【高考复习】2020年高考数学(文数) 函数的图象与性质 小题练(含答案解析)

合集下载

2020届高考数学(文)二轮复习专题过关检测(五)函数的图象与性质Word版含答案

2020届高考数学(文)二轮复习专题过关检测(五)函数的图象与性质Word版含答案

专题过关检测(五)函数的图象与性质A 级x2, x≥0,1.已知函数 f ( x)=则f(f(-2))=()-x,x<0,A. 4 B. 3C. 2 D. 1A 因为f ( x) =x2, x≥0,分析:选因此 f (-2)=-(-2)=2,因此 f ( f (-2))- x, x<0,2=f (2)=2=4.2.以下函数中,图象是轴对称图形且在区间(0 ,+∞ ) 上单一递减的是( )1 2A.y=x B.y=-x+ 1C.y=2 x 2D.y= log | x|分析:选 B 因为函数的图象是轴对称图形,因此清除A、C,又y=-x2+ 1 在(0 ,+∞) 上单一递减,y=log 2| x| 在 (0 ,+∞ ) 上单一递加,因此清除 D. 应选 B.| x| 2f ( g(1)) = 2,则a= ( )3.已知函数f ( x) = 4 ,g( x) = 2x-ax( a∈ R).若5 5 3A.1 或2 B. 2或25 3C.2 或2 D.1或2|2 -a| 1 5分析:选 B 由已知条件可知 f ( g(1))= f (2- a)=4 = 2,因此 | a- 2| =2,得 a=2或32.4.已知函数f ( x) =x2- 2ax+ 5 的定义域和值域都是[1 ,a] ,则a= ( )A. 1 B. 2C. 3 D. 4分析:选 B 因为f ( x) = ( x-a) 2+ 5-a2,因此f ( x) 在 [1 ,a] 上是减函数,又 f ( x)的定f 1= a,1- 2a+ 5=a,义域和值域均为 [1 ,a] ,因此a =1,即 2 -2 2+ 5= 1,解得 a=2.f a a5.已知函数f ( x) 在 ( - 1,1) 上既是奇函数,又是减函数,则知足 f (1- x)+ f (3 x-2) <0 的x的取值范围是 ()1 1A. 2,+∞B. 2,13 3C. 4,+∞D. 4,1分析:选 B 由已知得 f (3 x-2)<f ( x-1),-1<3x- 2< 1,∴ - 1<x- 1< 1,解得1 <<,应选B.2 x 13x- 2>x- 1,6.(2019 ·江西七校第一次联考) 设a>0,则函数y= | x|( x-a) 的图象大概形状是 ()分析:选 Bx2- ax,x≥0, a a2 a2因为函数 y=2 且 a>0,因此当 x=时, y=4-=--x+,<0, 2 2ax xa2<0,清除 A、 C、 D,应选 B.4ax+ b, x<-1,7. 若函数f ( x) =的图象如下图,则 f (-3)等于()ln x+a,x≥- 11 5A.-2 B.-4C.- 1 D.- 2分析:选 C 由图象可得a×(-1)+ b=3,ln(-1+a)=0,∴ a=2,b=5,∴ f ( x)=2x+ 5,x<- 1,ln x+ 2 ,x≥- 1,故 f (-3)=2×(-3)+5=-1.8.(2019 ·东北四校联考 ) 设f ( x) 是定义在 R上的周期为 3 的周期函数,如图表示该函数在区间 ( - 2,1] 上的图象,则 f (2 018)+ f (2 019) =() A. 2 B. 1C.- 1 D. 0分析:选 C 因为函数f ( x) 是定义在 R 上的周期为 3 的周期函数,因此 f (2 018)= f (2 018-673×3) =f ( -1) ,f (2 019) =f (2 019-673×3) =f (0) ,由题中图象知 f (-1)=-1,f (0)=0,因此 f (2 018) + f (2 019)= f (-1)+ f (0)=-1.应选C.9.(2019 ·兰州诊疗2+ln(| x| +1) ,若对于x∈ [1,2]2) 已知函数f ( x) =x ,f ( ax )< f (3)恒建立,则实数 a 的取值范围是 ()A. 3 3B . ( - 3,3)- , 44C. -∞, 3D . ( -∞, 3)4分析:选 A 易知 f ( x ) = x 2+ ln(| x | + 1) 是 R 上的偶函数,且在 [0 ,+∞ ) 上为增函数,23 3故原问题等价于| ax |<3 对 x ∈ [1,2] 恒建立,即 | a |< x 2对 x ∈ [1,2] 恒建立,因此 | a |< 4,解3 3得- 4<a <4,应选 A.10. (2020 届高三·湘东六校联考 x + sin x) 函数 y = x+ e -x的图象大概为 ()e分析:选 Bx + sin x- x + sin -x =- x + sinx设 f ( x) = e + e,则 f( - x ) =e + exe + e=- f ( x ) ,x- x- xx- x因此函数 f ( x ) 为奇函数,故清除选项π-π<0,故清除选项 A ;当 x →C ;又 f ( -π ) =- πe + e+∞时, x + sin x >0,因此 f ( x )>0 ,故清除选项 D.应选 B.e x - ax 2, x ≤1,在定义域 ( -∞,+∞ ) 上是单一增函数,则11.已知函数 f ( x ) =x , x >12a + ln实数 a 的取值范围是 ()eeA. -∞, 2B.3,+∞e , e D. e , eC.3 23 2分析:选 C 因为函数 f ( x ) =e x -ax 2, x ≤1,在定义域 ( -∞, +∞ ) 上是单一增函2 +lnx , >1a x数,e 2a ≥e - a ,解得 a ≥ ,清除 A 、 D.3当 a =2,x ≤1时, f ′(x ) = e x -4x ,不恒大于或等于 0,因此与单一性矛盾, 故清除 B ,选 C.12.已知函数 f ( x ) 为偶函数,当 x >0 时, f ( x ) =x - 4-x ,设 a = f (log 30.2) ,b = f (3-0.2 ) , c = f ( - 31.1 ) ,则 a , b , c 的大小关系为 ()A . c >a >bB . a >b >cC . >>D .>>c b ab a c分析:选 A 因为函数 f ( x ) 为偶函数,因此 a = f (log 330.2) 1.10.2) =f ( - log ,c = f ( - 3 )=f (3 1.1 ) .1 1因为 log 39<log 30.2<log 33,因此- 2<log 30.2< - 1,因此 1<-log 30.2<2 ,因此 31.1 >3>- log 30.2>1>3-0.2.因为 y = x 在 (0 ,+∞ ) 上为增函数, y =- 4-x 在 (0 ,+∞ ) 上为增函数, 因此 f ( x ) 在 (0 ,+∞ ) 上为增函数, 因此 f (3 1.1 )> f ( - log 30.2)> f (3 -0.2) ,因此 c >a >b .13.函数 f ( x ) = ln1 的值域是 ________.| x | +1分析:因为 | x | ≥0,因此 | x | +1≥1.11因此 0<| x | + 1≤1. 因此 ln| x | + 1≤0,1即 f ( x ) = ln | x | + 1 的值域为 ( -∞, 0] . 答案: ( -∞, 0]14.已知函数 y = f ( x ) 是奇函数, 当 x <0 时,f ( x ) = 2 x - ax ,且 f (2) = 2,则 a = ________.分析:因为函数 y = f ( x ) 是奇函数,当 xx- ax , <0 时, f ( x ) = 2 因此 x >0 时,- f ( x ) = f ( - x ) = 2-x - a ( - x ) , 因此 f ( x ) =- 2-x - ax , 因为 f (2) = 2,因此 f (2)- 2a9=- 2 -2 =2,解得=- .a8答案:-98115.已知拥有性质: f x =- f ( x ) 的函数,我们称为知足“倒负”变换的函数,以下函数:x , 0<x <1,110, x =1,① f ( x ) = x - x ;② f ( x ) = x + x ;③ f ( x ) =1- x , x >1.此中知足“倒负”变换的函数是________.1 1 1 1 1分析:对于①, f ( x ) = x - x ,f x = x - x =- f ( x ) ,知足; 对于②, f x =x + x = f ( x ) , 不知足;11x , 0<x <1,对于③, f 11x=0, x = 1,1- x , x >1,1即 f 1x , x >1, 故 f1x = , = ,x =- f ( x ) ,知足.0 x 1- x , 0<x <1,综上可知,知足“倒负”变换的函数是①③. 答案:①③16.若当 x ∈(1,2) 时,函数 y = ( x -1) 2 的图象一直在函数 y =log a x ( a >0,且 a ≠1) 的图象的下方,则实数 a 的取值范围是 ________.分析:如图,在同一平面直角坐标系中画出函数y = ( x -1) 2 和 y = log a x 的图象,因为当 x ∈ (1,2) 时,函数 y = ( x -1) 2 的图象恒在函数 a >1,y =log a x 的图象的下方, 则log a 2≥1,解得 1<a ≤2.答案: (1,2]B 级1 3- 12 , <0,2)> f (2 x ) 的解集1.(2019 ·济南模拟 ) 已知函数 f ( x ) =3x2xx 则 f (3 -x e x , x ≥0,为()A . ( -∞,- 3) ∪ (1 ,+∞ )B . ( - 3,1)C . ( -∞,- 1) ∪ (3 ,+∞ )D . ( - 1,3)分析:选 B 易知,当 x <0 时, f ′(x ) = x 2- x >0, f ( x ) 为增函数,当 x ≥0时, f ( x ) =x也为增函数,且 x <0 时, f ( x )<0 ,x ≥0时, f ( x ) ≥1,故 f ( x ) 在 R 上为单一递加函数.故e2x ) 等价于 2f (3 - x )> f (2 3- x >2x ,解得- 3<x <1,应选 B.2.已知 f ( x ) = 2x -1, ( ) =1-x 2,规定:当 | f ( x )|≥ () 时, ( x ) = |f ( )| ;当g xg xhx| f ( x )|< g ( x ) 时, h ( x ) =- g ( x ) ,则 h ( x )()A .有最小值- 1,最大值 1B .有最大值 1,无最小值C .有最小值- 1,无最大值D .有最大值- 1,无最小值分析:选 C 作出函数 g ( x ) = 1- x 2 和函数 | f ( x )| = |2 x- 1| 的图象如图①所示,获得函 数 h ( x ) 的图象如图②所示,由图象得函数h ( x ) 有最小值- 1,无最大值.x 23.已知函数 f ( x ) = 2.x- 2x + 2 命题 p 1:y = f ( x ) 的图象对于点 (1,1) 对称;命题 p :若 a <b <2,则 f ( a )< f ( b ) .2则在命题 q :p ∨ p ,q :( 綈 p ) ∧ ( 綈 p ) , q :( 綈 p ) ∨ p 和 q :p ∧ ( 綈 p ) 中,为真112212312412命题的是 ()A . q 1, q 3B . q 1, q 4C . q 2, q 3D . q 2, q 4x 22 x - 1分析:选 B 因为 f ( x ) = x 2-2x + 2=1+ x - 1 2+ 1,因此函数 y = f ( x ) 的图象可由 g ( x ) = 22x的图象向右平移 1 个单位长度,再向上平移 1x + 1个单位长度后获得.因为 g ( - x ) =- g ( x ) ,因此 g ( x ) 是奇函数, g ( x ) 的图象对于原点对称,进而 y = f ( x )的图象对于点 (1,1) 对称,故命题 p 1 为真命题.- 2x 2+ 4xf ′(x ) = x 2- 2x + 2 2,令 f ′(x )>0 ,得 0<x <2,因此 f ( x ) 的单一递加区间为 (0,2) ;令 f ′(x )<0 ,得 x <0 或 x >2,因此 f ( x ) 的单一递减区间为 ( -∞, 0) , (2 ,+∞ ) .故命题 p 2 为假命题.因此綈 p 1 为假命题,綈p 2 为真命题,故 p 1∨ p 2,p 1∧ ( 綈 p 2) 为真命题.4.对于函数 y =f ( x ) ,若存在 x ,使 f ( x ) + f ( - x ) = 0,则称点 ( x ,f ( x )) 是曲线 f ( x )0 0 0x 2 +2x , x <0,若曲线 f ( x ) 存在“优美点”, 则实数 k 的取的“优美点”, 已知 f ( x ) =kx + 2, x ≥0,值范围为 ________.分析:由“优美点”的定义,可知若点( x 0,f ( x 0)) 为“优美点”,则点 ( - x 0,- f ( x 0))也在曲线 y = ( x ) 上.如图,作出函数y = x 2+2 ( x <0) 的图象,而后作出其对于原点对称的fx图象,其分析式为y =- 2+2 ( x >0) ,设过定点 (0,2) 的直线y = 1+2与曲线 y =-2+xxk xx2x ( x >0) 切于点 A ( x 1,f ( x1)) ,则 k 1= y ′| x = x 1=- 2x 1+2=2 + 2x -2 ,解得 x 1= 2( 负 - x11x 1- 0值舍去 ) ,因此k 1=- 2 2+ 2. 由图可知,若曲线f ( x ) 存在“优美点”,则 ≤2- 2 2.k答案: ( -∞, 2- 2 2]5.已知函数 f ( x ) 是奇函数,且 0≤ x 1<x 2 时,有f x 1 -f x 2x 1-x 2<1, f ( - 2) = 1,则 x -3≤ f ( x ) ≤x 的解集为 ________.分析:依据题意,设 g ( x ) = f ( x ) -x ,因为 f ( x ) 是定义在 R 上的奇函数,因此 f ( - x ) =- f ( x ) ,g ( - x ) =f ( - x ) +x =- [ f ( x ) - x ] =- g ( x ) ,即 g ( x ) 是定义在R 上的奇函数,f x - f x 2f x - f x - x -x 2g (0) = 0 , 又 0≤ x 1<x 2时 ,11 2 1x 1- x 2 <1 等 价 于x 1- x 2<0,因此[ f x 1 - x 1] -[ f x 2 -x 2]g x 1 - g x 2<0,即 g ( x ) 是定义在 R 上的减函数.又 f ( - 2) = 1,=x 1- x 2x 1- x 2因此 f (2) =- 1,不等式 x -3≤ f ( x ) ≤ x ? -3≤ f ( x ) - x ≤0? -3≤ g ( x ) ≤0,g ( - 2) = f ( - 2) + 2= 3=- g (2) ,故 g (2) ≤ g ( x ) ≤ g (0) ,故 0≤ x ≤2,因此不等式的解集为[0,2] .答案: [0,2]。

