保险精算学
精算学在人寿保险精确定价中的方法与实践

精算学在人寿保险精确定价中的方法与实践引言:人寿保险是一种金融保险产品,为个人或家庭提供在被保人身故或特定健康状况发生时的经济保障。
精算学作为保险精确定价的学科,通过运用数学、统计学和概率论等方法,对人寿保险的风险进行评估、估计和管理。
本文将探讨精算学在人寿保险精确定价中的方法与实践。
一、寿险产品定价的基本原理寿险产品的定价是指根据保险公司的风险承受能力和经验数据,对保费进行测算和核算的过程。
在精确定价中,精算师需要考虑以下几个方面:1. 死亡率:精算师通过研究大量数据和经验分析,对保险期间内被保险人的死亡率进行估计。
根据不同年龄、性别和健康状况等因素,死亡率的表现会有所不同。
2. 利率:利率是影响保险产品定价的关键因素之一。
保险公司需要根据经济环境和投资收益预期来确定合适的利率水平。
3. 保险金额:保险金额是指被保险人在保险期间内享受到的保险保障金额。
精算师需要综合考虑被保险人的需求、风险承受能力和保险公司的经济实力等因素,来确定合适的保险金额。
二、精算模型与方法1. 人寿保险精算模型人寿保险精算模型是利用数理统计学和概率论等理论,通过建立数学模型,对保险公司的经验数据进行分析和预测的方法。
常见的人寿保险精算模型包括:(1)Lee-Carter模型:该模型是一种经典的死亡率预测模型,通过分析历史死亡率数据和人口统计数据,预测未来死亡率的变化趋势。
(2)Cox风险模型:该模型是一种用于估计被保险人生存时间和死亡风险的模型。
通过建立被保险人个体的生存函数和死亡风险函数,对保险公司的风险进行量化。
(3)利用马尔科夫链的模型:该模型通过建立状态转移概率矩阵,对被保险人的状态变化进行建模。
可以用于分析被保险人的年龄、性别、健康状况等因素对保险风险的影响。
2. 精算方法(1)数理统计方法:数理统计是精算学的核心方法之一。
精算师通过收集和分析大量的历史数据,运用概率论和统计学的方法,对未来的风险进行预测和估计,从而对保险产品的保费进行定价。
什么是保险精算

一、保险精算保险精算是依据经济学的基本原理和知识,利用现代数学方法,对各种保险经济活动未来的财务风险进行分性、估价和管理的一门综合性的应用科学。
如研究保险事故的出险规律、保险事故损失额的分布规律、保险人承担风险的平均损失及其分布规律、保险费率和责任准备金、保险公司偿付能力等保险具体问题。
所谓精算,就是运用数学、统计学、金融学及人口学等学科的知识和原理,去解决工作中的实际问题,进而为决策提供科学依据。
二、精算学的学科发展和框架在分析精算学的起源时,英国精算师协会将最早的精算思想的萌芽设定在甚至是古埃及和古罗马时期。
保险精算的理论基础1.利息理论与概率论的出现17 世纪,个人风险问题开始引起社会的关注,相应的愈来愈多的数学家开始为个人风险的解决寻找数理基础。
利息理论(当时主要是复利理论) 解决了保险资金和养老金资金在未来的投资收益问题,为远期支出要求在当期负担的量化问题提供了理论基础; 随着1657 年荷兰数学家Christian Huygens 的一篇小论文De Ratiocinics in Ludo Aleae的发表,概率论产生了。
2.生命表的出现及精算学的产生保险精算的产生是以哈雷慧星的发现者,英国天文学家哈雷(Halley)在1693年发表的世界上第一张生命表为标志,至今已有三百多年的历史。
最为关键的是: Halley 应用自己的生命表对于特定年龄的投保人的年金型保险产品的负担金额进行了测算。
