向量的共线定理

合集下载

向量三点共线定理推论

向量三点共线定理推论

向量三点共线定理推论向量三点共线定理是解析几何中的重要定理之一,它描述了三个向量共线的条件。

在本文中,我们将通过推论的方式来详细阐述这一定理的应用。

让我们回顾一下向量三点共线定理的表述:给定三个不共线的点A、B和C,如果向量AC可以表示为向量AB与向量BC的线性组合,那么点A、B和C就共线。

这一定理可以简单地用公式表示为AC = k1 * AB + k2 * BC,其中k1和k2是实数。

基于向量三点共线定理,我们可以得出以下推论:推论一:如果两个向量的比例相等,那么它们共线。

假设有两个向量AB和CD,如果它们的比例相等,即AB/CD = k,则可以通过向量的等式转化为向量的加法运算,得到AC = AD + DC = AD + (AB/k)。

由于向量AD和向量AB/k成比例,根据向量三点共线定理,我们可以得出结论:向量AC与向量AB和向量CD共线。

推论二:如果两个向量的夹角为零或180度,那么它们共线。

假设有两个向量AB和CD,如果它们的夹角为零或180度,即cosθ = AB·CD / (|AB|·|CD|) = 1或-1。

我们可以将向量CD表示为向量AB的倍数,即CD = k * AB。

根据向量三点共线定理的等式形式,我们可以得到AC = AD + DC = AD + k * AB。

由于向量AD和向量AB成比例,根据向量三点共线定理,我们可以得出结论:向量AC 与向量AB和向量CD共线。

推论三:如果三个向量两两共线,那么它们共线。

假设有三个向量AB、BC和CD,如果向量AB与向量BC共线,并且向量BC与向量CD共线,那么根据向量三点共线定理,我们可以得到结论:向量AC与向量AB和向量CD共线。

推论四:如果一个向量与两个共线向量的和共线,那么它们三者共线。

假设有三个向量AB、CD和DE,如果向量AB与向量CD共线,并且向量DE = AB + CD,那么根据向量三点共线定理,我们可以得到结论:向量DE与向量AB和向量CD共线。

两个向量共线的公式

两个向量共线的公式

两个向量共线的公式
三点共线向量公式:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。

三点共线指的是三点在同一条直线上。

可以设三点为A、B、C,利用向量证明:λAB=AC(其中λ为非零实数)。

三点共线证明方法:
方法一:挑两点奠定一条直线,排序该直线的.解析式.代入第三点座标看看与否满足用户该解析式(直线与方程)。

方法二:设三点为a、b、c,利用向量证明:λab=ac(其中λ为非零实数)。

方法三:利用点差法求出来ab斜率和ac斜率,成正比即为三点共线。

方法四:用梅涅劳斯定理。

方法五:利用几何中的公理“如果两个不重合的平面存有一个公共点,那么它们存有且只有一条过该点的公共直线”.所述:如果三点同属两个平行的平面则三点共线。

方法六:运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”.其实就是同一法。

空间向量基本定理

空间向量基本定理
C
E
G B O
A
练习 3、 如 图 所 示 , 四 面 体 ABCD的 六 边 都 相 等 , O1、O2 是BCD和ACD的 中 心 , 以 向 量 AB , AC , AD 为 一 个
A


基底,求 O1O( 2 用基底表示)。
O2 D B O1 E
C
小结: 1、本节课的重点内容是空间向量基本定理及 推论. 2、注意空间向量基本定理就是空间向量分解 定理,即空间任一向量可分解为三个方向上 的向量之和;
p xe1 ye2 z e3
z O x
y
建构数学
空间向量基本定理:
如果三个向量 e1 , e2 , e3不 共 面 ,那 么 对 空 间 任 一 向 量 p,存 在 唯 一 的有序实数组 ( x, y, z ), 使
p xe1 ye2 z e3
{e1 , e2 , e3} — 基底
空间向量基本定理
复习
1、共线向量定理
对空间任意两个向量 a, a.
2、共面向量定理 如果两个向量a、b不共线,则向量p与向量a、 b共面的充要条件是存在实数组(x,y),使得
p=xa+yb.
复习
3、平面向量基本定理
如果e1、e2是同一平面内的两个不共线向量, 那么对于这一平面内的任一向量a,有且只 有一对实数λ1、λ2,使
1、 如 果 a, b 与 任 何 向 量 都 不 能 构 空 成间的 一个基底, 则a与b 有 什 么 关 系 ? 共线
2、 判 断 : O, A, B, C为 空 间 四 点 , 且 向 量 OA, OB, OC不 构成空间的一个基底 ,那么点 O, A, B, C有 什 么 关 系共面 ?