2020年全国各地高考数学试卷分类汇编—函数(含解析)全文

2020年全国各地高考数学试卷分类汇编—函数(含解析)全文

2020年全国各地⾼考真题分类汇编—函数1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<05.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b213.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69 16.(2020•北京)函数f(x)=+lnx的定义域是.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是.19.(2020•上海)若函数y=a•3x+为偶函数,则a=.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为.21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是.22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?参考答案与试题解析⼀.选择题(共15⼩题)1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)【解答】解:由x2﹣4x﹣5>0,得x<﹣1或x>5.令t=x2﹣4x﹣5,∵外层函数y=lgt是其定义域内的增函数,∴要使函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则需内层函数t=x2﹣4x﹣5在(a,+∞)上单调递增且恒⼤于0,则(a,+∞)⊆(5,+∞),即a≥5.∴a的取值范围是[5,+∞).故选:D.2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0是,y=f(x)>0,故排除B,故选:A.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解答】解:因为f(x)=x3﹣,则f(﹣x)=﹣x3+=﹣f(x),即f(x)为奇函数,根据幂函数的性质可知,y=x3在(0,+∞)为增函数,故y1=在(0,+∞)为减函数,y2=﹣在(0,+∞)为增函数,所以当x>0时,f(x)=x3﹣单调递增,故选:A.4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0【解答】解:⽅法⼀:由2x﹣2y<3﹣x﹣3﹣y,可得2x﹣3﹣x<2y﹣3﹣y,令f(x)=2x﹣3﹣x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y﹣x>0,由于y﹣x+1>1,故ln(y﹣x+1)>ln1=0.⽅法⼆:取x=﹣1,y=0,满⾜2x﹣2y<3﹣x﹣3﹣y,此时ln(y﹣x+1)=ln2>0,ln|x﹣y|=ln1=0,可排除BCD.故选:A.5.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.【解答】解:y=f(x)=x cos x+sin x,则f(﹣x)=﹣x cos x﹣sin x=﹣f(x),∴f(x)为奇函数,函数图象关于原点对称,故排除C,D,当x=π时,y=f(π)=πcosπ+sinπ=﹣π<0,故排除B,故选:A.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]【解答】解:∵定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,f(x)的⼤致图象如图:∴f(x)在(0,+∞)上单调递减,且f(﹣2)=0;故f(﹣1)<0;当x=0时,不等式xf(x﹣1)≥0成⽴,当x=1时,不等式xf(x﹣1)≥0成⽴,当x﹣1=2或x﹣1=﹣2时,即x=3或x=﹣1时,不等式xf(x﹣1)≥0成⽴,当x>0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≥0,此时,此时1<x≤3,当x<0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≤0,即,得﹣1≤x<0,综上﹣1≤x≤0或1≤x≤3,即实数x的取值范围是[﹣1,0]∪[1,3],故选:D.7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减【解答】解:由,得x.⼜f(﹣x)=ln|﹣2x+1|﹣ln|﹣2x﹣1|=﹣(ln|2x+1|﹣ln|2x﹣1|)=﹣f(x),∴f(x)为奇函数;由f(x)=ln|2x+1|﹣ln|2x﹣1|=,∵==.可得内层函数t=||的图象如图,在(﹣∞,)上单调递减,在(,)上单调递增,则(,+∞)上单调递减.⼜对数式y=lnt是定义域内的增函数,由复合函数的单调性可得,f(x)在(﹣∞,﹣)上单调递减.故选:D.8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:a=30.7,b=()﹣0.8=30.8,则b>a>1,log0.70.8<log0.70.7=1,∴c<a<b,故选:D.9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.【解答】解:因为a log34=2,则log34a=2,则4a=32=9则4﹣a==,故选:B.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:∵a=log 32=<=,b=log53=>=,c=,∴a<c<b.故选:A.11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:∵==log53•log58<=<1,∴a<b;∵55<84,∴5<4log58,∴log58>1.25,∴b=log85<0.8;∵134<85,∴4<5log138,∴c=log138>0.8,∴c>b,综上,c>b>a.故选:A.12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2【解答】解:因为2a+log2a=4b+2log4b=22b+log2b;因为22b+log2b<22b+log22b=22b+log2b+1即2a+log2a<22b+log22b;令f(x)=2x+log2x,由指对数函数的单调性可得f(x)在(0,+∞)内单调递增;且f(a)<f(2b) a<2b;故选:B.13.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)【解答】解:若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则f(x)=|kx2﹣2x|有四个根,即y=f(x)与y=h(x)=|kx2﹣2x|有四个交点,当k=0时,y=f(x)与y=|﹣2x|=2|x|图象如下:两图象只有两个交点,不符合题意,当k<0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2>x1)在[0,)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2﹣2x在(,+∞)还有两个交点,即可,即x3=kx2﹣2x在(,+∞)还有两个根,即k=x+在(,+∞)还有两个根,函数y=x+≥2,(当且仅当x=时,取等号),所以,且k>2,所以k>2,综上所述,k的取值范围为(﹣∞,0)∪(2,+∞).故选:D.14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天【解答】解:把R0=3.28,T=6代⼊R0=1+rT,可得r=0.38,∴I(t)=e0.38t,当t=0时,I(0)=1,则e0.38t=2,两边取对数得0.38t=ln2,解得t=≈1.8.故选:B.15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69【解答】解:由已知可得=0.95K,解得e﹣0.23(t﹣53)=,两边取对数有﹣0.23(t﹣53)=﹣ln19,解得t≈66,故选:C.⼆.填空题(共6⼩题)16.(2020•北京)函数f(x)=+lnx的定义域是{x|x>0}.【解答】解:要使函数有意义,则,所以,所以x>0,所以函数的定义域为{x|x>0},故答案为:{x|x>0}.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是①②③.【解答】解:设甲企业的污⽔排放量W与时间t的关系为W=f(t),⼄企业的污⽔排放量W与时间t的关系为W=g(t).对于①,在[t1,t2]这段时间内,甲企业的污⽔治理能⼒为,⼄企业的污⽔治理能⼒为﹣.由图可知,f(t1)﹣f(t2)>g(t1)﹣g(t2),∴>﹣,即甲企业的污⽔治理能⼒⽐⼄企业强,故①正确;对于②,由图可知,f(t)在t2时刻的切线的斜率⼩于g(t)在t2时刻的切线的斜率,但两切线斜率均为负值,∴在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强,故②正确;对于③,在t3时刻,甲,⼄两企业的污⽔排放都⼩于污⽔达标排放量,∴在t3时刻,甲,⼄两企业的污⽔排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[t1,t2]的污⽔治理能⼒最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是﹣4.【解答】解:y=f(x)是奇函数,可得f(﹣x)=﹣f(x),当x≥0时,f(x)=x,可得f(8)=8=4,则f(﹣8)=﹣f(8)=﹣4,故答案为:﹣4.19.(2020•上海)若函数y=a•3x+为偶函数,则a=1.【解答】解:根据题意,函数y=a•3x+为偶函数,则f(﹣x)=f(x),即a•3(﹣x)+=a•3x+,变形可得:a(3x﹣3﹣x)=(3x﹣3﹣x),必有a=1;故答案为:1.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为[,+∞).【解答】解:因为y=f﹣1(x)﹣a与y=f(x+a)互为反函数,若y=f﹣1(x)﹣a与y=f(x+a)有实数根,则y=f(x+a)与y=x有交点,所以,即a=x2﹣x+1=(x﹣)2+≥,故答案为:[,+∞).21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是(﹣∞,0)∪(0,1)∪(1,+∞).【解答】解:根据条件(1)可得f(0)=0或f(1)=1,⼜因为关于x的⽅程f(x)=a⽆实数解,所以a≠0或1,故a∈(﹣∞,0)∪(0,1)∪(1,+∞),故答案为:(﹣∞,0)∪(0,1)∪(1,+∞).三.解答题(共3⼩题)22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.【解答】解:(1)∵f(x)=﹣x为减函数,∴f(x)<f(x﹣1),∴f(x)=﹣x具有A性质;∵g(x)=2x为增函数,∴g(x)>g(x﹣1),∴g(x)=2x不具有A性质;(2)依题意,对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,∴为增函数(不可能为常值函数),由双勾函数的图象及性质可得a≥1,当a≥1时,函数单调递增,满⾜对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,综上,实数a的取值范围为[1,+∞).(3)∵D为整数集,具有A性质的函数均为常值函数,∴当t=﹣2,f(x)=f(x﹣2)恒成⽴,即f(2k)=p(k∈Z),f(2n﹣1)=q(n∈Z),由题意,p=q,则f(2k)=f(2n﹣1),当x=2k,f(x)=f(x+2n﹣2k﹣1),∴m=2n﹣2k﹣1(n,k∈Z),当x=2n﹣1,f(x)=f(x+2k﹣2n+1),∴m=2k﹣2n+1(n,k∈Z),综上,m为奇数.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.【解答】解:(1)∵v=,∴v越⼤,x越⼩,∴v=f(x)是单调递减函数,k>0,当40≤x≤80时,v最⼤为85,于是只需令,解得x>3,故道路密度x的取值范围为(3,40).(2)把x=80,v=50代⼊v=f(x)=﹣k(x﹣40)+85中,得50=﹣k•40+85,解得k=.∴q=vx=,①当0<x<40时,令y=,则y'=,若0<x<<1,则y'>0,y单调递增,由于y>0,所以q=100x﹣135•<100;若<x<40,则y'<0,y单调递减,此时有q单调递增,所以q<100×40﹣135×≈4000>100.②当40≤x≤80时,q是关于x的⼆次函数,开⼝向下,对称轴为x=,此时q有最⼤值,为>4000.综上所述,⻋辆密度q的最⼤值为.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?