拱桥结构受力分析典型例题

合集下载

毕业设计(论文)_拱桥静载受力分析和模态分析计算

毕业设计(论文)_拱桥静载受力分析和模态分析计算

目录摘要第一章绪论.................................................1.1拱桥概述............................................拱桥的特点..............................................国内外发展状况 ........................................我国拱桥的发展方向及主要结构型式........................我国拱桥的施工方法......................................1.2论文简述............................................课题介绍 ...........................................建模依据 ...........................................第二章ANSYS软件介绍.....................................2.1 ANSYS 发展........................................2.2主要功能及特点......................................2.3典型的分析过程.....................................2.4负载定义及附表...................................... 第三章有限元分析 ........................................3.1模型参数............................................3.2建模过程............................................3.3加载及后处理........................................简述自重(deadweight) 作用在中跨处施加车辆荷载(load)第四章模型实验简介第五章数据分析比较4.1 .....................第六章结论...........展望 .............致谢 .............参考文献 .........拱桥静载受力分析和模态分析计算摘要:本文对跨度为3米,矢跨比为1/6的系杆拱桥在一定外力作用下的应力、应变、位移和拱桥模态利用an sys软件,进行了有限元建模和分析计算,得到了相应的计算结果,并与实验结果进行了比对,证明了建模是合理的,计算结果是可信的。