18.向量共线定理和向量基本定理

18.向量共线定理和向量基本定理

向量共线定理和向量基本定理知识点归纳:1. 向量共线定理(两个向量之间的关系)向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b a λ=.变形形式:已知直线l 上三点,,A B P ,O 为直线l 外任一点,有且只有一个实数λ,使得()1OP OA OB λλ=-+.2. 平面向量基本定理(平面内三个向量之间的关系) 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+. 考点1 向量共线定理题型 1 判断向量共线、三点共线、两直线平行例1 如图,已知3AD AB =,3DE BC =,试判断AC 与AE 是否共线?例2已知向量,a b ,且2AB a b =+,56BC a b =-+,72CD a b =-则一定共线的三点是: .A ,,A B D .B ,,A B C .C ,,B C DAD.D ,,A C D例3 根据下列条件,分别判断四边形ABCD 的形状 ⑴AD BC = ⑵13AD BC =⑶AD BC =,且AB AD=题型2 向量共线定理的应用 例 4 ⑴已知点C在线段AB上,且52AC CB =,则AC =AB ,BC = AB⑵设21,e e 是不共线的向量,已知向量2121212,3,2e e CD e e CB e k e AB -=+=+=,若A,B,D 三点共线,求k 的值.⑶已知等差数列{}n a 的前n 项和为n S ,若1200OB a OA a OC =+,且A B C ,, 三点共线(该直线不过点O ),则200S 等于 .A 100 .B 101 .C 200 .D 201考点3 平面向量基本定理题型 在几何图形中,用基底表示其他向量 例5 如图,ABCD 的两条对角线相交于点M ,且AB a =,AD b =,用,a b 为基底表示,,,MA MB MC MDBC例6 D 是ABC △的边AB 上的中点,则向量CD =.A 12BC BA -+ .B 12BC BA -- .C 12BC BA - .D 12BC BA+例7如图,平面内有三个向量OA OB OC ,,,其中OA 与OB 的夹角为1200,OA与OC的夹角为300,且1OA OB ==,23OC =.若OC OA OBλμ=+(),R λμ∈,则λμ+的值为练习:1. 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( )A .1e 与—2eB .31e 与22eC .1e +2e 与1e —2eD .1e 与21e2. 在四边形ABCD 中,“AB →=2DC →”是“四边形ABCD 为梯形”的A 、充分不必要条件B 、必要不充分条件AB CD AOBCABC DC 、充要条件D 、既不充分也不必要条件3. 已知:2121212CD ,B C ),(3e e e e e e AB +=-=+=,则下列关系一定成立的是( )A 、A ,B ,C 三点共线 B 、A ,B ,D 三点共线C 、C ,A ,D 三点共线 D 、B ,C ,D 三点共线4. 如图,已知,,3AB a AC b BD DC ===,用,a b 表示AD ,则AD =( )A .34a b + B .1344a b + C .1144a b + D .3144a b +5. 在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c6. 在ABC△中,已知D是AB边上一点,若2AD DB=,13CD CA CB λ=+则λ= .A 23 .B 13 .C 13- .D 23-7. D 、E 、F 分别是△ABC 的BC 、CA 、AB 上的中点,且a BC =,b CA =,给出下列命题,其中正确命题的个数是( )①b a AD --=21 ②b a BE 21+=③b a CF 2121+-= ④0=++CF BE ADA 、1B 、2C 、3D 、48. 设12,e e 是两个不共线的向量,若122a e e =-与12b e e λ=+共线,则实数λ=9. 在平行四边形ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN = (用,a b 表示)10. 如图,在△ABC 中,已知2AB =,3BC =,60ABC ∠=︒,AH BC ⊥于H ,M 为AH 的中点,若AM AB BC λμ=+,则λμ+= .设12,e e 是不共线的向量,124e e -与12ke e +共线,则实数k 的值是 若3m+2n=a,m-3n=b,其中a,b是已知向量,求m,n.如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA → =3a ,CB → =2b ,求ABDEA BCH•MCD → ,CE → .已知a +b=213e e +,a -b=212e e -,用1e 、2e 表示a =。

平面向量三点共线定理

平面向量三点共线定理

平面向量三点共线定理
平面向量三点共线定理:
(1)定义
平面向量三点共线定理是指:在三维空间中,若三个任意的点共在一个平面,则它们所在的平面的向量也可以构成一条直线。

(2)正式定义
如果S1、S2、S3是三个同一平面的点,则这三个点的向量形式为:S1S2,S2S3和S1S3,它们围绕原点O构成一种结构,即三角形形式的向量,满足以下条件:
若三个向量都平行,则说明三个点共线。