他将自己测算的未来各年度的死亡率结合各年度的货币收入来综合考察,并注意考察了各年度货币收入的利息率的影响,也即考察了各年度预期货币收入的现值(即后来的精算现值, Act uarial Present Value ,APV) ,将各年度的值加总就得出了该保险产品的当期货币价值。
精算学也由此产生。
3.精算学的发展(1)精算理论的应用和精算师、精算(师) 协会的产生成立于1762 年的The Equi2table (伦敦公平保险社) 是第一家应用精算技术来厘定保险费率的寿险公司。
保险精算学趸缴纯保费培训

保险精算学在趸缴纯保费计算 中的具体应用
• 保险精算学在趸缴纯保费计算中的具体应用 • 生命表的应用:生命表是保险精算学的重要工具,用于计算寿 险产品的趸缴纯保费 • 利率假设的应用:利率假设是保险精算学的重要参数,用于计 算趸缴纯保费和保险公司的盈利水平 • 风险费率的确定:风险费率是保险精算学的重要指标,用于衡 量保险产品的风险程度和保险公司的承受能力
保险精算学面临的挑 战
Байду номын сангаас
• 保险精算学面临的挑战 • 数据质量:随着数据量的增加,数据质量的问题日益突出,如 何提高数据质量和处理能力是保险精算学面临的重要挑战 • 技术更新:保险精算学需要不断更新技术,如人工智能、机器 学习等,以适应保险行业的发展和变化 • 人才短缺:保险精算学需要大量的专业人才,如保险精算师、 数据分析师等,如何培养和提高人才素质是保险精算学面临的 重要挑战
趸缴纯保费的计算方法与公式
趸缴纯保费的计算方法
• 均衡保费法:根据保险精算学原理,将保险合同生效期 间的风险均衡分配到每个缴费期,计算趸缴纯保费 • 现值法:根据保险精算学原理,将保险合同生效期间的 未来收益现值与未来损失现值相等,计算趸缴纯保费
趸缴纯保费的计算公式
• 均衡保费法:趸缴纯保费 = (保险金额 × 风险费率) / 保 险期限 • 现值法:趸缴纯保费 = 保险合同生效期间的未来收益现 值 / (1 + 利率) ^ 保险期限
保险精算学在趸缴纯保费计算中的局限性
• 数据依赖:保险精算学计算趸缴纯保费需要大量数据支持,数据的质量和完整性影响计算 结果 • 假设影响:保险精算学计算趸缴纯保费需要依赖一定的假设,如利率假设、死亡率假设等, 假设的准确性影响计算结果 • 计算复杂:保险精算学计算趸缴纯保费涉及多种因素和公式,计算较为复杂,需要专业的 保险精算师进行操作
保险精算的名词解释

保险精算的名词解释保险精算是指为保险公司进行风险评估、制定保费以及财务规划等方面的工作。
通过对保险业务数据的分析和处理,保险精算师能够提供准确的保险风险估计和赔付预测,从而帮助保险公司在市场竞争中获得优势。
一、保险精算的概述保险精算是一门复杂的学科,涵盖了数学、统计学以及金融学等多个领域的知识。
它依赖大量的数据分析和模型建立,以量化和评估保险风险,为保险公司提供决策支持。
保险精算通过处理历史数据和风险模型,研究保险公司的损失经验和潜在风险,以预测未来可能发生的损失,并根据这些预测制定保费。
同时,保险精算也可以帮助保险公司评估资本要求和风险承受能力,从而确保公司的健康发展。
二、保险精算的重要性保险精算对于保险公司来说是非常重要的。
首先,它能够提供准确的风险评估和赔付预测,帮助保险公司合理定价,平衡保费收入和赔付支出,确保公司的可持续发展。
其次,保险精算可以帮助保险公司制定合理的产品策略和业务规划。
通过分析市场需求和客户特点,精算师能够为公司提供有竞争力的产品设计和销售策略,提高市场份额和盈利能力。
此外,保险精算也可以用于资本管理和风险控制。
通过对保险资本的评估和规划,保险精算师能够帮助公司确保资本充足,降低公司面临的风险,为业务扩展和创新提供支持。