某下承式系杆拱桥的结构受力分析

某下承式系杆拱桥的结构受力分析

某下承式系杆拱桥的结构受力分析叶博【摘要】以某下承式系杆拱桥为研究背景,运用Midas/Civil软件建立全桥有限元模型,分别对该桥吊杆、拱肋和系杆结构的轴力及弯矩进行数值分析,得出以下结论:1)活载引起吊杆、拱肋和系杆的轴力与弯矩值仅为恒载的1/10左右;2)恒载和活载作用下,拱肋、系杆与吊杆固结处产生附加内力随着时间推移会致使吊杆产生损伤.3)系杆拱桥的吊杆、系杆结构在恒载与活载作用下均处于受拉状态,故布置于结构内的预应力钢束能有效改善自身受力状态.【期刊名称】《兰州工业学院学报》【年(卷),期】2017(024)006【总页数】4页(P41-44)【关键词】下承式系杆拱桥;Midas/civil;吊杆;系杆;拱肋【作者】叶博【作者单位】山西省交通科学研究院,山西太原 030006【正文语种】中文【中图分类】U448.22下承式系杆拱桥主要由吊杆、拱肋以及系杆组成,其中吊杆仅承担轴力,拱肋承压为主承弯为辅,而系杆均承担弯矩和轴力,构成一个梁拱组合结构体系共同承受荷载[1-4].20纪中期,系杆拱桥逐渐在我国得到广泛运用,如临清卫运河桥、扬州大运河桥等,均为下承式系杆拱桥结构[5-6].近年来,由于国内部分系杆拱桥的建时过久,使用频率较高,且当时设计和施工阶段技术不成熟,导致目前许多下承式系杆拱桥出现诸多问题[7-8].基于此,笔者以某下承式系杆拱为研究背景,运用Midas/Civil软件建立全桥有限元模型,分别对该桥吊杆、拱肋和系杆结构的轴力及弯矩进行数值分析,研究结果可为同类桥梁设计与后期加固提供参考依据.某下承式系杆拱桥全长168 m,跨径布置为(2×22+72+2×22) m,桥面宽为:2×[1.9 m(人行道)+4.6 m(非机动车道)+2 m(分隔带)]+15 m(行车道)=32 m,设计荷载为:汽车-20级,挂车-100级.桥梁立面布置如图1所示.该桥主跨为下承式钢管混凝土系杆拱,计算跨径为72 m,矢高14.4 m,矢跨比为1/5,拱轴线为二次抛物线.拱肋采用圆形钢管混凝土截面,钢管外径为1.4 m,壁厚14 mm.系杆采用圆形截面,外径为0.8 m,壁厚10 mm,钢管内设有高强度低松弛预应力钢绞线;拱肋和系杆钢管内均使用C40微膨胀混凝土泵送填充.吊杆采用φ0.18 m圆形无缝钢管,壁厚14 mm,管内填充C30细粒式混凝土.运用Midas/Civil有限元软件建立下承式系杆拱桥计算模型,模型中拱肋、横撑、横梁、系杆、吊杆外套管均以空间梁单元进行模拟;桥面板及铺装层以板单元模拟;吊杆内预应力钢束采用初拉力形式进行张拉,并以桁架单元模拟,拱桥计算模型具体如图2所示.模型坐标系中XYZ分别表示拱桥的纵向、横向与竖向,原点O设置于某一拱脚处,将原点处支座进行固定,并分别约束其纵桥向支座的Y方向和横桥向支座的X方向,其余支座则设定为活动支座.另外,模型中拱肋和系杆采用固结连接.拱桥模拟过程中采用简化计算方法,将拱肋、系杆单元模拟成一种各项同性的材料,即将钢材和混凝土视为等效材料,并将其截面换算为等效截面.模拟中基本材料拟定为钢材,运用以下计算公式将混凝土换算成钢材.A=As+,I=Is+,γ=(γcAc+γsAs)/A.式中,s、c分别表示钢和混凝土;A、E、I、γ分别表示材料的面积、杨氏模量、惯性矩和容重.假定模拟材料均为各项同性.钢的弹性模量分别为E1=2.1×105 MPa,μ1=0.3;混凝土的弹性模量为E2=3.31×104 MPa,μ2=0.167;拱肋、系杆结构内钢-混的弹性模量比为6.34,比重为3.07.计算过程中恒载作用仅考虑结构自重,汽车活载根据《公路桥涵设计通用规范(JTG D60—2015)》中相关规定进行计算.吊杆是下承式系杆拱桥中的主要组成部分,其工作状态能反映出桥梁是否安全.通过对系杆拱桥内吊杆结构进行数值分析,获得恒载、活载作用下各吊杆的轴力变化曲线如图3所示.根据图3可知,恒载作用下吊杆左右幅的轴力变化一致,且拱桥两侧吊杆的轴力呈对称分布;而活载作用下吊杆左右幅的轴力变化差异相对较为明显,但两侧吊杆的轴力由于最不利荷载的布置差别较小,整体上仍呈对称分布.在恒载或活载作用下各吊杆均处于受拉状态,其中吊杆轴力主要由恒载作用引起,而活载作用的影响相对较小;各吊杆的轴力分布都比较均匀,且变幅较小.拱肋是系杆拱桥中主要的承重构件,其内力的控制对全桥整体受力和成桥线形起着决定性影响.通过对恒载及活载作用下拱肋结构的内力进行数值分析,获得各节点轴力与弯矩的变化规律如图4~5所示.根据图4可知,恒载作用下拱肋结构产生较大的轴向压力,两侧各节点的轴力呈对称分布,拱顶处轴力值最小,沿跨中向两侧拱脚逐渐递增;拱肋上下侧弯矩分别处于受压、受拉状态,其中拱顶处出现负弯矩,拱肋弯矩沿跨中向拱脚侧逐渐增大.从图5可以看出,活载作用下拱肋结构基本处于受拉状态,其轴力由拱脚往拱顶逐渐递减,两侧轴力分布对称,较于恒载作用,活载对拱肋轴线拉力的影响更小;拱肋全跨弯矩均为正弯矩,其中1/4跨处弯矩达到峰值,并分别向跨中、拱脚处逐渐减小.通过对拱桥系杆结构进行受力分析,分别获得恒载、活载作用下各系杆节点的轴力及弯矩变化规律如图6~7所示.根据图6可知,恒载作用下系杆全跨轴力均处于受拉状态,其中跨中处轴力值最小,且向两侧边跨方向逐渐递增,这是由于系杆与吊杆采用固结连接方式,故半刚性吊杆对系梁的轴力变化产生直接影响;而系杆全跨的弯矩分布较不规则,其原因为系杆在吊杆轴向力影响下产生数个集中力,致使吊杆与系杆固结处的弯矩发生突变.从图7可以看出,活载作用下系杆全跨轴力也均表现为受拉,但轴力变化与恒载作用差距较大,其中两侧1/4跨处轴力值最大,且逐渐向跨中及边跨减小;活载作用下系杆和吊杆固结处弯矩存在较小突变,但系杆全跨仍处于正弯矩,这是由于活载作用引起的吊杆轴力并不明显,而恒载对吊杆轴力影响较大.通过对某下承式系杆拱桥的结构受力进行数值分析,分别得出恒载和活载作用下吊杆、拱肋、系杆的结构内力变化规律,其结果可为同类桥梁设计与后期加固提供参考依据.1) 活载作用下吊杆、拱肋和系杆的内力变化明显要小于恒载作用,活载引起各构件的轴力与弯矩值仅为恒载的1/10左右.2) 恒载和活载作用下,拱肋、系杆与吊杆固结处会产生不同程度的附加内力,当拱桥长期使用时,附加内力能逐渐致使吊杆产生损伤.3) 系杆拱桥的吊杆、系杆结构在恒载与活载作用下均处于受拉状态,故布置于结构内的预应力钢束能有效改善自身受力状态,但桥梁长期使用过程中吊杆结构内钢束的预存力会逐渐减小,故可通过增设吊杆以增强拱桥承载能力.【相关文献】[1] 韩保勤.钢答混凝上拱桥吊杆张拉方案比选[J].桥梁建设,2015,45(1):114-119.[2] 赵铭伟.增大截面法在拱桥加固中的应用[J].山西交通科技,2017(1):57-60.[3] 欧阳辉来,张万华.新开河大桥拱脚设计及局部应力分析[J].世界桥梁,2009(3):33-35.[4] 杨剑,邹团结,汪金胜.梁拱组合拱桥拱脚局部应力分析和试验研究[J].铁道科学与工程学报,2014(6):25-29.[5] 于刚.九堡大桥设计过程复杂节点局部分析[J].城市道桥与防洪,2011(12):30-33.[6] 刘芳.下承式钢管混凝土拱桥空间稳定性与极限承载力研究[D].长沙:中南大学,2008.[7] 曾勇,马如进,谭红梅.大跨上承式钢管混凝土拱桥的动力特性研究[J].中外公路,2014(3):113-117.[8] 陈建兵,熊秉贤,李夏元,等.钢管混凝土拱桥新增吊杆加固设计[J].世界桥梁,2016,44(5):83-88.。