(3)实际应用
在很多数学知识中,平面向量三点共线定理有着重要的作用。

例如:在平面几何学中,有一个叫“三角平分线定理”的定理,就是用平面向量三点共线定理来推断的结论。

此外,平面向量三点共线定理还可以应用于判断几何图形是否平行、
垂直或成一条直线,甚至可以用于决定三角形的内角和外角,以及三
角形的面积大小等。

(4)证明方式
平面向量三点共线定理是采用数学归纳法来证明的:
设ABC是平面上任意三点,用AB表示AB连线,则有AB+BC=AC。

同理,用BC表示,则有BC+CA=AB,用CA表示,则有CA+AB=BC。

相似地,可以证明,任意N个点在同一平面上的加和结果均为零,即:AB+BC+CD+…+AP=0。

这时,由于任意三个点位于同一平面,包括它们的任意两个连接向量
在内的多个向量的加和结果都是0,因此,任意三个点都必定在一条直线上,这就是平面向量三点共线定理的实际物理意义。

空间向量与立体几何:第2讲共线定理、共面定理的应用

空间向量与立体几何:第2讲共线定理、共面定理的应用

共线定理、共面定理的应用【基础知识】(1)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a=λb .(2)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在唯一实数对x 、y ,使p xa yb =+ .(3)空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在唯一的有序实数组{x ,y ,z },使p xa yb zc =++ .把{a ,b ,c }叫做空间的一个基底.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x 、y 、z ,使OP xOA yOB zOC =++ .其中x +y +z =1.【规律技巧】1.在空间适当选取三个不共面向量作为基向量,其它任意一向量都可用这一组基向量表示.2.中点向量公式1()2OM OA OB =+ ,在解题时可以直接使用.3.证明空间任意三点共线的方法对空间三点P ,A ,B 可通过证明下列结论成立来证明三点共线.(1)PA PB λ= ;[来源:学科网](2)对空间任一点O ,OP OA t AB =+ ;(3)对空间任一点O ,(1)OP xOA yOB x y =++= .4.证明空间四点共面的方法对空间四点P ,M ,A ,B 可通过证明下列结论成立来证明四点共面(1)MP xMA yMB =+ ;(2)对空间任一点O ,OP OM xMA yMB =++ ;(3)对空间任一点O ,(1)OP xOM yOA zOB x y z =++++= ;(4)PM ∥AB (或PA ∥MB 或PB ∥AM ).【典例讲解】【例1】已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .【变式探究】如图空间两个平行四边形共边AD ,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:MN ∥平面CDE .【针对训练】1、已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证:(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .【答案】(1)E ,F ,G ,H 四点共面;(2)BD ∥平面EFGH .2、有4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ;③若MP →=xMA→+yMB →,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →.其中真命题的个数是()A .1B .2C .3D .4【答案】B【解析】①正确,②中若a ,b 共线,p 与a 不共线,则p =x a +y b 就不成立,③正确,④中若M ,A ,B共线,点P 不在此直线上,则MP →=xMA →+y MB →不正确.故选B.3、】若A ,B ,C 不共线,对于空间任意一点O 都有,则P ,A ,B ,C 四点()A .不共面B .共面C .共线D.不共线4、若平面、的法向量分别为,则()A.B.C.、相交但不垂直 D.以上均不正确【答案】A 【练习巩固】1.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则实数λ等于________.解析∵a ,b ,c 共面,且显然a ,b 不共线,∴c =x a +y b ,=2x -y ,①=-x +4y ,②=3x -2y ,③=337,=177,代入③得λ=657.答案6572.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).3.A ,B ,C ,D 是空间不共面四点,且AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 的形状是________三角形(填锐角、直角、钝角中的一个).4.如图,在棱长为a 的正方体ABCD ­A 1B 1C 1D 1中,G 为△BC 1D 的重心,(1)试证:A 1,G ,C 三点共线;(2)试证:A 1C ⊥平面BC 1D .5、如图,在长方体1111CD C D AB -A B 中,11AA =,D 2AB =A =,E 、F 分别是AB 、C B 的中点.证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11C F A E 所成的角的大小.6、若(2,1,3),(1,2,9)a x b y ==- ,如果a 与b 为共线向量,则()A .x =1,y =1B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32。