三、保险精算的应用领域保险精算广泛应用于不同类型的保险业务中。
其中,寿险精算是较为成熟和广泛应用的领域之一。
通过分析大量的生死统计数据,寿险精算师能够预测未来的死亡概率和赔付风险,为寿险产品的设计、定价和销售提供决策支持。
财产精算是另一个重要的应用领域。
在财产保险领域,保险精算师可以通过分析历史天灾和事故数据,预测未来可能发生的损失,对产品风险进行评估,并制定相应的保费。
另外,保险精算还可以应用于车险、健康险等其他保险业务领域。
通过定量的分析和建立模型,精算师能够研究不同风险因素对保险费率的影响,并为保险公司提供相应的建议和决策支持。
四、保险精算的未来发展趋势随着科技的不断进步和数据的快速增长,保险精算的发展也面临新的挑战和机遇。
《保险精算学》课件

总结词
准备金的管理策略包括静态管理、动态管理以及风险管理等 。
详细描述
静态管理是指基于历史数据和当前市场环境确定准备金的数 额;动态管理则是根据市场变化和公司经营状况调整准备金 的数额;风险管理则强调通过建立风险管理体系来降低准备 金的风险。
05
保险风险管理与控制
风险识别与分类
风险识别
识别潜在的风险因素,分析风险发生 的可能性和影响程度。
识,为保险行业的决策提供了更加全面和精确的依据。
02
保险精算的基本原理
概率论基础
随机变量
表示随机事件的数 值结果。
期望值
随机变量的平均值 。
概率
描述随机事件发生 的可能性。
概率分布
描述随机变量取值 的概率规律。
方差
衡量随机变量取值 分散程度的指标。
统计推断
参数估计
根据样本数据推断总体参数的方法。
保险人用于赔付损失的资金。
附加保费确定
附加保费包括经营费用、预期利 润等,是保险人在纯保费基础上
额外收取的费用。
保险费率分类
保险费率可分为单一费率和分类 费率,单一费率适用于相同风险 的多个被保险人,分类费率则根 据被保险人的不同风险等级收取
不同费率。
附加费用的确定
01
02
03
初始费用
初始费用是保险合同签订 时收取的一次性费用,用 于覆盖保险公司的初期成 本。
再保险业务精算案例
比例再保险精算案例
以某保险公司的比例再保险业务为例, 介绍如何根据原保险业务的风险和损失 情况,确定再保险的比例和保费。
VS
非比例再保险精算案例
以某保险公司的非比例再保险业务为例, 介绍如何根据原保险业务的风险和损失情 况,确定再保险的限额和保费。
保险精算学

保险精算学
保险精算学是一门研究保险风险和保费定价的学科。
它结合了数学、统计学和经济学的理论和方法,帮助保险公司评估和管理风险,以及制定合理的保险产品定价。
在保险精算学中,精算师使用数学模型和统计技术来预测和量化各种风险,如人身保险中的寿险和医疗保险风险,财产保险中的火灾和自然灾害风险等。
他们研究历史数据和现有的风险因素,利用统计分析和假设推断来预测未来的风险发生概率和损失大小。
保险精算师还根据风险预测结果,设计合适的保费定价模型。
他们需要考虑保险公司的盈利目标、市场竞争情况、客户需求和保险产品的特点等方面。
通过灵活的保费策略,保险公司可以在保持竞争力的同时实现盈利,并为客户提供适当的保险保障。
此外,保险精算学也与风险管理密切相关。
精算师评估风险并制定合理的保险策略,以减少潜在的损失和不确定性。
他们使用不同的建模方法和风险评估工具,为保险公司提供决策支持和战略建议,帮助公司更好地了解和管理其承受的风险。
总之,保险精算学在保险行业中起着重要的作用。
通过数学和统计分析,精算师能够预测风险、定价保费,并为保险公司提供风险管理和决策支持。
这对保险公司和客户来说都是非常重要的,能够确保保险业务的可持续发展和客户的保障需求得到满足。
