气质联用仪原理

合集下载

气质联用仪工作原理

气质联用仪工作原理

气质联用仪工作原理
气质联用仪是一种常用于化学分析的仪器,它的工作原理基于气相色谱-质谱联用技术。

该仪器由气相色谱仪和质谱仪两部
分组成,它们通过进样系统和数据处理系统相连。

在气相色谱部分,样品首先经过进样器,进入色谱柱进行分离。

色谱柱中填充了一种固定相,样品中的化合物在色谱柱中根据它们的挥发性和亲和性与固定相发生相互作用,从而实现分离。

分离的化合物随着惰性载气流动到质谱部分。

在质谱仪中,化合物被电子轰击或化学电离来产生离子。

这些离子根据它们的质量/电荷比(m/z)通过质谱仪的磁场进行分离,最终到达离
子检测器。

离子检测器会量化这些离子的信号,生成质谱图。

通过分析质谱图,可以确定样品中存在的化合物并确定其相对含量。

气质联用仪可以同时对样品进行分离和鉴定,从而实现更准确和全面的化学分析。

安捷伦气质联用仪培训教材培训课件

安捷伦气质联用仪培训教材培训课件
气质联用仪结构
气质联用仪的工作原理是将样品通过进样口引入气相色谱柱,通过加热器加热使样品中的组分分离。随后,通过接口将气相色谱的流出物引入质谱中,利用离子源将组分离子化。接着,在质量分析器中,离子根据其质荷比被分离并传递到检测器中,最终通过计算机控制系统进行数据处理和输出。
工作原理
应用范围
气质联用仪广泛应用于化学、生物、环境、医药等领域,可用于复杂混合物的分离和分析,如环境污染物、药品成分、食品添加剂等。
检查仪器硬件和试剂,确保无问题。如有问题,进行维修或更换。
仪器灵敏度下降
检查仪器老化情况和试剂质量,如有问题更换。
仪器出现突然故障
关闭仪器,检查过热或过载情况。如有问题,进行维修或更换。
仪器使用中突然停电
关闭仪器,等待电力恢复。如有问题,联系维修人员。
仪器使用中试剂问题
更换试剂,确保无质量问题。如有问题,联系维修人员。
气质联用仪谱图解析及化合物鉴定方法
VS
以实际样品为例,介绍气质联用仪在药物代谢、环境监测等领域的应用,展示数据分析的过程和结果。
解析思路
解析思路包括样品前处理、仪器条件设置、数据采集、数据处理、谱图解析、化合物鉴定等步骤。对于每个步骤,都需要注意细节和技术要领,以保证分析结果的准确性和可靠性。
数据分析实例
气质联用仪的清洗与校准方法
常见故障预防措施定期检查仪器电源和线路连接是否正常。避免使用不合适的试剂和样品,以免损坏仪器。及时记录仪器使用和维护情况,以便出现问题时快速找到原因。建议为仪器提供良好的工作环境,如稳定的电源、适宜的温度和湿度。培训操作人员正确使用和维护仪器,避免错误操作导致损坏。建议定期进行预防性维护计划,以确保仪器正常运行和延长使用寿命。
安捷伦气质联用仪培训教材培训课件