系杆拱桥力学性能分析

系杆拱桥力学性能分析

系杆拱桥力学性能分析姓名:翟硕学号:73 专业:机电系杆拱桥作为拱桥家族中的一员,具有拱桥的一般特征,又有自身的独有特点。

它是一种集拱与梁的优点于一身的桥型,它将拱与梁两种基本结构形式组合在一起,共同承受荷载,可以充分发挥梁受弯、拱受压的结构性能和组合作用。

一、拱形形状系杆拱桥通过细杆与桥体相连,减少桥体由于自重而产生的变形,增加桥体承重能力。

通过合理的设计拱形形状可以使每根细杆所受应力相同,达到最大承重的效果。

如图2所示,为系杆拱桥的简图。

L为桥拱的跨度。

图 2图 1由于桥体重力分布均匀,而每根细杆给桥体力相同,因此可以认为桥体受到均匀载荷q。

受力分析如图3所示。

图 3两只支脚所受力F=qq2⁄在桥面上任意一点所受到的弯矩M=qq(q−q)2假设挠度为ω,转角为θ。

q2q qq =q qqθ=qqqq =∫qqqqq+q解得ω=−qq24qq(q3−2qq2+q3)由胡克定律,每根杆所受应力σ=E qq q其中Δy=−ω由此可知,桥拱形状y=qq24qq(q3−2qq2+q3)当x=q2时,q qqq=5qq 4384qq 二、桥拱简单强度计算对桥拱受力分析,如图4所示图 4其中q 1是桥拱受系杆拉力所等效的均匀载荷,F与q q 分别为桥体给桥拱垂直与水平方向的拉力。

由于桥拱垂直方向受力平衡,故 F =q 1q2在A 点列桥拱右部分力矩平衡q q ∗q qqq +∫q 1qqqq 2⁄0=q ∗q /2解得 q q =48q 1qq5qq 在(x,y )点处受到的力矩为Mq q ∗q +∫q 1qqq q=q ∗q +q解得 M =q 1(4q 4−8qq 3+5q 2q 2−q 3q )10q 2当 x=(12±√24)q 时, q qqq=−q 1q 2160假设桥拱截面形状为圆形,直径为d 则桥拱所受最大正应力 q 1qqq=q qqq q=q 1q 25qq3三、桥体简单强度计算对进行桥体受力分析,如图5所示图 5假设桥体截面为宽度为b,厚度为c的正方形。

例析桥梁加固受力分析验算

例析桥梁加固受力分析验算

例析桥梁加固受力分析验算一、石拱桥受力分析任务大井桥桥墩基础上游侧冲空,两侧主拱圈近桥墩1/3跨处均见横向裂缝,开裂深度1/2拱圈厚度,裂缝下宽上窄。

由于项目资金少,现在拟对桥梁进行桥墩基础加深扩大、拱圈灌缝加固处理,需要对该桥梁加固方案进行拟加固后的受力分析验算,以掌握桥梁承载能力,保证桥梁安全运行,如果经复核不能满足使用要求,则采取其它方法处理。