保险精算学-趸缴纯保费

保险精算学-趸缴纯保费一、介绍保险精算学是一门研究如何根据统计学和数学原理来评估和管理保险风险的学科。
其中,趸缴纯保费是保险精算学中的一个重要概念。
本文将介绍趸缴纯保费的含义、计算方法以及在保险业中的应用。
二、趸缴纯保费的含义趸缴纯保费是指被保险人一次性支付的保险费用,用于购置纯风险保险的保单。
这意味着保险公司承当了保险风险,并且不提供任何现金价值或投资回报。
趸缴纯保费通常应用于寿险和意外险等风险较高的保险产品。
三、趸缴纯保费的计算方法趸缴纯保费的计算方法主要基于统计模型和风险评估。
以下是常用的计算方法:1. 人寿保险中的趸缴纯保费计算方法在人寿保险中,趸缴纯保费的计算通常基于年龄、性别、保额和保险期限等因素。
常见的计算公式如下:趸缴纯保费 = 预期死亡率 × 保额 × 保险期限其中,预期死亡率是根据历史数据和统计模型计算得出的,它表示了某一年龄段人群的平均死亡概率。
2. 意外险中的趸缴纯保费计算方法在意外险中,趸缴纯保费的计算通常基于被保险人的职业、年龄、性别和保险金额等因素。
常见的计算公式如下:趸缴纯保费 = 根底保费 × 职业系数 × 年龄系数其中,根底保费是根据保险公司的费率表确定的,职业系数和年龄系数是根据不同职业和年龄段的保险风险进行评估得出的。
四、趸缴纯保费的应用趸缴纯保费在保险业中有着广泛的应用。
以下是一些应用场景:1. 个人寿险在个人寿险中,趸缴纯保费常用于购置寿险保单。
被保险人一次性支付趸缴纯保费后,保险公司承当了与被保险人生命风险相关的保险责任。
2. 团体意外险在团体意外险中,趸缴纯保费通常用于覆盖公司员工的意外风险。
员工支付趸缴纯保费后,保险公司将提供相应的意外保障。
3. 旅行险在旅行险中,趸缴纯保费可用于购置旅行期间的保险保障。
旅客支付趸缴纯保费后,保险公司将承当与旅行相关的风险,例如医疗费用、航班延误等。
五、结论趸缴纯保费是保险精算学中的一个重要概念,它是被保险人一次性支付的保险费用,用于购置纯风险保险的保单。
保险精算学课件_ntu

描述性统计:描 述数据的分布特 征,如均值、中 位数、众数等
推断性统计:通 过样本数据推断 总体特征,如假 设检验、回归分 析等
风险理论:研究 风险事件的发生 概率和损失程度, 如风险函数、风 险度量等
精算模型:建立 数学模型来预测 保险产品的保费、 赔付等,如生命 表、疾病发生率 模型等
损失分布:描述保险事故发生频率和损失程度的概率分布 损失分布模型:常用的损失分布模型有泊松分布、正态分布、指数分布等 损失分布估计:通过历史数据估计损失分布的参数 损失分布预测:利用损失分布模型预测未来损失的分布情况
信用保险:计算信用保险的保费和赔偿金额
财产保险:计算财产保险的保费和赔偿金额
健康保险:计算健康保险的保费和赔偿金额
责任保险:计算责任保险的保费和赔偿金额
农业保险:计算农业保险的保费和赔偿金额
养老金精算的概念:养老金精算是指对养老金进行精算,以确定养老金的支付方式和金额。
养老金精算的应用领域:养老金精算广泛应用于养老保险、企业年金、职业年金等领域。
风险管理:全球化带 来的风险增加,需要 保险精算师进行更精 确的风险评估和管理
技术发展:全球化促 进了保险精算技术的 创新和发展,如大数 据、人工智能等在保 险精算中的应用
气候变化和自然灾害:对保 险精算提出新的挑战
大数据技术的应用:提高精 算准确性,预测风险
人工智能和机器学习的应用: 提高精算效率,降低成本
汇报人:
精算软件分类:寿险、财险、健康险等 精算软件功能:风险评估、定价、准备金评估等 精算软件操作流程:数据输入、模型选择、结果输出等 精算软件应用案例:寿险定价、财险准备金评估等