气质联用仪原理

气质联用仪原理

气质联用仪原理气质联用仪是一种高效的分析仪器,它能够同时进行气相色谱和液相色谱分析,从而实现对复杂混合物的高效分离和检测。

气质联用仪的原理是基于气相色谱和液相色谱的原理相结合,通过两种分析技术的联用,可以获得更加全面和准确的分析结果。

首先,气相色谱是基于气体载体的色谱技术,它利用气相色谱柱对样品中的化合物进行分离。

在气相色谱分析中,样品首先被注入到气相色谱柱中,然后通过气体载体的流动,样品中的化合物会被逐渐分离出来。

不同化合物在柱中停留的时间不同,最终通过检测器进行检测和定量分析。

气相色谱的分离效果好,分析速度快,但对于一些极性化合物的分离效果较差。

而液相色谱是基于液体载体的色谱技术,它利用液相色谱柱对样品中的化合物进行分离。

在液相色谱分析中,样品首先被溶解在流动相中,然后通过液相色谱柱,样品中的化合物会被逐渐分离出来。

不同化合物在柱中停留的时间不同,最终通过检测器进行检测和定量分析。

液相色谱的分离效果对于极性化合物较好,但分析速度较慢。

气质联用仪的原理就是将气相色谱和液相色谱相结合,充分发挥两者的优势,弥补各自的不足。

在气质联用仪中,样品首先通过气相色谱柱进行分离,然后再通过液相色谱柱进行进一步的分离。

最终,通过检测器对分离出来的化合物进行检测和定量分析。

通过气相色谱和液相色谱的联用,气质联用仪可以实现对复杂混合物的高效分离和检测,获得更加全面和准确的分析结果。

除此之外,气质联用仪还可以配备不同类型的检测器,如质谱检测器、紫外-可见光谱检测器等,从而可以实现对不同类型的化合物进行分析。

这使得气质联用仪具有更广泛的应用范围,可以用于环境监测、食品安全、药物分析等领域。

总的来说,气质联用仪的原理是基于气相色谱和液相色谱的原理相结合,通过两种分析技术的联用,可以获得更加全面和准确的分析结果。

它充分发挥气相色谱和液相色谱各自的优势,弥补各自的不足,是一种高效的分析仪器,具有广泛的应用前景。

气质联用仪的基本构成和工作原理

气质联用仪的基本构成和工作原理

气质联用仪的基本构成和工作原理气质联用(GC/MS)被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。

质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内.接口:由GC出来的样品通过接口进入到质谱仪,接口是色质联用系统的关键。

接口作用:1、压力匹配——质谱离子源的真空度在10-3Pa,而GC色谱柱出口压力高达10 5Pa,接口的作用就是要使两者压力匹配。

2、组分浓缩-—从GC色谱柱流出的气体中有大量载气,接口的作用是排除载气,使被测物浓缩后进入离子源.常见接口技术有:1、分子分离器连接 (主要用于填充柱)扩散型-—扩散速率与物质分子量的平方成反比,与其分压成正比。

当色谱流出物经过分离器时,小分子的载气易从微孔中扩散出去,被真空泵抽除,而被测物分子量大,不易扩散则得到浓缩。

2、直接连接法(主要用于毛细管柱)在色谱柱和离子源之间用长约50cm,内径0.5mm的不锈钢毛细管连接,色谱流出物经过毛细管全部进入离子源,这种接口技术样品利用率高。

3、开口分流连接该接口是放空一部分色谱流出物,让另一部分进入质谱仪,通过不断流入清洗氦气,将多余流出物带走。

此法样品利用率低。

离子源:离子源的作用是接受样品产生离子,常用的离子化方式有:1、电子轰击离子化(electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。

EI特点:⑴、电离效率高,能量分散小,结构简单,操作方便.⑵、图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。

⑶、所得分子离子峰不强,有时不能识别。

本法不适合于高分子量和热不稳定的化合物。

气质联用技术简介

气质联用技术简介

气质联用技术主要难题
气质联用技术应用
气质联用技术原理


气相色谱法: 利用混合物中诸组分在气—液或气—固 两相间的分配原理以获得分离的方法 质谱法: 用电场和磁场将运动的离子(带电荷的 原子、分子或分子碎片)按它们的质荷比 分离后进行检测的方法。
气质联用技术原理
质谱仪工作原理图
气质联用技术原理
气质联用技术原理气质联用技术原理125010015020025030011109876timeminutes气质联用数据气质联用技术概述气质联用技术原理气质联用技术优势气质联用技术主要难题气质联用技术应用气质联用技术优势?定性能力高?一般应用可省去其他色谱检测器?分离尚未分离的色谱峰?提高了定量分析的精度?提高了仪器技能更易实现分析自动化气质联用技术概述气质联用技术原理气质联用技术优势气质联用技术主要难题气质联用技术应用气质联用技术主要难题?仪器接口?扫描速度气质联用技术概述气质联用技术原理气质联用技术优势气质联用技术主要难题气质联用技术应用气质联用技术应用?痕量污染物分析?于大气水土壤沉积物生物样品和化工产品等介质中各种有机污染物的痕量检测鉴定和证实
气质联用技术简介
汇报人:于乃超 学 号:SC10013024
气质联用技术概述 气质联用技术原理 气质联用技术优势
气质联用技术主要难题
气质联用技术应用
气质联用技术概述 气质联用技术原理 气质联用技术优势
气质联用技术主要难题
气质联用技术应用
概述

气质联用技术是由气相色谱法(GC)和质谱法 (MS)两种分析检测方法有效结合所组成的。
气质联用技术应用
气质联用技术优势
定性能力高 一般应用可省去其他色谱检测器 分离尚未分离的色谱峰 提高了定量分析的精度 提高了仪器技能,更易实现分析自 动化