【解答】解:(1)投放点ω1(120,0),ω2(60,0),f60(10)表示与B(10,0)距离最近的投放点(即ω2)的距离,所以f60(10)=|60﹣10|=50,同理分析,f60(80)=|60﹣80|=20,f60(95)=|120﹣95|=25,由题意得,f60(x)={|60﹣x|,|120﹣x|}min,则当|60﹣x|≤|120﹣x|,即x≤90时,f60(x)=|60﹣x|;当|60﹣x|>|120﹣x|,即x>90时,f60(x)=|120﹣x|;综上f60(x)=;(2)由题意得f t(x)={|t﹣x|,|120﹣x|}min,所以f t(x)=,则f t(x)与坐标轴围成的⾯积如阴影部分所示,所以S=t2+=t2﹣60t+3600,由题意,S<S(60),即t2﹣60t+3600<2700,解得20<t<60,即垃圾投放点ω2建在(20,0)与(60,0)之间时,⽐建在中点时更加便利.考点卡⽚1.函数的定义域及其求法【知识点的认识】函数的定义域就是使函数有意义的⾃变量的取值范围.求解函数定义域的常规⽅法:①分⺟不等于零;②根式(开偶次⽅)被开⽅式≥0;③对数的真数⼤于零,以及对数底数⼤于零且不等于1;④指数为零时,底数不为零.⑤实际问题中函数的定义域;【解题⽅法点拨】求函数定义域,⼀般归结为解不等式组或混合组.(1)当函数是由解析式给出时,其定义域是使解析式有意义的⾃变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如⻓度、⾯积必须⼤于零、⼈数必须为⾃然数等).(3)若⼀函数解析式是由⼏个函数经四则运算得到的,则函数定义域应是同时使这⼏个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)抽象函数的定义域:①对在同⼀对应法则f下的量“x”“x+a”“x﹣a”所要满⾜的范围是⼀样的;②函数g (x)中的⾃变量是x,所以求g(x)的定义域应求g(x)中的x的范围.【命题⽅向】⾼考会考中多以⼩题形式出现,也可以是⼤题中的⼀⼩题.2.函数的图象与图象的变换【函数图象的作法】函数图象的作法:通过如下3个步骤(1)列表;(2)描点;(3)连线.解题⽅法点拨:⼀般情况下,函数需要同解变形后,结合函数的定义域,通过函数的对应法则,列出表格,然后在直⻆坐标系中,准确描点,然后连线(平滑曲线).命题⽅向:⼀般考试是以⼩题形式出现,或⼤题中的⼀问,常⻅考题是,常⻅函数的图象,有时结合函数的奇偶性、对称性、单调性知识结合命题.【图象的变换】1.利⽤描点法作函数图象其基本步骤是列表、描点、连线.⾸先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最⼤值点、最⼩值点、与坐标轴的交点等),描点,连线.2.利⽤图象变换法作函数的图象(1)平移变换:y=f(x)a>0,右移a个单位(a<0,左移|a|个单位) y=f(x﹣a);y=f(x)b>0,上移b个单位(b<0,下移|b|个单位) y=f(x)+b.(2)伸缩变换:y=f(x)y=f(ωx);y=f(x)A>1,伸为原来的A倍(0<A<1,缩为原来的A倍) y=Af(x).(3)对称变换:y=f(x)关于x轴对称 y=﹣f(x);y=f(x)关于y轴对称 y=f(﹣x);y=f(x)关于原点对称 y=﹣f(﹣x).(4)翻折变换:y=f(x)去掉y轴左边图,保留y轴右边图,将y轴右边的图象翻折到左边 y=f(|x|);y=f(x)留下x轴上⽅图将x轴下⽅图翻折上去y=|f(x)|.解题⽅法点拨1、画函数图象的⼀般⽅法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数或解析⼏何中熟悉的曲线时,可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利⽤图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上⾯两种⽅法都失效时,则可采⽤描点法.为了通过描少量点,就能得到⽐较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.2、寻找图象与函数解析式之间的对应关系的⽅法(1)知图选式:①从图象的左右、上下分布,观察函数的定义域、值域;②从图象的变化趋势,观察函数的单调性;③从图象的对称性⽅⾯,观察函数的奇偶性;④从图象的循环往复,观察函数的周期性.利⽤上述⽅法,排除错误选项,筛选正确的选项.(2)知式选图:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从函数的奇偶性,判断图象的对称性.④从函数的周期性,判断图象的循环往复.利⽤上述⽅法,排除错误选项,筛选正确选项.注意联系基本函数图象和模型,当选项⽆法排除时,代特殊值,或从某些量上寻找突破⼝.3、(1)利有函数的图象研究函数的性质从图象的最⾼点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的⾛向趋势,分析函数的单调性、周期性等.(2)利⽤函数的图象研究⽅程根的个数有关⽅程解的个数问题常常转化为两个熟悉的函数的交点个数;利⽤此法也可由解的个数求参数值.4、⽅法归纳:(1)1个易错点﹣﹣图象变换中的易错点在解决函数图象的变换问题时,要遵循“只能对函数关系式中的x,y变换”的原则,写出每⼀次的变换所得图象对应的解析式,这样才能避免出错.(2)3个关键点﹣﹣正确作出函数图象的三个关键点为了正确地作出函数图象,必须做到以下三点:①正确求出函数的定义域;②熟练掌握⼏种基本函数的图象,如⼆次函数、反⽐例函数、指数函数、对数函数、幂函数、形如y=x+的函数;③掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常⽤的⽅法技巧,来帮助我们简化作图过程.(3)3种⽅法﹣﹣识图的⽅法对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等⽅⾯来获取图中所提供的信息,解决这类问题的常⽤⽅法有:①定性分析法,也就是通过对问题进⾏定性的分析,从⽽得出图象的上升(或下降)的趋势,利⽤这⼀特征来分析解决问题;②定量计算法,也就是通过定量的计算来分析解决问题;③函数模型法,也就是由所提供的图象特征,联想相关函数模型,利⽤这⼀函数模型来分析解决问题.3.函数单调性的性质与判断【知识点的认识】⼀般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个⾃变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数.若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这⼀区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.【解题⽅法点拨】证明函数的单调性⽤定义法的步骤:①取值;②作差;③变形;④确定符号;⑤下结论.利⽤函数的导数证明函数单调性的步骤:第⼀步:求函数的定义域.若题设中有对数函数⼀定先求定义域,若题设中有三次函数、指数函数可不考虑定义域.第⼆步:求函数f(x)的导数f′(x),并令f′(x)=0,求其根.第三步:利⽤f′(x)=0的根和不可导点的x的值从⼩到⼤顺次将定义域分成若⼲个⼩开区间,并列表.第四步:由f′(x)在⼩开区间内的正、负值判断f(x)在⼩开区间内的单调性;求极值、最值.第五步:将不等式恒成⽴问题转化为f(x)max≤a或f(x)min≥a,解不等式求参数的取值范围.第六步:明确规范地表述结论【命题⽅向】从近三年的⾼考试题来看,函数单调性的判断和应⽤以及函数的最值问题是⾼考的热点,题型既有选择题、填空题,⼜有解答题,难度中等偏⾼;客观题主要考查函数的单调性、最值的灵活确定与简单应⽤,主观题在考查基本概念、重要⽅法的基础上,⼜注重考查函数⽅程、等价转化、数形结合、分类讨论的思想⽅法.预测明年⾼考仍将以利⽤导数求函数的单调区间,研究单调性及利⽤单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能⼒.4.复合函数的单调性【知识点的认识】所谓复合函数就是由两个或两个以上的基本函数构成,这种函数先要考虑基本函数的单调性,然后再考虑整体的单调性.平常常⻅的⼀般以两个函数的为主.【解题⽅法点拨】求复合函数y=f(g(x))的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.【命题⽅向】理解复合函数的概念,会求复合函数的区间并判断函数的单调性.5.函数奇偶性的性质与判断【知识点的认识】①如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.②如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.【解题⽅法点拨】①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反.例题:函数y=x|x|+px,x∈R是()A.偶函数B.奇函数C.⾮奇⾮偶D.与p有关解:由题设知f(x)的定义域为R,关于原点对称.因为f(﹣x)=﹣x|﹣x|﹣px=﹣x|x|﹣px=﹣f(x),所以f(x)是奇函数.故选B.【命题⽅向】函数奇偶性的应⽤.本知识点是⾼考的⾼频率考点,⼤家要熟悉就函数的性质,最好是结合其图象⼀起分析,确保答题的正确率.6.奇偶性与单调性的综合【知识点的认识】对于奇偶函数综合,其实也并谈不上真正的综合,⼀般情况下也就是把它们并列在⼀起,所以说关键还是要掌握奇函数和偶函数各⾃的性质,在做题时能融会贯通,灵活运⽤.在重复⼀下它们的性质①奇函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),其图象特点是关于(0,0)对称.②偶函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),其图象特点是关于y轴对称.【解题⽅法点拨】参照奇偶函数的性质那⼀考点,有:①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反例题:如果f(x)=为奇函数,那么a=.解:由题意可知,f(x)的定义域为R,由奇函数的性质可知,f(x)==﹣f(﹣x) a=1【命题⽅向】奇偶性与单调性的综合.不管出什么样的题,能理解运⽤奇偶函数的性质是⼀个基本前提,另外做题的时候多多总结,⼀定要重视这⼀个知识点.7.抽象函数及其应⽤【知识点的认识】抽象函数是指没有给出函数的具体解析式,只给出了⼀些体现函数特征的式⼦的⼀类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之⼀.【解题⽅法点拨】①尽可能把抽象函数与我们数学的具体模型联系起来,如f (x +y )=f (x )+f (y ),它的原型就是y =kx ;②可通过赋特殊值法使问题得以解决例:f (xy )=f (x )+f (y ),求证f (1)=f (﹣1)=0令x =y =1,则f (1)=2f (1) f (1)=0令x =y =﹣1,同理可推出f (﹣1)=0③既然是函数,也可以运⽤相关的函数性质推断它的单调性;【命题⽅向】抽象函数及其应⽤.抽象函数是⼀个重点,也是⼀个难点,解题的主要⽅法也就是我上⾯提到的这两种.⾼考中⼀般以中档题和⼩题为主,要引起重视.8.指数函数的图象与性质【知识点的认识】1、指数函数y =a x (a >0,且a ≠1)的图象和性质:y =a xa >10<a <1图象定义域R 值域(0,+∞)性质过定点(0,1)当x >0时,y >1;x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R上是增函数在R上是减函数2、底数对指数函数的影响:①在同⼀坐标系内分别作函数的图象,易看出:当a>l时,底数越⼤,函数图象在第⼀象限越靠近y轴;同样地,当0<a<l时,底数越⼩,函数图象在第⼀象限越靠近x轴.②底数对函数值的影响如图.③当a>0,且a≠l时,函数y=a x与函数y=的图象关于y轴对称.3、利⽤指数函数的性质⽐较⼤⼩:若底数相同⽽指数不同,⽤指数函数的单调性⽐较:若底数不同⽽指数相同,⽤作商法⽐较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.9.对数的运算性质【知识点的认识】对数的性质:①=N;②log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.10.对数值⼤⼩的⽐较【知识点归纳】1、若两对数的底数相同,真数不同,则利⽤对数函数的单调性来⽐较.2、若两对数的底数和真数均不相同,通常引⼊中间变量(1,﹣1,0)进⾏⽐较3、若两对数的底数不同,真数也不同,则利⽤函数图象或利⽤换底公式化为同底的再进⾏⽐较.(画图的⽅法:在第⼀象限内,函数图象的底数由左到右逐渐增⼤)11.对数函数的图象与性质【知识点归纳】12.反函数【知识点归纳】【定义】⼀般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y的关系,⽤y 把x表示出,得到x=g(y).若对于y在中的任何⼀个值,通过x=g(y),x在A中都有唯⼀的值和它对应,那么,x=g(y)就表示y是⾃变量,x是因变量是y的函数,这样的函数y=g(x)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f(﹣1)(x)反函数y=f(﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了⻆⾊(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是⼀⼀映射;(3)⼀个函数与它的反函数在相应区间上单调性⼀致;(4)⼤部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C。