案例背景:某保险公司推出一款新型保险产品 精算师角色:评估产品风险和收益,制定保费和保额 精算模型:使用精算模型进行风险评估和定价 实践操作:精算师根据模型结果,制定产品策略和销售计划
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章练习(利率部分)1、某人存1000元进入银行,第1年末存款余额为1020元,第2年存款余额为1050元,求i1,i2,i3,i4分别等于多少?2、某人存5000元进入银行,若银行分别以2%的单利计息、复利计息、单贴现计息、复贴现计息,问此人第5年末分别能得到多少积累值?3、确定500元以季度转换8%年利率投资5年的积累值。
4、如以6%年利,按半年为期预付及转换,到第6年末支付1000元,求其现时值。
5、确定季度转换的名义利率,使其等于月度转换6%名义贴现率。
6、确定1000元按如下利息效力投资10年的积累值(1)δ=5% (2)δt=0.05(1+t)-27、如果δt=1/(1+t),试确定1在n年末的积累值。
8、如果实质利率在头5年为5%,随之5年为4.5%,最后5年为4%,试确定1000元在15年末的积累值。
9、假定一笔资金头3年以半年度转换年利率6%计息,随之2年以季度转换8%的年贴现率计息,若5年后积累值为1000元,问这笔资金初始投资额应该为多少?10、某人为了能在第7年末得到1万元款项,他愿意在第一年末付出1千元,第3年末付出4千元,第8年末付出X元,如果以6%的年利率复利计息,问X=?(求本金)11、(求利率)(1)某人现在投资4000元,3年后积累到5700元,问季度计息的名义利率等于多少?(2)某人现在投资3000元,2年后再投资6000元,这两笔钱在4年末积累到15000元,问实质利率=?12、某人现在投资1000元,第3年末再投资2000元,第5年末再投资2000元。
其中前4年以半年度转换名义利率5%复利计息,后三年以恒定利息力3%计息,问到第7年末此人可获得多少积累值?13、按某一利率以以下两种付款形式的现值相等。
(1)第五年末付200元加上第十年末500元;(2)第五年末付400.94元。
现以同样的利率投资300元,并在8年末取出200元,余下在第十年末积累金额为X,求X14、投资1000元在第15年末的积累值为3000元,试确定每月计息一次的年名义利率。
15、某人签了一张1年期的1000元借据并从银行收到950元,在第六个月末,他付款300元,假设为单贴现,问他在年末还应付款给银行多少钱?(1000-x)*(1-d)/(1-0.5d)=30016、某基金以利息强度δt=0.2(K·t)-2计息,在t=10时的100元存款将积累到250元,求K。
第一章练习(年金部分)1、一项年金在20年内每半年末付500元,设利率为每半年转换9%,求此项年金的现时值。
2、某人以月度转换名义利率5.58%从银行贷款30万元,计划在15年里每月末等额偿还。
问:(1)他每月等额还款额等于多少?(2)假如他想在第五年末提前还完贷款,问除了该月等额还款额之外他还需一次性付给银行多少钱?3、假定现在起立即开始每6个月付款200直到满4年,随后再每6个月付款100直到从现在起满10年,若i(2)=0.06, 求这些付款的现时值。
4、某人在30岁时计划每年初存入银行300元建立个人帐户,假设他在60岁退休,存款年利率假设恒定为3%。
(1)求退休时个人帐户的积累值。
(2)如果个人帐户积累值在退休后以固定年金的方式在20年内每年领取一次,求每年可以领取的数额。