气质联用仪

气质联用仪

气质联用仪气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。

质谱法可以进行有效的定性分析,但对多而杂有机化合物的分析就显得无能为力;而色谱法对有机化合物是一种有效的分别分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。

因此,这两者的有效结合必将为化学家及生物化学家供给一个进行多而杂有机化合物高效的定性、定量分析工具。

像这种将两种或两种以上方法结合起来的技术称之为联用技术。

目录保养维护测定方法质量分析离子源应用保养维护气质联用仪可以看作是毛细管柱气相色谱仪加上质量检测器的组合。

它常出的问题也是两者相加。

1、仪器涉及的密闭性问题气质联用仪是一个气体运行的系统,因而仪器的密封性相当紧要。

(1)换柱:毛细管柱进入质谱腔中的长度不适当,太长或太短都不行。

(2)垫圈要松紧合适,太松会有漏气的隐患,太紧则会压碎垫圈,每次更换色谱柱时需要更换新的密封垫圈。

(3)清洗离子源时打开腔体后要注意其密封性。

2、色谱柱的使用与保存(1)色谱柱使用时应注意说明书中标明的和温度,不能超过色谱柱的温度上限使用,否则会造成固定液流失,还可造成对检测器的污染。

要设定允许使用温度,如遇人为或不明原因的蓦地升温,GC会自动停止升温以保护色谱柱。

氧气、无机酸碱和矿物酸都会对色谱柱固定液造成损伤,应杜绝这几类物质进入色谱柱。

(2)色谱柱拆下后通常将色谱柱的两端插在不用的进样垫上,假如只是短时间拆下数日则可放于干燥器中。

(3)色谱柱的安装色谱柱的安装应依照说明书操作,切割时应用专用的陶瓷切片,切割面要平整。

不同规格的毛细管柱选用不同大小的石墨垫圈,注意接进样口一端和接质谱一端所用的石墨垫圈是不同的,不要混用。

进入进样口一端的毛细管长度要依据所使用的衬管而定,仪器公司供给了专门的比对工具,同样,进入质谱一端的毛细管长度也需要用仪器公司供给的专门工具比对。

柱接头螺帽不要上得太紧,太紧了压碎石墨圈反而简单造成漏气,一般用手拧紧后再用扳手紧四分之一圈即可。

气质联用仪的基本结构及工作原理

气质联用仪的基本结构及工作原理

概述
以上三个化合物的EI质谱反应了不同化合物各自的特征,定 性的专一性很好。
但质谱法的不同离子化方式和质量分离技术也有其局限性。 比如有些化合物在EI电离方式下,不产生分子离子峰,一些 结构异构体的EI质谱图非常相似,依据EI质谱定性比较困难。 需要通过其它电离技术获得分子量信息,或采用MS/MS技术 获得结构信息,或采用分离、修饰等其它方法辅助。
概述
(3)联用的优势还体现在可获 得更多信息。单独使用气相色 谱只获得保留时间、强度两维 信息,单独使用质谱也只获得 质荷比和强度两维信息,而气 相色谱-质谱联用可得到质量、 保留时间、强度三维信息,意 味着增强了解决问题的能力。
化合物的质谱特征加上气相色谱保留时间双重定性信息,和 单一定性分析方法比较,显然专属性更强。质谱特征相似的 同分异构体,靠质谱图难以区分,而有色谱保留时间就不难 鉴别了。
低分辨电子电离(electron ionization,E1)质谱图,可以看出 三种化合物具有各自的质谱特征。
在三个化合物的质谱图中,高质
量端的质荷比分别为m/z 58、92、 84的峰,是三种化合物的分子离子 峰,由此可确定化合物的分子量;谱 图中的最强峰(称基峰)分别为m/z 43(C2H3O)+、m/z 91 (C7H7)+、m/z 49(CH2Cl)+,是单分子分解产生的主 要碎片离子,可得到化合物结构信息。
现代GC/MS的分离度和分析速度、灵敏度、专属性和通用 性,至今仍是其它联用技术难以达到的。
在食品安全的有害物质残留分析中,GC/MS方法被作为最 终确证方法之一。因此只要待测成分适于用GC分离, GC/MS就成为联用技术中首选的分析方法。
第一章 质谱概述
质谱法是将被测物质离子化,按离子的质荷 比分离,测量各种离子峰的强度而实现分析 目的的一种方法。