2020届高考文科数学复习练习题(二):函数 专题训练

2020届高考文科数学复习练习题(二):函数 专题训练

专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则.所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a≤0时,由a-1=-1得a=0;当a>0时,由-a2+2a+2=-1,即a2-2a-3=0得a=3或a=-1(舍).综上,a=0或a=3.例3 下列四组函数中,表示同一函数的是( )(A) (B)(C) (D)【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y=|x|及y=|t|,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1) (2)(3) (4)解:(1)由|x-1|-1≥0,得|x-1|≥1,所以x-1≥1或x-1≤-1,所以x≥2或x≤0.所以,所求函数的定义域为{x|x≥2或x≤0}.(2)由x2+2x-3>0得,x>1或x<-3.所以,所求函数的定义域为{x|x>1或x<-3}.(3)由得x<3,且x≠0,x≠1,所以,所求函数的定义域为{x|x<3,且x≠0,x≠1}(4)由所以-1≤x≤1,且x≠0.所以,所求函数定义域为{x|-1≤x≤1,且x≠0}.例5 已知函数f(x)的定义域为(0,1),求函数f(x+1)及f(x2)的定义域.【分析】此题的题设条件中未给出函数f(x)的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x的取值范围;②受对应法则f制约的量的取值范围在“已知”和“求”当中是一致的.那么由f(x)的定义域是(0,1)可知法则f制约的量的取值范围是(0,1),而在函数f(x+1)中,受f直接制约的是x+1,而定义域是指x的范围,因此通过解不等式0<x+1<1得-1<x<0,即f(x+1)的定义域是(-1,0).同理可得f(x2)的定义域为{x|-1<x<1,且x≠0}.例6 如图,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x,求此框架围成的面积y与x的函数关系式,并指出定义域.解:根据题意,AB=2x.所以,根据问题的实际意义.AD>0,x>0.解所以,所求函数定义域为【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y=tan x,则,k∈Z.(2)不给出f(x)的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知,求f(x)的解析式;(2)已知,求f(3)的值;(3)如果f(x)为二次函数,f(0)=2,并且当x=1时,f(x)取得最小值-1,求f(x)的解析式;(4)*已知函数y=f(x)与函数y=g(x)=2x的图象关于直线x=1对称,求f(x)的解析式.【分析】(1)求函数f(x)的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,方法二.设,则.则,所以这样,通过“换元”的方法也可以明确看到法则是什么.(2)用“凑型”的方法,(3)因为f(x)为二次函数,并且当x=1时,f(x)取得最小值-1,所以,可设f(x)=a(x-1)2-1,又f(0)=2,所以a(0-1)2-1=2,所以a=3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.40元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.30元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x元/kW·h时,用电量将增加至故电力部门的收益为.(2)易知,上年度的收益为(0.8-0.3)a,依题意,且0.55≤x≤0.75,解得0.60≤x≤0.75.所以,当电价最低定为0.60元/kW·h时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题1.已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=( )(A){x|x>1} (B){x|x<1} (C){x|-1<x<1} (D)2.图中的图象所表示的函数的解析式为( )(A)(B)(C)(D)y=1-|x-1|(0≤x≤2)3.已知f(x-1)=x2+2x,则( )(A) (B) (C) (D)4.已知若f(x)=3,则x的值是( )(A)0 (B)0或 (C) (D)二、填空题5.给定映射f:(x,y)→(x+2y,x-2y),在映射f下(0,1)的象是______;(3,1)的原象是______.6.函数的定义域是______.7.已知函数f(x),g(x)分别由下表给出x 1 2 3 x 1 2 3f(x) 1 3 1 g(x) 3 2 1则f[g(1)]的值为______;满足f[g(x)]>g[f(x)]的x的值是______.8.已知函数y=f(x)与函数y=g(x)=2x的图象关于点(0,1)对称,则f(x)的解析式为______.三、解答题9.已知f(x)=2x+x-1,求g(-1),g[f(1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间.为使物体落在区间D内,求a的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点(-x,-f(x))都在其图象上.又点P与点关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形.2.一般地,设函数y=f(x)的定义域为A,区间MA.如果取区间M中的任意两个值x1,x2,改变量x=x2-x1>0,则当y=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数;当y=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.4.一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(a+x)=f(a-x)都成立,则函数y=f(x)的图象关于直线x=a对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1 判断下列函数的奇偶性.(1) (2)(3)f(x)=x3-3x; (4)(5)解:(1)解,得到函数的定义域为{x|x>1或x≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x|x≠0},但是,由于f(1)=2,f(-1)=0,即f(1)≠f(-1),且f(1)≠-f(-1),所以此函数为非奇非偶函数.(3)函数的定义域为R,又f(-x)=(-x)3-3(-x)=-x3+3x=-f(x),所以此函数为奇函数.(4)解,得-1<x<1,又所以此函数为奇函数.(5)函数的定义域为R,又,所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;②f(x)是奇函数,并且f(x)在x=0时有定义,则必有f(0)=0;③既是奇函数又是偶函数的函数,其解析式一定为f(x)=0.判定函数奇偶性按照其定义可以分为两个步骤:①判断函数的定义域是否关于原点对称;②考察f(-x)与f(x)的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f(x)在R上有定义,给出下列函数:①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x).其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F(x)=-|f(x)|,则F(-x)=-|f(-x)|,由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.②令F(x)=xf(x2),则F(-x)=-xf[(-x)2]=-xf(x2)=-F(x),所以F(x)为奇函数.③令F(x)=-f(-x),则F(-x)=-f[-(-x)]=-f(x),由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.④令F(x)=f(x)-f(-x),则F(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-F(x),所以F(x)为奇函数.所以,②④为奇函数.例3 设函数f(x)在R上有定义,f(x)的值不恒为零,对于任意的x,y∈R,恒有f(x+y)=f(x)+f(y),则函数f(x)的奇偶性为______.解:令x=y=0,则f(0)=f(0)+f(0),所以f(0)=0,再令y=-x,则f(0)=f(x)+f(-x),所以f(-x)=-f(x),又f(x)的值不恒为零,故f(x)是奇函数而非偶函数.【评析】关于函数方程“f(x+y)=f(x)+f(y)”的使用一般有以下两个思路:令x,y为某些特殊的值,如本题解法中,令x=y=0得到了f(0)=0.当然,如果令x=y=1则可以得到f(2)=2f(1),等等.令x,y具有某种特殊的关系,如本题解法中,令y=-x.得到f(2x)=2f(x),在某些情况下也可令y=,y=x,等等.总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f(x)=x2+bx+c满足f(1+x)=f(1-x),求b的值,并比较f(-1)与f(4)的大小.解:因为f(1+x)=f(1-x),所以x=1为二次函数图象的对称轴,所以,b=-2.根据对称性,f(-1)=f(3),又函数在[1,+∞)上单调递增,所以f(3)<f(4),即f(-1)<f(4).例5已知f(x)为奇函数,当x≥0时,f(x)=x2-2x,(1)求f(-1)的值;(2)当x<0时,求f(x)的解析式.解:(1)因为f(x)为奇函数,所以f(-1)=-f(1)=-(12-2×1)=1.(2)方法一:当x<0时,-x>0.所以,f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x.方法二:设(x,y)是f(x)在x<0时图象上一点,则(-x,-y)一定在f(x)在x>0时的图象上.所以,-y=(-x)2-2(-x),所以y=-x2-2x.例6 用函数单调性定义证明,函数y=ax2+bx+c(a>0)在区间上为增函数.证明:设,且x1<x2f(x2)-f(x1)=(ax22+bx2+c)-(ax12+bx1+c)=a(x22-x12)+b(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(x2-x1)[a(x1+x2)+b]因为x1<x2,所以x2-x1>0,又因为,所以,所以f(x2)-f(x1)>0,函数y=ax2+bx+c(a>0)在区间上为增函数.例7 已知函数f(x)是定义域为R的单调增函数.(1)比较f(a2+2)与f(2a)的大小;(2)若f(a2)>f(a+6),求实数a的取值范围.解:(1)因为a2+2-2a=(a-1)2+1>0,所以a2+2>2a,由已知,f(x)是单调增函数,所以f(a2+2)>f(2a).(2)因为f(x)是单调增函数,且f(a2)>f(a+6),所以a2>a+6,解得a>3或a<-2.【评析】回顾单调增函数的定义,在x1,x2为区间任意两个值的前提下,有三个重要的问题:x=x2-x1的符号;y=f(x2)-f(x1)的符号;函数y=f(x)在区间上是增还是减.由定义可知:对于任取的x1,x2,若x2>x1,且f(x2)>f(x1),则函数y=f(x)在区间上是增函数;不仅如此,若x2>x1,且函数y=f(x)在区间上是增函数,则f(x2)>f(x1);若f(x2)>f(x1),且函数y=f(x)在区间上是增函数,则x2>x1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f(x)是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数.(1)试比较f(-2)与-f(3)的大小;(2)若mn<0,且m+n<0,求证:f(m)+f(n)>0.解:(1)因为f(x)是奇函数,所以-f(3)=f(-3),又f(x)在区间(-∞,0)上是减函数,所以f(-3)>f(-2),即-f(3)>f(-2).(2)因为mn<0,所以m,n异号,不妨设m>0,n<0,因为m+n<0,所以n<-m,因为n,-m∈(-∞,0),n<-m,f(x)在区间(-∞,0)上是减函数,所以f(n)>f(-m),因为f(x)是奇函数,所以f(-m)=-f(m),所以f(n)>-f(m),即f(m)+f(n)>0.例9函数f(x)是周期为2的周期函数,且f(x)=x2,x∈[-1,1].(1)求f(7.5)的值;(2)求f(x)在区间[2n-1,2n+1]上的解析式.解:(1)因为函数f(x)是周期为2的周期函数,所以f(x+2k)=f(x),k∈Z.所以f(7.5)=f(-0.5+8)=f(-0.5)=.(2)设x∈[2n-1,2n+1],则x-2n∈[-1,1].所以f(x)=f(x-2n)=(x-2n)2,x∈[2n-1,2n+1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( )(A)y=x2-4x (B)y=|x| (C) (D)y=x2+2x2.下列判断正确的是( )(A)定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数(B)定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数(C)定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f(x)是R上的奇函数,并且是周期为3的周期函数,又知f(1)=2.则f(2)=( )(A)-2 (B)2 (C)1 (D)-14.设f(x)是R上的任意函数,则下列叙述正确的是( )(A)f(x)f(-x)是奇函数 (B)f(x)|f(-x)|是奇函数(C)f(x)-f(-x)是偶函数 (D)f(x)+f(-x)是偶函数二、填空题5.若函数f(x)=4x2-mx+5在区间[-2,+∞)是增函数,则m的取值范围是______;f(1)的取值范围是______.6.已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=______.7.设函数为奇函数,则实数a=______.8.已知函数f(x)=x2-cos x,对于上的任意x1,x2,有如下条件:①x1>x2;②③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是______三、解答题9.已知函数f(x)是单调减函数.(1)若a>0,比较与f(3)的大小;(2)若f(|a-1|)>f(3),求实数a的取值范围.10.已知函数(1)判断函数f(x)的奇偶性;(2)当a=1时,证明函数f(x)在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f(x)满足①f(2)=1;②f(xy)=f(x)+f(y),其中x,y 为任意正实数,③任意正实数x,y满足x≠y时,(x-y)[f(x)-f(y)]>0恒成立.(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)+f(x-3)≤2,试求x的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质.【知识要点】1.一次函数:y=kx+b(k≠0)(1)定义域为R,值域为R;(2)图象如图所示,为一条直线;(3)k>0时,函数为增函数,k<0时,函数为减函数;(4)当且仅当b=0时一次函数是奇函数.一次函数不可能是偶函数.(5)函数y=kx+b的零点为2.二次函数:y=ax2+bx+c(a≠0)通过配方,函数的解析式可以变形为(1)定义域为R:当a>0时,值域为;当a<0时,值域为;(2)图象为抛物线,抛物线的对称轴为,顶点坐标为.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.(3)当a>0时,是减区间,是增区间;当a<0时,是增区间,是减区间.(4)当且仅当b=0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式=b2-4ac>0时,函数有两个变号零点;当判别式=b2-4ac=0时,函数有一个不变号零点;当判别式=b2-4ac<0时,函数没有零点.3.指数函数y=a x(a>0且a≠1)(1)定义域为R;值域为(0,+∞).(2)a>1时,指数函数为增函数;0<a<1时,指数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y=log a x(a>0且a≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x,使得x n=a (a∈R,n>1,n∈N+),则x叫做a的n次方根.负数没有偶次方根.;(2)分数指数幂,;n,m∈N*,且为既约分数).,且为既约分数).(3)幂的运算性质a m a n=a m+n,(a m)n=a mn,(ab)n=a nb n,a0=1(a≠0).(4)一般地,对于指数式a b=N,我们把“b叫做以a为底N的对数”记为log a N,即b=log a N(a>0,且a≠1).(5)对数恒等式:=N.(6)对数的性质:零和负数没有对数(对数的真数必须大于零!);底的对数是1,1的对数是0.(7)对数的运算法则及换底公式:;;.(其中a>0且a≠1,b>0且b≠1,M>0,N>0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y=x,y=x2,y=x3,这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.【例题分析】例1化简下列各式:(1); (2);(3); (4)log2[log3(log464)];(5).解:(1)(2)(3)(4)log2[log3(log464)]=log2[log3(log443)]=log2[log33]=log21=0.(5)【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,试确定f(x)的解析式.解:解法一设f(x)=ax2+bx+c(a≠0),依题意解之得所以所求二次函数为f(x)=-4x2+4x+7.解法二f(x)=a(x-h)2+k(a≠0),为f(2)=-1,f(-1)=-1,所以抛物线的对称轴为,又f(x)的最大值为8,所以.因为(-1,-1)点在抛物线上,所以,解得a=-4.所以所求二次函数为.例3 (1)如果二次函数f(x)=x2+(a+2)x+5在区间(2,+∞)上是增函数,则a的取值范围是______.(2)二次函数y=ax2-4x+a-3的最大值恒为负,则a的取值范围是______.(3)函数f(x)=x2+bx+c对于任意t∈R均有f(2+t)=f(2-t),则f(1),f(2),f(4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数,画简图可知此抛物线对称轴或与直线x=2重合,或位于直线x=2的左侧,于是有,解之得.(2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a<0,且判别式<0”,即,解得a∈(-∞,-1).(3)因为对于任意t∈R均有f(2+t)=f(2-t),所以抛物线对称轴为x=2,又抛物线开口向上,做出函数图象简图可得f(2)<f(1)<f(4).例4已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的范围.解:当m=0时,f(x)=-3x+1,其图象与x轴的交点为,符合题意;当m<0时,注意到f(0)=1,又抛物线开口向下,所以抛物线与x轴的两个交点必在原点两侧.所以m<0符合题意;当m>0时,注意到f(0)=1,又抛物线开口向上,所以抛物线与x轴的两个交点必在原点同侧(如果存在),所以若满足题意,则解得0<m≤1.综上,m∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a≠0时,函数y=ax+b与y=b ax的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用.这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f(0)=1”,例5中“作直线y=1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y=1”.例6已知幂函数.(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.解:(1)因为f(x)在(0,+∞)上是增函数,所以,解得-1<k<3,因为k∈Z,所以k=0,1,2,又因为f(x)为偶函数,所以k=1,f(x)=x2.(2)因为f(x)在(0,+∞)上是减函数,所以,解得k<-1,或k>3(k∈Z).例7比较下列各小题中各数的大小(1);(2)lg2与lg(x2-x+3);(3)0.50.2与0.20.5;(4);(5);(6)a m+a-m与a n+a-n(a>0,a≠1,m>n>0)【分析】(1)函数y=log2x在区间(0,+∞)上是增函数,所以log20.6<log21=0,函数y=log0.6x在区间(0,+∞)上是减函数,所以所以.(2)由于,所以lg2<lg(x2-x+3).(3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为.根据不等式的性质有(5)因为比较与log32,只需比较与log32,因为y=log3x是增函数,所以只需比较与2的大小,因为,所以,所以,综上,(6),当a>1时,因为m>n>0,a m>a n,a m+n>1,所以a m+a-m>a n+a-n;当0<a<1时,因为m>n>0,a m<a n,a m+n<1,所以a m+a-m>a n+a-n.综上,a m+a-m>a n+a-n.例8已知a>2,b>2,比较a+b,ab的大小.【分析】方法一(作商比较法),又a>2,b>2,所以,所以,所以a+b<ab.方法二(作差比较法),因为a>2,b>2,所以2-a<0,2-b<0,所以a+b-ab<0,即a+b<ab.方法三(构造函数)令y=f(a)=a+b-ab=(1-b)a+b,将y看作是关于a的一次函数,因为1-b<0,所以此函数为减函数,又a∈(2,+∞),y最大<f(2)=(1-b)×2+b=2-b<0,所以a+b-ab<0,即a+b<ab.【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).例9若log2(x-1)<2,则x的取值范围是______.解:log2(x-1)<2,即log2(x-1)<log24,根据函数y=log2x的单调性,可得x-1<4,所以x<5,结合x-1>0,所以x的取值范围是1<x<5.例10 已知A,B为函数y=log8x的图象上两点,分别过A,B作y轴的平行线与函数y=log2x的图象交于C,D两点.(1)如果A,B两点的连线经过原点O,请问C,D,O三点也共线么?证明你的结论.(2)当A,B,O三点共线并且BC与x轴平行时,求A点的坐标.略解:(1)设A(x1,log8x1),B(x2,log8x2),由于A,B,O在同一条直线上,所以又设C(x1,log2x1),D(x2,log2x2),于是有同样可得结合①式,有k OC=k OD,即C,D,O三点共线.(2)当BC∥x轴时,即。