5、有一企业想在一学校设立一永久奖学金,假如每年发出5万元奖金,问在年实质利率为20%的情况下,该奖学金基金的本金至少为多少?6、A留下一笔100000元的遗产。
这笔财产头10年的利息付给受益人B,第2个10年的利息付给受益人C,此后的利息都付给慈善机构D。
若此项财产的年实质利率为7%,试确定B,C,D在此笔财产中各占多少份额?7、有一笔1000元的投资用于每年年底付100元,时间尽可能长。
如果这笔基金的年实质利率为5%,试确定可以作多少次正规付款以及确定较小付款的金额,其中假定较小付款是:(1)在最后一次正规付款的日期支付。
(2)在最后一次正规付款以后一年支付(3)按精算公式,在最后一次付款后的一年中间支付。
(精算时刻)8、某人每年年初存进银行1000元,前4年的年利率为6%,后6年由于通货膨胀率,年利率升到10%,计算第10年年末时存款的积累值.9、某人每年年初在银行存款2000元,假如每季度计息一次的年名义利率为12%,计算5年后该储户的存款积累值.10、某购房贷款8万元,每月初还款一次,分10年还清,每次等额偿还,贷款年利率为10.98%,计算每次还款额.11、一笔年金为每6个月付1元,一直不断付下去,且第一笔付款为立即支付,问欲使该年金的现时值为10元,问年度实质利率应为多少?12、有一项延付年金,其付款额从1开始每年增加1直至n,然后每年减少1直至1,试求其现时值。
13、某期末付永久年金首付款额为5000元,以后每期付款额是前一期的1.05倍,当利率为0.08时,计算该永久年金的现时值.14、某家庭从子女出生时开始累积大学教育费用5 万元如果它们前十年每年底存款1000元后十年每年底存款1000+ X 元年利率7%,计算X。
(651.7238)15、价值10,000 元的新车购买者计划分期付款方式每月底还250 元期限4 年月结算名利率18%,计算首次付款金额。
(1489.36159 )16、已知半年结算名利率6%计算下面年金的现值,从现在开始每半年付款200 元共计4 年然后减为每次100 元共计10 年。
(2389.72)17、某人现年40 岁现在开始每年初在退休金帐号上存入1000 元共计25 年然后从65 岁开始每年初领取一定的退休金共计15 年设前25 年的年利率为8 后15 年的年利率7 %,计算每年的退休金。
(8102)18、现有价值相等的两种期末年金A和B 年金,A在第1-10年和第21- 30年中每年1元在第11 -20 年中每年2 元;年金B在第1-10 年和第21 -30 年中每年Y 元,在第11-20 年中没有。
已知V10 =1/2 ,计算Y 。
(1.8)19、已知年金满足2 元的2n期期末年金与3 元的n期期末年金的现值之和为36 ,另外递延n年的2 元n期期末年金的现值为6 计算i (7%)。
第一章(偿债基金部分)1、已知某住房贷款100,000元,分10年还清,每月末还款一次,每年计息12次的年名义利率为6%。
计算还款50次后的贷款余额,分别利用过去法和未来法。
2、若借款人每年末还款1000元,共20次。
在第5次还款时,他决定把手头多余的2 000元也作为偿还款,然后将剩余贷款期调整为12年,若利率为9%,试计算调整后每年的还款额。
某年轻借款人预计10年后工资会大幅上涨,他决定在前10年每年末还款8 000元,而后5年每年末还3、款20 000元,年利率为8%,计算B5.54、某借款人每月末还款一次,每次等额还款3171.52元,共分15年还清贷款。
每年计息12次的年名义利率为5.04%。