气质联用仪讲义

气质联用仪讲义

GC-MS-QP2010 仪的使用及样品成分的定性分析一,实验目的:1,学习掌握GCMS-QP2010S 仪器的使用操作2,了解GCMS-QP2010S 仪器的结构3,学习混合酯样品成分的定性分析二,实验原理:质谱仪是利用电磁学原理,使带电的样品离子按质荷比进行分离的装置。

离子电离后经加速进入磁场中,其动能与加速电压及电荷z有关,即z e U = 1/2 m 2其中z为电荷数,e为元电荷(e=1.60 X10-19C ), U为加速电压,m为离子的质量,为离子被加速后的运动速度。

质谱法具有灵敏度高、定性能力强等特点,但进样要纯,才能发挥其特长,另一方面,进行定量分析又较复杂;气相色谱法具有分离效率高、定量分析简便的特点,但定性能力却较差。

因此这两种方法若能联用,可以相互取长补短。

气相色谱仪是质谱法的理想的“进样器”。

气相色谱分离和质谱分析过程都是在气态条件下进行的,气相色谱分离的组分足够质谱检测。

试样经色谱分离后以纯物质形式进入质谱仪,避免了对样品和质谱仪器的污染,极大的提高了对混合物的分离、定性和定量分析效率。

质谱仪是气相色谱法的理想的“检测器”。

质谱仪作为检测器,检测的是离子质量,获得化合物的谱图,既是一种通用型的检测器,又是有选择性的检测器,能检出几乎全部化合物,灵敏度又很高。

色谱-质谱联用技术既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力。

这种技术适用于作多组分混合物中未知组分的定性鉴定;可以判断化合物的分子结构;可以准确地测定未知组分的相对分子质量;可以修正色谱分析的错误判断;可以鉴定出部分分离甚至未分离开的色谱峰等等三,仪器与试剂:1,仪器,岛津GCMS-QP2010S ;2,试剂,混合酯四,实验步骤:1 ,查看He气体钢瓶的分压,保持0.5 MPa -0.9MPa, 2,按顺序把GC电源、MS电源、电脑电源、显示器电源打开。

3,双击桌面的GCMS Real Time An alysis 图标,连线过程中会出现一短、一长两声鸣响,表示连接GC、MS成功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气质联用仪原理
气质联用仪是一种高效的分析仪器,它将气相色谱和质谱两种
分析技术结合在一起,可以实现对复杂混合物的快速、高灵敏度的
分析。

气质联用仪的原理是基于气相色谱和质谱的原理,通过两种
技术的联用,可以得到更加准确、可靠的分析结果。

首先,气相色谱是一种对气体或挥发性液体中的化合物进行分
离和定性定量分析的技术。

其原理是利用气相色谱柱对样品中的化
合物进行分离,然后通过检测器对分离后的化合物进行检测和定量
分析。

气相色谱的分离效果取决于柱的性质和样品中化合物的特性,因此可以实现对复杂混合物的分离和定性。

其次,质谱是一种对化合物进行分子结构分析和定性定量分析
的技术。

其原理是将化合物中的分子通过碰撞解离成离子,并根据
离子的质量比对化合物的分子结构进行分析。

质谱可以提供化合物
的分子量、分子结构和碎片离子信息,因此可以对复杂混合物中的
化合物进行准确的鉴定和定量分析。

气质联用仪的原理是将气相色谱和质谱两种技术结合在一起,
通过气相色谱对样品中的化合物进行分离,然后将分离后的化合物
送入质谱进行检测和分析。

这样可以充分发挥两种技术的优势,实
现对复杂混合物的高效分析。

在气质联用仪中,气相色谱柱的选择和质谱检测器的参数设置
是非常关键的。

气相色谱柱的选择需要根据样品的性质和化合物的
特性进行选择,以保证样品中的化合物能够得到有效的分离。

质谱
检测器的参数设置需要根据样品中化合物的性质和分子结构进行优化,以保证对化合物的准确检测和分析。

总之,气质联用仪是一种高效的分析仪器,其原理是基于气相
色谱和质谱的原理,通过两种技术的联用,可以实现对复杂混合物
的快速、高灵敏度的分析。

在实际应用中,需要根据样品的性质和
分析要求进行合理的仪器选择和参数设置,以保证分析结果的准确
性和可靠性。

通过不断的技术创新和方法优化,气质联用仪在化学、生物、环境等领域的分析应用中将会发挥越来越重要的作用。

相关文档
最新文档