2020版高考文科数学大一轮复习人教A版文档:4.3 三角函数的图象与性质 Word版含答案.docx

2020版高考文科数学大一轮复习人教A版文档:4.3 三角函数的图象与性质 Word版含答案.docx

§4.3 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).(2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )知识拓展 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ,ω≠0),则:(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限上是增函数.( × )(2)由sin ⎝⎛⎭⎫π6+2π3=sin π6知,2π3是正弦函数y =sin x (x ∈R )的一个周期.( × ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin|x |是偶函数.( √ ) 题组二 教材改编2.[P35例2]函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是________. 答案 π3.[P46A 组T2]y =3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域是________. 答案 ⎣⎡⎦⎤-32,3解析 当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 即y =3sin ⎝⎛⎭⎫2x -π6的值域为⎣⎡⎦⎤-32,3. 4.[P45T3]y =tan 2x 的定义域是________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z 解析 由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x 的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∈Z . 题组三 易错自纠5.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2答案 C解析 ∵正弦函数图象的对称轴过图象的最高点或最低点,故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .取k =-1,则x =-π4.6.函数y =-tan ⎝⎛⎭⎫2x -3π4的单调递减区间为__________. 答案 ⎝⎛⎭⎫π8+k π2,5π8+k π2(k ∈Z )解析 因为y =tan x 的单调递增区间为⎝⎛⎭⎫-π2+k π,π2+k π(k ∈Z ), 所以由-π2+k π<2x -3π4<π2+k π,k ∈Z ,得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎫2x -3π4的单调递减区间为⎝⎛⎭⎫π8+k π2,5π8+k π2(k ∈Z ).7.cos 23°,sin 68°,cos 97°的大小关系是________. 答案 sin 68°>cos 23°>cos 97° 解析 sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.题型一 三角函数的定义域和值域1.函数f (x )=-2tan ⎝⎛⎭⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠π6 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π12 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π6(k ∈Z ) 答案 D解析 由正切函数的定义域,得2x +π6≠k π+π2,k ∈Z ,即x ≠k π2+π6(k ∈Z ),故选D.2.函数y =sin x -cos x 的定义域为________. 答案 ⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 解析 方法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .方法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).所以定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .3.函数y =-2sin x -1,x ∈⎣⎡⎭⎫7π6,13π6的值域是________. 答案 (-2,1]解析 当x ∈⎣⎡⎭⎫7π6,13π6时,-1≤sin x <12, 所以函数y =-2sin x -1,x ∈⎣⎡⎭⎫7π6,13π6的值域是(-2,1].4.(2018届山东邹平双语学校月考)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 答案 1解析 f (x )=sin 2x +3cos x -34=1-cos 2x +3cos x -34,令cos x =t 且t ∈[0,1],则y =-t 2+3t +14=-⎝⎛⎭⎫t -322+1,当t =32时,y max =1, 即f (x )的最大值是1.思维升华 (1)三角函数定义域的求法求三角函数的定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求;②把所给的三角函数式变换成y =A sin(ωx +φ)(A ,ω≠0)的形式求值域; ③通过换元,转换成二次函数求值域.题型二 三角函数的单调性命题点1 求三角函数的单调性典例 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z )C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 答案 B解析 由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为 ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)(2017·哈尔滨、长春、沈阳、大连四市联考)函数y =12sin x +32cos x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的单调递增区间是____________. 答案 ⎣⎡⎦⎤0,π6 解析 ∵y =12sin x +32cos x =sin ⎝⎛⎭⎫x +π3, 由2k π-π2≤x +π3≤2k π+π2(k ∈Z ),解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).∴函数的单调递增区间为⎣⎡⎦⎤2k π-5π6,2k π+π6(k ∈Z ), 又x ∈⎣⎡⎦⎤0,π2,∴单调递增区间为⎣⎡⎦⎤0,π6. 命题点2 根据单调性求参数典例 已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 ⎣⎡⎦⎤12,54解析 由π2<x <π,ω>0,得ωπ2+π4<ωx +π4<ωπ+π4, 又y =sin x 的单调递减区间为⎣⎡⎦⎤2k π+π2,2k π+3π2,k ∈Z ,所以⎩⎨⎧ωπ2+π4≥π2+2k π,ωπ+π4≤3π2+2k πk ∈Z ,解得4k +12≤ω≤2k +54,k ∈Z .又由4k +12-⎝⎛⎭⎫2k +54≤0,k ∈Z 且2k +54>0,k ∈Z ,得k =0,所以ω∈⎣⎡⎦⎤12,54. 引申探究本例中,若已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递增,则ω的取值范围是______. 答案 ⎣⎡⎦⎤32,74解析 函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎨⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k πk ∈Z ,解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝⎛⎭⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎡⎦⎤32,74.思维升华 (1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. 跟踪训练 (2017·济南模拟)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( ) A.23 B.32 C .2 D .3答案 B解析 由已知得T 4=π3,∴T =4π3,∴ω=2πT =32.题型三 三角函数的周期性、奇偶性、对称性命题点1 三角函数的周期性典例 (1)(2017·湘西自治州模拟)已知函数f (x )=sin(ωx -ωπ)(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π12等于( ) A.12 B .-12C.32D .-32答案 A解析 ∵T =π,∴ω=2πT =2ππ=2,∴f (x )=sin ()2x -2π=sin 2x , ∴f ⎝⎛⎭⎫π12=sin π6=12. (2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________. 答案 2或3解析 由题意得,1<πk <2,∴k <π<2k ,即π2<k <π,又k ∈Z ,∴k =2或3. 命题点2 三角函数的奇偶性典例 (2017·银川模拟)函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为________. 答案5π6解析 由题意知f (x )为偶函数,关于y 轴对称, ∴f (0)=3sin ⎝⎛⎭⎫φ-π3=±3, ∴φ-π3=k π+π2,k ∈Z ,又0<φ<π,∴φ=5π6.命题点3 三角函数图象的对称性典例 (1)下列函数的最小正周期为π且图象关于直线x =π3对称的是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x -π6C .y =2sin ⎝⎛⎭⎫x 2+π3 D .y =2sin ⎝⎛⎭⎫2x -π3 答案 B解析 由y =f (x )的最小正周期为π,可排除C ;其图象关于直线x =π3对称,根据选项,则f ⎝⎛⎭⎫π3=2或-2,可排除A ,D.故选B.(2)(2016·全国Ⅰ改编)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎫π18,5π36上单调,则ω的最大值为________. 答案 9解析 因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝⎛⎭⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω,所以ω=2k +1(k ∈N ),又因为f (x )在⎝⎛⎭⎫π18,5π36上单调,所以5π36-π18=π12≤T2=2π2ω,即ω≤12, 若ω=11,又|φ|≤π2,则φ=-π4,此时,f (x )=sin ⎝⎛⎭⎫11x -π4,f (x )在⎝⎛⎭⎫π18,3π44上单调递增,在⎝⎛⎭⎫3π44,5π36上单调递减,不满足条件. 若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ⎝⎛⎭⎫9x +π4,满足f (x )在⎝⎛⎭⎫π18,5π36上单调的条件. 由此得ω的最大值为9.思维升华 (1)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点. (2)求三角函数周期的方法 ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.跟踪训练 (1)(2017·大连模拟)函数f (x )=2cos(ωx +φ)(ω≠0)对任意x 都有f ⎝⎛⎭⎫π4+x =f ⎝⎛⎭⎫π4-x ,则f ⎝⎛⎭⎫π4等于( ) A .2或0 B .-2或2 C .0 D .-2或0答案 B解析 由题意,知x =π4为函数f (x )的一条对称轴,∴f ⎝⎛⎭⎫π4=±2. (2)若将函数f (x )=sin ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度后与原函数的图象关于x 轴对称,则ω的最小正值是________. 答案 3解析 若将函数f (x )的图象向右平移π3个单位长度后与原函数的图象关于x 轴对称,则平移的大小最小为T 2,所以T 2≤π3,即T max =2π3,所以当T =2π3时,ωmin =2πT max =2π2π3=3.三角函数的图象与性质考点分析 纵观近年高考中三角函数的试题,其有关性质几乎每年必考,题目较为简单,综合性的知识多数为三角函数本章内的知识,通过有效地复习完全可以对此类题型及解法有效攻破,并在高考中拿全分.典例 (1)(2017·全国Ⅲ)设函数f (x )=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎫π2,π上单调递减解析 A 项,因为f (x )=cos ⎝⎛⎭⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确;B 项,因为f (x )=cos ⎝⎛⎭⎫x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确;C 项,f (x +π)=cos ⎝⎛⎭⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-5π6,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确;D 项,因为f (x )=cos ⎝⎛⎭⎫x +π3的单调递减区间为⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ), 单调递增区间为⎣⎡⎦⎤2k π+2π3,2k π+5π3(k ∈Z ), 所以⎝⎛⎭⎫π2,2π3是f (x )的单调递减区间,⎣⎡⎭⎫2π3,π是f (x )的单调递增区间,D 项错误.故选D. 答案 D(2)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为________.解析 由图象知,周期T =2×⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . 答案 ⎝⎛⎭⎫2k -14,2k +34,k ∈Z (3)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析 记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3,又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6, 且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3,x 2=⎝⎛⎭⎫π2+2π3×12=7π12, ∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案 π1.(2017·广州五校联考)下列函数中,周期为π的奇函数为( ) A .y =sin x cos x B .y =sin 2x C .y =tan 2x D .y =sin 2x +cos 2x答案 A解析 y =sin x cos x =12sin 2x ,周期为π,且是奇函数.2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C.22 D .0 答案 B解析 由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1, 故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22.故选B.3.函数y =sin x 2的图象是( )答案 D解析 函数y =sin x 2为偶函数,排除A ,C ;又当x =π2时函数取得最大值,排除B ,故选D.4.(2017·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1 D .2,-2答案 D解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1, 令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2, 所以y max =2,y min =-2.5.已知函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象过点(0,3),则f (x )图象的一个对称中心是( ) A.⎝⎛⎭⎫-π3,0 B.⎝⎛⎭⎫-π6,0 C.⎝⎛⎭⎫π6,0 D.⎝⎛⎭⎫π12,0 答案 B解析 函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象过点(0,3),则f (0)=2sin φ=3, ∴sin φ=32,又|φ|<π2,∴φ=π3, 则f (x )=2sin ⎝⎛⎭⎫2x +π3,令2x +π3=k π(k ∈Z ), 则x =k π2-π6(k ∈Z ),当k =0时,x =-π6,∴⎝⎛⎭⎫-π6,0是函数f (x )的图象的一个对称中心. 6.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f ⎝⎛⎭⎫π8=-2,则f (x )的一个单调递减区间是( )A.⎣⎡⎦⎤-π8,3π8B.⎣⎡⎦⎤π8,9π8 C.⎣⎡⎦⎤-3π8,π8 D.⎣⎡⎦⎤π8,5π8答案 C解析 由f ⎝⎛⎭⎫π8=-2,得f ⎝⎛⎭⎫π8=-2sin ⎝⎛⎭⎫2×π8+φ=-2sin ⎝⎛⎭⎫π4+φ=-2, 所以sin ⎝⎛⎭⎫π4+φ=1. 因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .当k =0时,-3π8≤x ≤π8,故选C.7.函数y =cos ⎝⎛⎭⎫π4-2x 的单调递减区间为__________. 答案 ⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) 解析 因为y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4, 所以令2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调递减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·福州质检)函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最小值为____________. 答案1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =-22时,y min =1-22. 9.已知函数f (x )=2sin ⎝⎛⎭⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为________. 答案6π5解析 由函数f (x )=2sin ⎝⎛⎭⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,又ω∈(1,2),∴ω=53,从而得函数f (x )的最小正周期为2π53=6π5.10.(2018·珠海模拟)设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________. 答案 2解析 |x 1-x 2|的最小值为函数f (x )的半个周期, 又T =4,∴|x 1-x 2|的最小值为2. 11.已知f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )图象的对称轴方程; (2)求f (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值. 解 (1)f (x )=2sin ⎝⎛⎭⎫2x +π4, 令2x +π4=k π+π2,k ∈Z ,得x =k π2+π8,k ∈Z .所以函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z .(2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z . (3)当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, 所以-1≤sin ⎝⎛⎭⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2. 12. (2017·武汉调研)已知函数f (x )=a ⎝⎛⎭⎫2cos 2x2+sin x +b . (1)若a =-1,求函数f (x )的单调增区间;(2)当x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值. 解 f (x )=a (1+cos x +sin x )+b =2a sin ⎝⎛⎭⎫x +π4+a +b . (1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z ),得2k π+π4≤x ≤2k π+5π4(k ∈Z ),∴f (x )的单调增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ). (2)∵0≤x ≤π,∴π4≤x +π4≤5π4,∴-22≤sin ⎝⎛⎭⎫x +π4≤1.依题意知a ≠0, ①当a >0时,⎩⎨⎧2a +a +b =8,b =5,∴a =32-3,b =5;②当a <0时,⎩⎨⎧b =8,2a +a +b =5,∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.13.(2018·广州质检)已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C .2 D .3答案 B解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2或ωπ4≥3π2,∴ω≥32.∴ω的最小值为32.14.已知关于x 的方程2sin ⎝⎛⎭⎫x +π6+1-a =0在区间⎣⎡⎦⎤0,2π3上存在两个根,则实数a 的取值范围是________. 答案 [2,3)解析 sin ⎝⎛⎭⎫x +π6=a -12在⎣⎡⎦⎤0,2π3上存在两个根,设x +π6=t ,则t ∈⎣⎡⎦⎤π6,5π6, ∴y =sin t ,t ∈⎣⎡⎦⎤π6,5π6的图象与直线y =a -12有两个交点,∴12≤a -12<1,∴2≤a <3.15.已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f ⎝⎛⎭⎫x +π4=f (-x )恒成立,且f ⎝⎛⎭⎫π8=1,则实数b 的值为( ) A .-1 B .3 C .-1或3 D .-3答案 C解析 由f ⎝⎛⎭⎫x +π4=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3.16.已知f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的最小正周期为2,且当x =13时,f (x )的最大值为2.(1)求f (x )的解析式;(2)在闭区间⎣⎡⎦⎤214,234上是否存在m ,使x =m 是函数f (x )的对称轴?如果存在,求出m ;如果不存在,请说明理由.解 (1)由已知得2πω=2,∴ω=π,∵f (x )的最大值为2,∴A =2. 又A =2,且f ⎝⎛⎭⎫13=2sin ⎝⎛⎭⎫π3+φ=2, ∴π3+φ=2k π+π2(k ∈Z ), ∴φ=2k π+π6,k ∈Z ,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎫πx +π6. (2)由πx +π6=k π+π2,得x =k +13(k ∈Z ),即函数f (x )的对称轴为x =k +13(k ∈Z ).由214≤k +13≤234, 得5912≤k ≤6512,又k ∈Z , ∴k =5,此时的对称轴为x =163, 故在闭区间⎣⎡⎦⎤214,234上存在实数m =163,使x =m 是函数f (x )的对称轴.。