计算(1)第12次还款中本金部分和利息部分各为多少?(2)若此人在第18次还款后一次性偿还剩余贷款,问他需要一次性偿还多少钱?前18次共偿还了多少利息?5、A曾借款1万元,实质利率为10%.A积累一笔实质利率为8%的偿债基金一偿还这笔贷款.在第10年末偿债基金余额为5000元,在第11年末A支付总额为1500元,问(1)1500中有多少是当前支付给贷款的利息?(2)1500中有多少进入偿债基金?(3)1500中有多少应被认为是利息?(4)1500中有多少应被视为本金?(5)第11年末的偿债基金余额为多少?6、某贷款为1000元,10年期,年利率为5%,采取偿债基金法偿还,每年末借款人支付相等利息,同时在偿债基金中存入偿债本金,每年额度相同,偿债基金年利率为4%,在第10年末,偿债基金积累值恰好为1000元,计算第5年借款人支付的利息额与偿债基金所得利息额的差。
7、一位借款人向贷款人借L元贷款,在10年内以每年年末付款来偿还这一实质利率为5%的贷款,其付款方式为:第一年付款200元,第二年付190元,如此递减至第10年末付110元.求贷款金额L.8、假如该借款人贷款年限与付款方式与(1)相同,但采用偿债基金形式还清贷款.在还款期内该借款人向贷款人每年支付实质利率为6%的利息,并以实质利率为5%的偿债基金以偿还贷款金额,求贷款金额L.9、甲借款100 000元,贷款期限为30年,且已知:(1)首次在偿债基金中存款X,存款时间为第1年末;(2)以后每年末在偿债基金中的存款比上一年增加100元,直至第20年末,然后保持不变至第30年末;(3)贷款利息每年末支付;(4)贷款年利率为5%,偿债基金存款利率为4%。
计算X及甲支出款的总额。
10、某甲签了一张1年期的1千元借据,并从银行收到920元,在第6个月末,甲付款288元,假设为单贴现,问甲在年末还应还银行多少钱?11、已知某4年期的贷款以以下方式计息:第1年以实质贴现率6%;第2年以每二年计息一次的年名义贴现率5%;第3年以每半年计息一次的年名义利率5%;第4年以利息强度5%;求这4年的年实质利率。
12、某人10年前在银行存入1000元,每年计息两次的年名义利率为4%,每半年他从银行将新增利息的一半提出,计算现在的存款本利和。
13、某借款人分10年偿还贷款,贷款年利率为5%,每年还款1000元,贷款额的一半用分期偿还法偿还,另一半按偿债基金法偿还,偿债基金的存款利率为4%,计算贷款额。
14、从1988年起,直到1998年底,某人每年1月1日和7月1日在银行存入一笔款项,7月1日的存款要比1月1日的存款增加10.25%,而与其后(下一年)的1月1日的存款相等,每年计息两次的年名义利率为10%,在1998年12月31日时,存款本利和为11000元,计算第一次存款额。
15、某甲在2025年1月1日需要50 000元资金以及一个期初付、每半年领取一次的为期15年的年金,每次领取款为K。
这些款项需要从2000年1月1日起,每年初存入银行K元,共25年,存入款项时每年计息两次的名义利率为4%,领取年金时,每年计息两次的名义利率为3%,计算K。
16、某贷款为期5年,每季末偿还一次,每年计息4次的年名义利率为10%,若第3次还款本金部分为100元,计算最后5次还款中的本金部分。
17、某贷款为35年,分期均衡偿还,每年末还款一次,第8次还款中的利息部分为135元,第22次还款中的利息部分为108元,计算第29次还款中的利息部分。
生命表函数计算下面各值:(1);(2)20岁的人在50~55岁死已知亡的概率。
(3)该人群平均寿命。
已知分别在三种分数年龄假定下,计算下面各值:人寿保险趸交保费的厘定3.1某人在40岁时投保了3年期1 0 000元定期寿险,保险金在死亡年年末赔付。