab+2b+a).(2) 答案:(x?a)4说明:(a2?x2)2?4ax(x?a)2= [(a+x)(a?x)]2?4ax(x?a)2= (a+x)2(a?x)2?4ax(x?a)2= (x?a)2[(a+x)2?4ax]= (x?a)2(a2+2ax+x2?4ax)= (x?a)2(x?a)2 = (x?a)4.(3) 答案:7xn?1(x?1)2说明:原式 = 7xn?1 ?x2?7xn?1 ?2x+7xn?1 = 7xn?1(x2?2x+1) = 7xn?1(x?1)2.篇三:经典因式分解练习题(附答案)因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3; 4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b); 6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;13.ab2-ac2+4ac-4a;15.(x+y)3+125;17.x6(x2-y2)+y6(y2-x2);8.x2-4ax+8ab-4b2;12.4a2b2-(a2+b2-c2)2; 14.x3n+y3n;16.(3m-2n)3+(3m+2n)3; 18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3; 20.x2+4xy+3y2;21.x2+18x-144; 22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2; 26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc -2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案: 一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b 11.+5,-2 12.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2 三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).。

相关文档
最新文档