2020高考数学(文数)考点测试刷题本20 三角函数的图象与性质(含答案解析)

2020高考数学(文数)考点测试刷题本20 三角函数的图象与性质(含答案解析)

2020高考数学(文数)考点测试刷题本20三角函数的图象与性质一、选择题 1.设函数,则下列结论错误的是 ( )A.的一个周期为B.的图像关于直线对称C.的一个零点为D.在单调递减2.已知α,β是第一象限角,且sin α>sin β,则( )A.α>βB.α<βC.cos α>cos βD.tan α>tan β3.下列四个函数中,以π为最小正周期,且在区间⎝ ⎛⎭⎪⎫π2,π上为减函数的是( ) A .y=sin 2x B .y=2|cos x| C .y=cos x2D .y=tan(-x)4.函数y=-2cos 2⎝ ⎛⎭⎪⎫π4+x +1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数5.若函数y=3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0对称,则|φ|的最小值为( ) A.π6 B .π4 C.π3 D .π26.已知函数f(x)=sin x +3cos x ,设a=f ⎝ ⎛⎭⎪⎫π7,b=f ⎝ ⎛⎭⎪⎫π6,c=f ⎝ ⎛⎭⎪⎫π3,则a ,b ,c 的大小关系是( )A .a<b<cB .c<a<bC .b<a<cD .b<c<a7.函数y=sin x 2的图象是( )8.已知函数f(x)=cos ⎝⎛⎭⎪⎫2x +π3-cos 2x ,其中x∈R,给出下列四个结论:①函数f(x)是最小正周期为π的奇函数;②函数f(x)图象的一条对称轴是直线x=2π3;③函数f(x)图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0; ④函数f(x)的递增区间为⎣⎢⎡⎦⎥⎤kx +π6,k π+2π3,k ∈Z.则正确结论的个数是( ) A .1 B .2 C .3 D .4二、填空题9.已知θ是第三象限角,且sin θ-2cos θ=-25,则sin θ+cos θ=________.10.若tan β=2tan α,且cos αsin β=23,则sin(α-β)的值为________.11.若函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为π,则f ⎝ ⎛⎭⎪⎫π3的值是________.12.若函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图像如图所示,则f(-π)的值为________.三、解答题13.已知函数f(x)=sin 2x -cos 2x -23sin xcos x (x∈R).(1)求f ⎝ ⎛⎭⎪⎫2π3的值; (2)求f(x)的最小正周期及单调递增区间. 14.已知函数f(x)=sin(ωx+φ)(320,0πϕω<<>)的最小正周期为π.(1)求当f(x)为偶函数时φ的值;(2)若f(x)的图象过点(236, ),求f(x)的单调递增区间.15.已知函数的部分图象如图所示:(1)求函数f(x)的解析式并写出其所有对称中心;(2)若g(x)的图象与f(x)的图象关于点P(4,0)对称,求g(x)的单调递增区间.16.已知函数f(x)=cos 2⎝ ⎛⎭⎪⎫ωx -π6+3sin ⎝⎛⎭⎪⎫ωx -π6cos ⎝ ⎛⎭⎪⎫ωx -π6-12(ω>0)的最小正周期为π. (1)求ω的值.(2)将函数y=f(x)的图象向左平移π6个单位长度,再将所得图象上的各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数g(x)的图象.求函数g(x)在[-π,π]上的单调递减区间和零点.答案解析1.答案为:D.2.答案为:D3.答案为:D.解析:A 选项,函数在⎝ ⎛⎭⎪⎫π2,3π4上单调递减,在⎝ ⎛⎭⎪⎫3π4,π上单调递增,故排除A ;B 选项,函数在⎝ ⎛⎭⎪⎫π2,π上单调递增,故排除B ;C 选项,函数的周期是4π,故排除C.故选D.4.答案为:A.解析:因为y=-2cos 2⎝ ⎛⎭⎪⎫π4+x +1=-⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫π2+2x +1=sin 2x.y=sin 2x 是最小正周期为π的奇函数.故选A.5.答案为:A.解析:由题意得3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=3cos(2π3+φ+2π)=3cos ⎝ ⎛⎭⎪⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z. 取k=0,得|φ|的最小值为π6.6.答案为:B.解析:f(x)=sin x +3cos x=2sin ⎝ ⎛⎭⎪⎫x +π3,因为函数f(x)在⎣⎢⎡⎦⎥⎤0,π6上单调递增,所以f ⎝ ⎛⎭⎪⎫π7<f ⎝ ⎛⎭⎪⎫π6,而c=f ⎝ ⎛⎭⎪⎫π3=2sin 2π3=2sin π3=f(0)<f ⎝ ⎛⎭⎪⎫π7,所以c <a <b.7.答案为:D.解析:因为y=sin x 2为偶函数,所以函数的图象关于y 轴对称,排除A ,C 选项;当x 2=π2,即x=± π2时,y max =1,排除B 选项.8.答案为:C.解析:f(x)=cos ⎝ ⎛⎭⎪⎫2x +π3-cos 2x=cos 2xcos π3-sin 2xsin π3-cos 2x=-sin ⎝⎛⎭⎪⎫2x +π6, 不是奇函数,故①错误;当x=2π3时f ⎝ ⎛⎭⎪⎫2π3=-sin ⎝ ⎛⎭⎪⎫4π3+π6=1,故②正确;当x=5π12时f ⎝ ⎛⎭⎪⎫5π12=-sin π=0,故③正确;令2k π+π2≤2x +π6≤2k π+3π2,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z ,故④正确.综上,正确的结论个数为3.一、填空题9.答案为:-3125;解析:观察得sin θ=45,cos θ=35满足方程,但此时θ是第一象限角,不合题意.由⎩⎪⎨⎪⎧sin θ-2cos θ=-25,sin 2θ+cos 2θ=1,得5cos 2θ-85cos θ-2125=0,解得cos θ=35或-725.因为θ是第三象限角,所以cos θ=-725,从而sin θ=-2425,所以si n θ+cos θ=-3125.10.答案为:-13;解析:因为tan β=2tan α,所以sin βcos β=2sin αcos α,即cos αsin β=2sin αcos β.又因为cos αsin β=23,所以sin αcos β=13,从而sin(α-β)=s in αcos β-cos αsin β=13-23=-13.11.答案为:12;解析:因为f(x)的最小正周期为π,所以2πω=π,故ω=2,所以f(x)=sin ⎝⎛⎭⎪⎫2x +π6, 从而f ⎝ ⎛⎭⎪⎫π3=si n 2π3+π6=sin 5π6=12.12.答案为: -1;解析:由题意,A=2,T=⎝ ⎛⎭⎪⎫π-π4×4=3π=2πω,即ω=23,解得2π3+φ=2k π+π2,k ∈Z , 即φ=2k π-π6,k ∈Z ,因为|φ|<π,所以φ=-π6,所以f(-π)=2sin(-23π-π6)=-1.二、解答题 13.解:(1)由sin 2π3=32,cos 2π3=-12,得f ⎝ ⎛⎭⎪⎫2π3=⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫-122-23×32×⎝ ⎛⎭⎪⎫-12,所以f ⎝ ⎛⎭⎪⎫2π3=2. (2)由cos 2x=cos 2 x -sin 2x 与sin 2x=2sin xcos x 得f(x)=-cos 2x -3sin 2x=-2sin ⎝⎛⎭⎪⎫2x +π6. 所以f(x)的最小正周期是π.由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z ,所以f(x)的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k∈Z). 14.解析:15.解:16.解:(1)f(x)=cos 2⎝ ⎛⎭⎪⎫ωx -π6+3sin ⎝ ⎛⎭⎪⎫ωx -π6cos ( ωx-π6 )-12 =12[ cos ⎝ ⎛⎭⎪⎫2ωx -π3+3sin ( 2ωx-π3 ) ]=sin ⎝⎛⎭⎪⎫2ωx -π6, 由T=2π2ω=π得ω=1.(2)∵f(x)=sin ⎝ ⎛⎭⎪⎫2x -π6,∴g(x)=sin ⎝⎛⎭⎪⎫x +π6, g(x)在[-π,π]上的单调递减区间为( -π,-2π3 ),⎝ ⎛⎭⎪⎫π3,π, 零点为x 0=k π-π6(k ∈Z).又∵x 0∈[-π,π],∴g(x)在[-π,π]上的零点是-π6,5π6.。

2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)

2020届高考数学一轮复习第四篇三角函数与解三角形专题4.4三角函数的图像和性质练习(含解析)