共线定理以及三点共线

共线定理以及三点共线

共线定理以及三点共线一、向量共线定理平面向量共线定理:对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b aλ=例1.设与是两个不共线的向量,且向量与共线,则A. 0B.C.D.【解答】 解:因为向量与共线,所以存在实数x 有,则,解得故选D .例2.已知向量,,且与共线,,则 A.B.C.或D.或【解答】 解:与共线,,, , 或.故选:D .例3.若、是不共线向量,,,且,则k等于A. 8B. 3C.D.【解析】解:,是不共线向量,,,且,存在实数使得..,解得.故选D.例4.向量,,若与共线且方向相反,则______.【解答】解:,,解得,又与方向相反,.故答案为.例5.已知点P在线段AB上,且,设,则实数______.【解析】解:如图所示,点P在线段AB上,且,;又,.故答案为:.例6.已知向量______.【解析】解:,,则有,解得,故答案为.例7.已知是平面内两个不共线向量,,若A,B,D三点共线,则k的值为A. 2B.C.D. 3【解答】解:,,、B、D三点共线,与共线,存在唯一的实数,使得即解得.故选A.例8.已知、是两个不共线向量,设,,,若A,B,C三点共线,则实数的值等于A. 1B. 2C.D.【解答】解:,,,,,,B,C三点共线,不妨设,,,解得.故选C.例9.设,是两个不共线的向量,已知,,,若三点A,B,D共线,则k的值为A. B. 8 C. 6 D.【解答】解:,因为三点A,B,D共线,所以与共线,则存在实数,使得,即,由向量相等的条件得,所以.故选A.例10.设,是不共线向量,与共线,则实数k为______ .【解答】解:与共线,且,是不共线向量,存在实数满足:,且,.故答案为.例11.设向量,不平行,向量与平行,则实数________.【解答】解:向量,不平行,向量与平行,,,解得实数.故答案为.二、三点共线定理在平面中A、B、P三点共线的充要条件是:对于该平面内任意一点的O,存在唯一的一对实数x,y使得:OP xOA yOB=+且1x y+=。

空间向量基本定理

空间向量基本定理
2
O
(3)是线段AB的中点公式
二、共面向量
(1).已知平面α与向量 a,如果 向量a 所在的直线OA平行于
a
O
A
平面α或向量 a在平面α内,那 么我们就说向量 平a 行于平面
a
α,记作 //aα.
α
(2)共面向量:平行于同一平面的向量 思考: 空间任意两个向量是否一定共面? B 空间任意三个向量哪?
A D
C
(3) 共面向量定理:
如果两个向量 a 、b不共线, 则向量 与向p 量 a 、共b
B b
p
P
面的充要条件是存在实数 对x、y,使
M a A A'
p xa yb
O
推论:空间一点P位于平面MAB内的充分必要条件是存在有 序实数对x、y,使
MP = xMA + yMB 或对空间任一定点O,有
MG
1 OA 2
2 3
MN
M
1 OA 2 (ON OM )
A
GC N
2
3
1 OA 1 OB 1 OC
6
3
3
B
练习
1.已知空间四边形OABC,点M、N分别是
边OA、BC的中点,且OA a,OB b ,
OC c,用 a , b , c 表示向量 MN
O M
MN 1 OB 1 OC 1 OA 222
C
OG
1
a b
1
c
2
2
A
B
3 如图,在平行六面体 ABCD ABCD中,E, F,G 分 新疆 王新敞 奎屯
别是 AD, DD, DC 的中点,请选择恰当的基底向量 证明:
(1) EG // AC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量的共线定理
向量的共线定理又称向量和定理,是一个有关向量两个线段及其夹角问题的定理。

这个定理指出当两个向量是垂直的时候,他们之间的夹角就是90度;当两个向量的方向不变时,他们之间的夹角就是相同的;当两个向量方向是相反的时候,他们之间的夹角就是180度。

其他一些特殊情况,比如两个向量平行,他们之间的夹角就是0度或360度。

向量的共线定理是数学分支中的一个重要定理,它特别关键地涉及到几何学与数学分析,在应用中有着广泛的应用。

向量的共线定理指出,向量的夹角与其方向有关。

相同方向的向量其夹角为零;相反方向的向量其夹角为180度;垂直方向的向量其夹角为90度。

两个向量的夹角是由向量的起点和方向来决定的,而不是这两个向量的长度。

对于两个平行的向量,一旦两个向量的方向是相同的,则他们之间的夹角就是0度或360度;而如果两个向量的方向是相反的,则他们之间的夹角就是180度。

一般而言,向量的共线定理可以帮助我们确定两个向量之间的夹角,从而帮助我们解决实际问题。

它也帮助我们解决一些比较复杂的数学问题,比如:求解平面几何中的相关定理和球面几何中的相关定理。

此外,向量的共线定理也可以作为矩阵操作的基础,从而帮助我们解决一些复杂的矩阵问题。

总的来说,向量的共线定理是一个重要的数学定理,它有助于我们解决几何学与数学分析中的问题。

向量的共线定理也可以用于矩阵操作,从而帮助我们解决一些复杂的矩阵问题。

相关文档
最新文档