专题4.4 三角函数的图象与性质【考试要求】1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质. 【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )【微点提醒】 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )【答案】 (1)× (2)× (3)× (4)√【解析】 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 【教材衍化】2.(必修4P46A2,3改编)若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2【答案】 A【解析】 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 3.(必修4P47B2改编)函数y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为________. 【答案】 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )【解析】 由-π2+k π<2x -3π4<π2+k π(k ∈Z ),得π8+k π2<x <5π8+k π2(k ∈Z ), 所以y =-tan ⎝⎛⎭⎪⎫2x -3π4的单调递减区间为⎝⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 【真题体验】4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2【答案】 C【解析】 由题意T =2π2=π.5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B.1C.35D.15【答案】 A【解析】 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3,函数的最大值为65.6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________. 【答案】 -π6【解析】 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 【考点聚焦】考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【答案】(1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法 (1)利用三角函数线求解. (2)利用三角函数的图象求解.【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.【答案】 (1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z 【解析】 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 【规律方法】 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4 B.5 C.6 D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤π3,π【解析】 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________.【答案】 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【答案】 A【解析】 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】 A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【规律方法】1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷.【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( ) A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增 (2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)(一题多解)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.【答案】 (1)C (2)sin 68°>cos 23°>cos 97° (3)32【解析】 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数, ∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【答案】 (1)B (2)A【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.【规律方法】 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称 B.关于点⎝⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称(2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5 【答案】 (1)C (2)B【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. (2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T =2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ). 又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9. 【规律方法】1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x 1+tan 2x的最小正周期为( ) A.π4 B.π2 C.π D.2π(2)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( ) A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 【答案】 (1)C (2)D【解析】 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z . f (x )=sin x cos x1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x , ∴f (x )的最小正周期T =2π2=π. (2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确. C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x +π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.【反思与感悟】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π【答案】 C【解析】 ∵y =2⎝⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π. 2.(2019·石家庄检测)若⎝⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8 【答案】 C【解析】 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 3.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3【答案】 B【解析】 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 4.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2【答案】 C【解析】 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2. 5.若f (x )为偶函数,且在⎝⎛⎭⎪⎫0,π2上满足:对任意x 1<x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )可以为( ) A.f (x )=cos ⎝⎛⎭⎪⎫x +5π2 B.f (x )=|sin(π+x )| C.f (x )=-tan xD.f (x )=1-2cos 22x 【答案】 B 【解析】 ∵f (x )=cos ⎝⎛⎭⎪⎫x +5π2=-sin x 为奇函数,∴排除A ;f (x )=-tan x 为奇函数,∴排除C ;f (x )=1-2cos 22x =-cos 4x 为偶函数,且单调增区间为⎣⎢⎡⎦⎥⎤k π2,k π2+π4(k ∈Z ),排除D ;f (x )=|sin(π+x )|=|sin x |为偶函数,且在⎝⎛⎭⎪⎫0,π2上单调递增. 二、填空题6.(2019·烟台检测)若函数f (x )=cos ⎝⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________. 【答案】 5π6【解析】 因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 7.函数y =cos ⎝ ⎛⎭⎪⎫π4-2x 的单调递减区间为________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) 【解析】 由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4, 得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.【答案】 23【解析】 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 三、解答题9.(2018·北京卷)已知函数f (x )=sin 2x +3sin x cos x .(1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. 【答案】见解析【解析】(1)f (x )=12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12. 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m , 所以-5π6≤2x -π6≤2m -π6. 要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32, 即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3. 故实数m 的最小值为π3. 10.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 【答案】见解析【解析】(1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.【能力提升题组】(建议用时:20分钟)11.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为() A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z )C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z )D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z )【答案】 D【解析】 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ).12.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24 【答案】 A【解析】 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12. 13.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________. 【答案】 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ) 【解析】 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点, 所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ), 得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 14.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 【答案】见解析【解析】(1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1. (2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2, ∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23. 【新高考创新预测】15.(思维创新)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.【答案】 π2【解析】 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2.。

专题07 三角函数的图像与性质-2020年高考数(文)题根探源(全国Ⅰ卷)

专题07 三角函数的图像与性质-2020年高考数(文)题根探源(全国Ⅰ卷)

专题07 三角函数的图像与性质【母题来源一】【2020年高考全国Ⅰ卷文数】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为A. 10π9 B.7π6 C. 4π3D. 3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 最小正周期为224332T πππω===,故选:C 【名师点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 【母题来源二】【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【答案】4-【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【名师点睛】本题首先应用诱导公式,转化得到二倍角的余弦,进一步应用二倍角的余弦公式,得到关于cos x 的二次函数,从而得解.注意解答本题的过程中,部分考生易忽视1cos 1x -≤≤的限制,而简单应用二次函数的性质,出现运算错误.的【母题来源三】【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4 【答案】B【解析】根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+, 所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=.故选B.【名师点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 【命题意图】(1)能画出y =sin x ,y =cos x ,y = tan x 的图象,了解三角函数的周期性.(2)理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、 最大值和最小值以及与x 轴的交点等). (3)能画出sin()y A x ωϕ=+的图象,了解参数,,A ωϕ对函数图象变化的影响.(4)理解同角三角函数的基本关系式、诱导公式,能运用和与差的三角函数公式、二倍角公式等进行简单的恒等变换. 【命题规律】三角函数的考查重点是三角函数的定义、图象与性质,考查中以图象的变换、函数的单调性、奇偶性、周期性、对称性、最值作为热点,并常与三角恒等变换交汇命题,难度为中档偏下. 常见的命题角度有: (1)三角函数的图象变换; (2)三角函数解析式的确定;(3)三角函数的性质(单调性、值域与最值、奇偶性、周期性、对称性等); (4)函数sin()y A x ωϕ=+的性质与其他知识的综合应用. 【方法总结】(一)函数图象的平移变换解题策略(1)对函数y =sin x ,y =A sin(ωx +φ)或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|. (2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移. (二)结合图象及性质求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法(1)求A ,B ,已知函数的最大值M 和最小值m ,则,22M m M mA B -+==. (2)求ω,已知函数的周期T ,则2πTω=. (3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时,A ,ω,B 已知). ②五点法:确定φ值时,往往以寻找“五点法”中的第一个零点(,0)ϕω-作为突破口,具体如下: “第一点”(即图象上升时与x 轴的交点中距原点最近的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”为ωx +φ=2π.(三)求解三角函数的值域(最值)常见到以下几种类型的题目及求解方法(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); (2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(四)三角函数单调性问题的常见类型及解题策略(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;②求形如y =A sin (ωx +φ)或y =A cos (ωx +φ)(其中,ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解. (3)利用三角函数的单调性求值域(或最值).形如y =A sin (ωx +φ)+b 或可化为y =A sin (ωx +φ)+b 的三角函数的值域(或最值)问题常利用三角函数的单调性解决. (五)三角函数的奇偶性、周期性、对称性的处理方法(1)求三角函数的最小正周期,一般先通过恒等变形化为y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx+φ)的形式,再分别应用公式T =2||ωπ,T =2||ωπ,T =||ωπ求解. (2)对于函数y =A sin (ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否为函数的对称轴或对称中心时,可通过检验 f (x 0)的值进行判断.(3)若f (x )=A sin (ωx +φ)为偶函数,则φ=k π+2π(k ∈Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin (ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0. (六)三角函数的图象及性质与三角恒等变换相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的形式.(2)利用公式2π(0)T ωω=>求周期.(3)根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的单调区间. 【好题训练】1.【2020广西南宁高三调研】如图,直线 2230x y +-=经过函数() sin()f x x ωϕ=+(0>ω,||ϕπ<) 图象的最高点 M 和最低点 N ,则A .2πω=,4πω=B .ωπ=, 0ϕ=C .2πω=,4πϕ=-D .ωπ=, 2ϕπ=【答案】A【解析】由M ,N 分别是图象的最高点和最低点得其纵坐标为1和1-,代入直线2230x y +-=得其横坐标分别为12和52,故1,12M ⎛⎫ ⎪⎝⎭,5,12N ⎛⎫- ⎪⎝⎭,得51 2222T =-=,故24T πω==,故2πω=,M代入()f x 得11sin 22πϕ⎛⎫=⨯+⎪⎝⎭,故12222k ππϕπ⨯+=+,所以24k k Z πϕπ=+∈,因为||ϕπ<,所以4πϕ=,故选A .【名师点睛】本题主要考查利用()sin y A x ωφ=+的图象特征,由函数()sin y A x ωφ=+的部分图象求解析式,理解解析式中,,A ωφ的意义是正确解题的关键,属于中档题.A 为振幅,有其控制最大、最小值,ω控制周期,即2T πω=,通常通过图象我们可得2T 和4T,φ称为初象,通常解出A ,ω之后,通过特殊点代入可得,用到最多的是最高点或最低点.2.【2020福建三明高三三模】函数()|sin |cos 2f x x x =+的值域为 A .91,8⎡⎤⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .[]0,1D .90,8⎡⎤⎢⎥⎣⎦【答案】D【解析】由题意得22()|sin |12sin 2|sin ||sin |1f x x x x x =+-=-++21992sin 0,488x ⎛⎫⎡⎤=--+∈ ⎪⎢⎥⎝⎭⎣⎦,故选D.【名师点睛】本题考查三角函数的恒等变换及性质,考查二次函数值域,考查运算求解能力,是中档题.3.【2020安徽阜阳高三模拟】已知函数()()2sin 0,0y x ωθωθπ=+><<为偶函数,其图象与直线2y =的交点的横坐标为12,x x ,若12x x -的最小值为π,则 A .=2=2πωθ, B .1==22πωθ, C .1==24πωθ,D .=2=4πωθ,【答案】A【解析】因为函数与直线2y =的交点的横坐标为12,x x ,且12x x -的最小值为π,所以周期T π=,,所以2==2πωπ,又函数为偶函数且0θπ<<,所以=2πθ,故选A. 【名师点睛】本题主要考查了正弦型函数的图象与性质,涉及周期性和奇偶性,属于中档题.4.【2020河南洛阳高三联考】将函数π()2sin 26f x x ⎛⎫=+⎪⎝⎭的图象向右平移π6个单位长度,再把图象上所 有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是A .函数()g x 1B .函数()g x 的最小正周期为πC .函数()g x 的图象关于直线π3x =对称 D .函数()g x 在区间π2,6π3⎡⎤⎢⎥⎣⎦上单调递增 【答案】D【解析】将函数()f x 的图象向右平移π6个单位长度得:πππ()2sin 22sin 2666h x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再把图象上所有点的横坐标伸长到原来的2倍得:()π2sin 6g x x ⎛⎫=- ⎪⎝⎭,()g x 的最大值为2,可知A 错误;()g x 的最小正周期为2π,可知B 错误;π3x =时,ππ66x -=,则π3x =不是()g x 的图象的对称轴,可知C 错误;当2,63ππx ⎡⎤∈⎢⎥⎣⎦时,ππ0,62x ⎡⎤-∈⎢⎥⎣⎦,此时()g x 单调递增,可知D 正确. 【名师点睛】本题考查三角函数图象平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.求解时,根据平移变换和伸缩变换的原则可求得()g x 的解析式,依次判断()g x 的最值、最小正周期、对称轴和单调性,可求得正确结果.5.【2020湖南邵阳高三质检】已知函数()sin()(0)f x x ωϕω=+>的图象与x 轴的两个相邻交点的距离等于4π,若()6,x R f x f π⎛⎫∀∈≤ ⎪⎝⎭,则正数ϕ的最小值为A .6πB .56π C .3π D .4π 【答案】B【解析】∵函数()sin()(0)f x x ωϕω=+>的图象与x 轴的两个相邻交点的距离等于4π, ∴1224ππω⋅=,∴4ω=,∴()sin(4)f x x ϕ=+, 又∵()6,x R f x f π⎛⎫∀∈≤ ⎪⎝⎭,∴6x π=是()f x 的一条对称轴,∴462k ππϕπ⨯+=+,k Z ∈ ,∴6,k k Z πϕπ=-∈.∵0ϕ>,故令1k =,得56πϕ=为最小值.故选:B. 【名师点睛】本题为考查“()sin()f x A x b ωϕ=++的图像和性质”的基本题型,考查学生对三角函数相关性质的理解记忆,以及运用,为中等偏下难度题型. 6.【2020广东省韶高三调研】已知函数ππ()sin cos 44f x x x ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是 A .()f x 的图象关于π=4x 对称 B .()f x 的最小正周期为π2C .()f x 在区间π0,4⎡⎤⎢⎥⎣⎦上是减函数D .()f x 的一个对称中心是(π,0)【答案】D【解析】ππ1π1()sin cos sin 2|cos2|44222f x x x x x ⎛⎫⎛⎫⎛⎫=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 由()f x 的图象知,()f x 的图象关于π4x =对称,故A 正确;()f x 的最小正周期为π2,故B 正确; ()f x 在区间π0,4⎡⎤⎢⎥⎣⎦上是减函数,故C 正确;点(π,0)不是()f x 的一个对称中心,故D 错误.选:D【名师点睛】本小题考查三角函数的图象,考查余弦函数的最小正周期、对称轴、对称中心、单调区间等基本知识,考查了运算能力,逻辑推理能力,函数与方程思想,属于中档题.7.【2020江西赣州高三诊断】已知函数()cos()(0)f x x ωϕω=+>的最小正周期为π,且对x ∈R ,()3f x f π⎛⎫⎪⎝⎭恒成立,若函数()y f x =在[0,]a 上单调递减,则a 的最大值是A .π6B .π3C .2π3D .5π6【答案】B【解析】因为函数()()cos f x x ωϕ=+的最小正周期为π,所以22πωπ==,又对任意的x ,都使得()3f x f π⎛⎫≥ ⎪⎝⎭,所以函数()f x 在3x π=上取得最小值,则223k πϕππ+=+,k Z ∈,即2,3k k Z πϕπ=+∈,所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,解得,63k x k k Z ππππ-+≤≤+∈ ,则函数()y f x =在0,3π⎡⎤⎢⎥⎣⎦上单调递减,故a 的最大值是3π.故选B 【名师点睛】本题考查三角函数的图象及其性质,考查运算求解能力.8.【2020广东佛山高三模拟】已知函数()f x 是定义域在R 上的偶函数,且()()11f x f x =+-,当[]0,1x ∈时,()3f x x =,则关于x 的方程()cos f x x π=在15,22⎡⎤-⎢⎥⎣⎦上所有实数解之和为A .1B .3C .6D .7【答案】D【解析】因为()()11f x f x =+-,则()()2f x f x =-,所以()f x 的最小正周期为2,又由()()()111f x f x f x +=-=-得()f x 的图像关于直线1x =对称.令()cos g x x π=,则()g x 的图像如图所示,由图像可得,()y f x =与()cos g x x π=的图像在15,22⎡⎤-⎢⎥⎣⎦有7个交点且实数解的和为2317⨯+=,故选D.【名师点睛】一般地,方程()()f x g x =的解的性质的讨论,可以通过构建新函数()()()F x f x g x =-来讨论,也可以通过考虑()y f x =和()y g x =的图像的交点性质来讨论. 9.【2020湖北襄阳高三模拟】关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误.故答案为:②③.【名师点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.10.【2020河南郑州高三质检】已知函数()1cos 2c 4os f x x b x c =++,若对任意1x ,2x R ∈,都有12()()4f x f x -≤,则b 的最大值为 . 【答案】2 【解析】2111()cos 2cos cos cos 424f x x b x c x b x c =++=++-,令[]cos 1,1t x =∈-,问题等价于211()24g t t bt c =++-, 对任意1t ∀,[]21,1t ∈-,都有()()124g t g t -≤,即max min ()()4g t g t -≤, 欲使满足题意的b 最大,所以考虑0b >,21()2g t t bt c =++对称轴为x b =-,当01b <<时,2max min 11()(1),()()22g t g b c g t g b b c ==++=-=-+m max 22in ()()4111(1)2222g t g t b b b =-=++<≤+,01b ∴<<;当1b ≥时,max min ()()(1)(1)24g t g t g g b -=--=≤,2b ≤,12b <≤,综上,02b <≤,b 的最大值为2,故选:C.【名师点睛】本题考查了三角函数的图象与性质应用问题,也考查了二次函数的性质应用问题,属于较难题.。

三角函数的图象与性质 高考数学真题分类题库2020解析版 考点14

三角函数的图象与性质 高考数学真题分类题库2020解析版  考点14

考点14三角函数的图象与性质一、选择题1..(2020·全国卷Ⅲ文科·T12)已知函数f(x)=sin x+1sin,则()A.f(x)的最小值为2B.f(x)的图象关于y轴对称C.f(x)的图象关于直线x=π对称D.f(x)的图象关于直线x=π2对称【命题意图】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力.【解析】选D.因为sin x可以为负,所以A错;因为sin x≠0,所以x≠kπ(k∈Z),因为f(-x)=-sin x-1sin=-f(x),所以f(x)关于原点对称;故B错;因为f(2π-x)=-sin x-1sin≠f(x),故C错,f(π-x)=sin x+1sin=f(x),所以f(x)关于直线x=π2对称,D对.2.(2020·浙江高考·T4)函数y=x cos x+sin x在区间[-π,π]的图像大致为()【命题意图】本题主要考查函数的图像与函数的奇偶性等基础知识,考查识图的能力,体现逻辑推理与直观想象等核心素养.【解析】选A.-x cos(-x)+sin(-x)=-x cos x-sin x,故y=x cos x+sin x为奇函数,排除C,D选项,当x=π时,y=-π,故选A.二、填空题3.(2020·全国卷Ⅲ理科·T16)关于函数f(x)=sin x+1sin有如下四个命题:①f(x)的图象关于y轴对称.②f(x)的图象关于原点对称.③f(x)的图象关于直线x=π2对称.④f(x)的最小值为2.其中所有真命题的序号是.【命题意图】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力.【解析】对于①,由sin x≠0可得函数的定义域为≠χ,∈Z,故定义域关于原点对称,由f(-x)=sin(-x)+1sin(-)=-sin x-1sin=-f(x),所以函数为奇函数,图像关于原点对称,①错②对.对于③,由于f(π-x)=sin(π-x)+1sin(π-)=sin x+1sin=f(x),所以f(x)关于x=π2对称,③对.对于④,令t=sin x,t∈[-1,0)∪(0,1],由对勾函数g(t)=t+1的性质,可知g(t)∈(-∞,-2]∪[2,+∞),所以f(x)无最小值,④错.答案:②③。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考复习】2020年高考数学(文数)函数的图象与性质 小题练一、选择题1.已知函数f(x)=x|x|-2x ,则下列结论正确的是( )A .f(x)是偶函数,递增区间是(0,+∞)B .f(x)是偶函数,递减区间是(-∞,1)C .f(x)是奇函数,递减区间是(-1,1)D .f(x)是奇函数,递增区间是(-∞,0)2.使log 2(-x)<x +1成立的x 的取值范围是( )A .(-1,0)B .[-1,0)C .(-2,0)D .[-2,0)3.下列函数f(x)的图象中,满足f ⎝ ⎛⎭⎪⎫14>f(3)>f(2)的只可能是( )4.已知函数f(x)=⎩⎪⎨⎪⎧log 12x ,x >0,2x ,x ≤0,若关于x 的方程f(x)=k 有两个不等的实数根,则实数k 的取值范围是( )A .(0,+∞)B .(-∞,1)C .(1,+∞)D .(0,1]5.方程x 2+ax-2=0在区间[1,5]上有解,则实数a 的取值范围为( )A.B.(1,+∞)C.D.6.若函数f(x)=(1-x 2)(x 2+ax-5)的图象关于直线x=0对称,则f(x)的最大值是( ) A.-4 B.4 C.4或-4 D.不存在7.已知实数a≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f(1-a)=f(1+a),则a 的值为( )A .-32B .-34C .-32或-34D .32或-348.y=x+xx ||的图象是( )9.已知函数f(x)=-x 2+4x +a ,x ∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( )A .1B .0C .-1D .210.已知二次函数f(x)的二次项系数为a ,且不等式f(x)>-2x 的解集为(1,3).若方程f(x)+6a=0有两个相等的根,则实数a=( )A .-0.2B .1C .1或-0.2D .-1或-0.211.设函数f(x)=mx 2-mx -1,若对于x ∈[1,3],f(x)<-m +4恒成立,则实数m 取值范围为( )A .(-∞,0]B .0,57C .(-∞,0)∪0,57D .-∞,5712.对二次函数f(x)=ax 2+bx +c(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( )A .-1是f(x)的零点B .1是f(x)的极值点C .3是f(x)的极值D .点(2,8)在曲线y=f(x)上二、填空题13.如图,函数f(x)的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f (3)的值等于________.14.已知点P 1(x 1,2 015)和P 2(x 2,2 015)在二次函数f(x)=ax 2+bx+9(a ≠0)的图象上,则f(x 1+x 2)的值为 . 15.已知函数⎩⎨⎧<-≥-=3,313,12)(x x x x x f ,则f[f(-1)]的值是________.16.已知f(x-1)的定义域为[-3,3],则f(x)的定义域为____________. 17.已知函数f(x)=x 2-2tx +1,在区间[2,5]上单调且有最大值为8,则实数t 的值为______.18.若函数y=x 2-3x -4的定义域为[0,m],值域为⎣⎢⎡⎦⎥⎤-254,-4,则实数m 的取值范围是________.答案解析1.答案为:C ;解析:选C.将函数f(x)=x|x|-2x 去掉绝对值得f(x)=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f(x)的图象,如图,观察图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.2.答案为:A ;解析:选A.在同一坐标系内作出y=log 2(-x),y=x +1的图象,知满足条件的x∈(-1,0).3.答案为:D.4.答案为:D ;解析:选D.作出函数y=f(x)与y=k 的图象,如图所示:由图可知k∈(0,1],故选D.5.C 方程x 2+ax-2=0在区间[1,5]上有解转化为方程a=在区间[1,5]上有解,即y=a 与y=的图象有交点,又因为y==-x 在[1,5]上是减函数,所以其值域为,故选C.6.B 依题意,知函数f(x)是偶函数,则y=x 2+ax-5是偶函数,故a=0,则f(x)=(1-x 2)(x 2-5)=-x 4+6x 2-5=-(x 2-3)2+4,当x 2=3时, f(x)取最大值,为4. 7.答案为:B.解析:当a >0时,1-a <1,1+a >1.由f(1-a)=f(1+a)得2-2a +a=-1-a -2a ,解得a=-32,不合题意;当a <0时,1-a >1,1+a <1,由f(1-a)=f(1+a)得-1+a -2a=2+2a +a ,解得a=-34,所以a 的值为-34,故选B.8.答案:C9.答案为:A ;解析:f(x)=-x 2+4x +a=-(x -2)2+a +4,∴函数f(x)=-x 2+4x +a 在[0,1]上单调递增, ∴当x=0时,f(x)取得最小值,当x=1时,f(x)取得最大值, ∴f(0)=a=-2,f(1)=3+a=3-2=1,故选A .10.答案为:A ;解析:因为f(x)+2x>0的解集为(1,3),设f(x)+2x=a(x -1)(x -3),且a<0,所以f(x)=a(x -1)(x -3)-2x=ax 2-(2+4a)x +3a .由方程f(x)+6a=0得ax 2-(2+4a)x +9a=0.因为方程有两个相等的根,所以Δ=[-(2+4a)]2-4a·9a =0,解得a=1或a=-15.由于a<0,则a=-15.故选A .11.答案为:D ;解析:由题意,f(x)<-m +4对于x ∈[1,3]恒成立,即m(x 2-x +1)<5对于x ∈[1,3]恒成立.∵当x ∈[1,3]时,x 2-x +1∈[1,7],∴不等式f(x)<-m +4等价于m<5x 2-x +1.∵当x=3时,5x 2-x +1取最小值57,∴若要不等式m<5x 2-x +1对于x ∈[1,3]恒成立,则必须满足m<57,因此,实数m 的取值范围为-∞,57,故选D .12.答案为:A ;解析:由已知得,f′(x)=2ax +b ,则f(x)只有一个极值点,若A ,B 正确,则有⎩⎪⎨⎪⎧a -b +c =0,2a +b =0,解得b=-2a ,c=-3a ,则f(x)=ax 2-2ax -3a .由于a 为非零整数,所以f(1)=-4a≠3,则C 错误.而f(2)=-3a≠8,则D 也错误,与题意不符, 故A ,B 中有一个错误,C ,D 都正确. 若A ,C ,D 正确,则有⎩⎪⎨⎪⎧a -b +c =0, ①4a +2b +c =8,②4ac -b 24a =3,③由①②得⎩⎪⎨⎪⎧b =83-a ,c =83-2a ,代入③中并整理得9a 2-4a +649=0,又a 为非零整数,则9a 2-4a 为整数,故方程9a 2-4a +649=0无整数解,故A 错误.若B ,C ,D 正确,则有⎩⎪⎨⎪⎧2a +b =0,a +b +c =3,4a +2b +c =8,解得a=5,b=-10,c=8,则f(x)=5x 2-10x +8,此时f(-1)=23≠0,符合题意.故选A .一、填空题13.答案为:2;解析:由题中图象知f(3)=1,∴1f (3)=1,∴f ⎝ ⎛⎭⎪⎫1f (3)=f(1)=2.14.答案9解析 依题意得x 1+x 2=-,则f(x 1+x 2)=f=a+b+9=9.15.答案为:7[解析]:∵x<3时,f(x)=1-3x ,∴f(-1)=1-3×(-1)=4.又∵x ≥3时,f(x)=2x-1,∴f(4)=2×4-1=7.∴f[f(-1)]=f(4)=7.16. [答案][-4,2][解析] ∵-3≤x ≤3,∴-4≤x-1≤2,∴f(x)的定义域为[-4,2].17.答案为:1.8;解析:函数f(x)=x 2-2tx +1图象的对称轴是x=t ,函数在区间[2,5]上单调,故t≤2或t≥5. 若t≤2,则函数f(x)在区间[2,5]上是增函数, 故f(x)max =f(5)=25-10t +1=8,解得t=1.8;若t≥5,函数f(x)在区间[2,5]上是减函数,此时f(x)max =f(2)=4-4t +1=8, 解得t=-0.75,与t≥5矛盾. 综上所述,t=1.8.18.答案为:⎣⎢⎡⎦⎥⎤32,3; 解析:因为y=x 2-3x -4=⎝ ⎛⎭⎪⎫x -322-254,且f(0)=-4,值域为⎣⎢⎡⎦⎥⎤-254,-4,所以32∈[0,m],即m≥32.又f(m)≤-4,则0≤m≤3,所以32≤m≤3.。

相关文档
最新文档