二、桥梁情况简介大井桥位于普洱市镇沅县勐大镇平大公路(路线编码Y010530825)K1+083处,该公路等级四级,公路路基宽度4.5米,是连接镇沅县勐大镇平掌村、大井村、文蒙村的重要干道。

该桥全桥长42.3m,桥高10.24m,跨径1×17.4m+1.8m (桥墩)+1×17.4m两跨空腹式石拱桥,主拱圈的拱板的宽度是5米,厚度是0.9米,主拱圈净矢高4.25 m。

桥面0.4米栏杆+车行道4.2米+0.4米栏杆,腹拱如图,腹拱圈为半圆拱,净跨度是2米,腹拱圈厚度是0.4米,腹拱的边立墙的宽度是1米,其他的立墙的宽度是0.8米。

拱顶桥面铺装砂砾石。

桥梁于1979年动工修建,1981年竣工通车。

设计荷载不明。

桥梁簡图如下:三、调查情况对拱轴线的坐标进行检测,通过拱轴线的坐标得出该桥梁主拱圈为圆弧线。

主拱圈中轴线半径为11.1米,中轴线跨径18.136米,中轴线失高4.7米。

拱圈M10砂浆砌MU50块石,重力密度=24kN/m3。

主拱圈轴心抗压强度设计值3.85MPa,块石砌体抗剪强度设计值为0.073MPa。

拱圈石轴心抗压设计值13.24 MPa,直接抗剪强度1.3×103kPa。

(岩石的抗剪强度约为抗压强度的0.1~0.2倍,取0.1倍)抗剪安全系数γm=2.31,抗压安全系数γn=1.54。

四、受力验算该拱桥构造简单,主要分析计算拱脚、跨中受力情况。

拱桥拱圈由块石砌筑而成,所以设跨中剪力=0。

考虑到桥梁为单行道,活载仅满足当地村民生活生产需要,考虑偏心受压影响,车辆活载取值1400kN(集中荷载),人群荷载3kN/m2。

拱桥的计算例题

拱桥的计算例题
【例3-2-1】某无铰拱桥,计算跨径l=80m,主拱圈及拱上建 筑结构自重简化为图所示的荷载作用,主拱圈截面面积 A=5.0m2,重力密度为γ=25kN/m3,试应用“五点重合法” 确定拱桥拱轴系数m,并计算拱脚竖向力Vg、水平推力Hg以 及结构自重轴力Ng 。
2008-4-6
桥梁工程
解:
y1/4
2008-4-6
桥梁工程
【例3-2-2】某无铰拱桥,计算跨径l=80m,主拱圈及拱上建 筑结构自重简化为图所示的荷载作用,主拱圈截面面积 A=5.0m2,重力密度为γ=25kN/m3,由“五点重合法”确定 拱桥拱轴系数m=2.24,截面抗弯惯矩I=1.0m4,计算考虑弹性 压缩后,拱脚竖向力Vg、水平推力Hg以及结构自重轴力Ng, 以及弹性压缩引起的拱脚截面弯矩。
V KVV 216.8790.1662250 280.6kN N H1 cos j V sin j 819.2 0.7357 280.6 0.68284 790.1kN
2、拱脚最大负弯矩及相应轴力
1)根据
l 50m
拱脚最大负M及汽车-20查《基本资料》第79页的等代荷载:
KM 23.547kN / m, KH 10.932, KV 16.724kN / m
M1/4
1
f M j 2(m 1) 2
半拱悬臂集中力荷载作用时:
1)假定拱轴系数m=2.514, f/l=16/80 =1/5,查 表(III)-19得:
所有荷载: 所以
2008-4-6
桥梁工程
需重新计算
2)假定拱轴系数m=2.24
所有荷载:
所以 小于半级,因此取拱轴系数m=2.24
3)查表(III)-19得半拱悬臂自重对拱脚截面的竖向剪力为 半拱悬臂集中力对拱脚截面的竖向剪力为:

大跨度钢管混凝土拱桥受力性能分析

大跨度钢管混凝土拱桥受力性能分析

参考内容
基本内容
随着经济的发展和科技的进步,我国基础设施建设规模不断扩大,尤其是大 跨度桥梁的建设取得了长足的发展。大跨度钢管混凝土拱桥作为现代桥梁工程的 重要类型,具有结构轻盈、跨越能力大、美观环保等优点,因此在公路、铁路和 城市交通领域得到广泛应用。
然而,大跨度钢管混凝土拱桥施工过程复杂,涉及众多关键技术,如何确保 桥梁施工过程中的稳定性、安全性和精度控制成为亟待解决的问题。本次演示旨 在探讨大跨度钢管混凝土拱桥施工控制方面的研究,以期为类似桥梁工程建设提 供理论支持和实践指导。
参考内容二
一、引言
随着现代工程技术的不断发展,大跨度桥梁的设计和施工越来越受到人们的。 大跨度桥梁不仅在视觉上提供了宏大的景观效果,而且在功能上满足了跨越大型 河流、峡谷或其他复杂地形的需求。在众多大跨度桥梁中,大跨度钢管混凝土拱 桥因其独特的结构特性,如高强度、耐久性好、造价低等,而在桥梁工程中具有 广泛的应用。
在实验研究方面,学者们通过制作缩尺模型、全桥模型等进行了各种加载实 验,以探究拱桥的受力性能。这些实验表明,大跨度钢管混凝土拱桥具有良好的 承载能力和变形性能,同时拱脚处容易出现裂缝。尽管实验研究在某些方面取得 了成果,但仍存在实验条件与实际环境有所差异等问题。
本次演示主要研究大跨度钢管混凝土拱桥的受力性能,借助完善的理论和实 验设施,旨在探寻拱桥结构中应力、应变和强度等指标的变化规律。首先,运用 有限元软件建立大跨度钢管混凝土拱桥的数值模型,进行静力分析和模态分析, 以获取拱桥在自重作用下的应力分布和振动特性。
文献综述
大跨度钢管混凝土拱桥的非线性地震反应研究已经取得了不少进展。国内外 学者通过理论分析、实验研究及数值模拟等方法,对拱桥的地震响应进行了深入 探讨。已有的研究主要集中在以下几个方面:

midas-Civil拱桥分析专题

midas-Civil拱桥分析专题
表格中,在此基础上就可以定义其它可变荷载的稳定分析。
17
midas Civil 抗震专题—08公路抗震规范设计专题
抗震
拱桥成桥稳定分析
方法一:可以借鉴施工阶段的稳定分析,得到最后一个施工阶段的初始单元内力作 为成桥的几何刚度,然后定义成桥的可变荷载做问题分析。
方法二:直接以成桥模型为基础,对成桥结构进行可变荷载或者不变荷载的定义, 然后对此状态做成桥的稳定分析。
midas Civil 2010拱桥专题—拱桥分析专题
1.不同结构中索单元的使用:
• 悬索桥的主缆和吊杆:建议使用考虑大变形的悬索单元 • 大跨斜拉桥的斜拉索:对于近千米或者超过千米的斜拉桥建议使用考虑大 变形的索单元 • 中小跨斜拉桥的斜拉索:建议使用考虑恩斯特公式修正的等效桁架单元 • 拱桥的吊杆:建议使用桁架单元或只受拉桁架单元 • 系杆拱桥的系杆:建议使用桁架单元 • 体内预应力或体外预应力的钢索(钢束):与索单元无关,使用预应力荷 载功能按荷载来模拟即可。
10
midas Civil 抗震专题—08公路抗震规范设计专题
抗震
分析>施工阶段分析控制数据 斜拉桥施工时,最终阶段往往是跨中合拢的施工。跨中合拢的一刹那,
结构体系完全转换。需要说明的是,利用成桥模型计算未知荷载系数时,跨 中合拢段处于连续状态。但在施工合拢段时,合拢段并非处于连续状态,即 两端的弯矩为0。按照前面介绍的分析方法,结果会出现闭合的情况。
拱上填料在整个结构中起到竖向传递桥面系荷载的作用,因此是否正确模拟拱上填料, 是建模成败关键点。 拱上填料模拟方法一:采用弹性连接进行模拟,不考虑面外荷载效应,所以可以模拟 成Sry=0的弹性连接,轴向刚度模拟时要合理; 拱上填料模拟方法二:采用立柱单元进行传力模拟,此单元用梁单元进行模拟,不考 虑面外荷载效应,所以可以对它采用释放梁端My的约束进行等效传力模拟。 如果考虑面外荷载效应时,三维模型的等效上述方法就不可行,结构就得要另外处理 了。

不同斜度斜拱桥空间受力比较分析

不同斜度斜拱桥空间受力比较分析

! !"""斜交 !# $桥宽 #$ 平(! ! &"""斜交 !# 度桥宽 #$ 立(!
! #"""斜交 %) 度桥宽 !)$ 挠度!
2.2 挠度' 分析 表1可知,各种情况下跨中挠度相差不大,均在
2"2" !" # #
!"#$%&
"$%#&& !"# $%& %' & # ()*+, , .(/面123 向并不是处处相等,而是在靠近自由边的地方挠度更大,可 见跨中截面横向中部受到横向约束影响#
I
&2& ‘'“”
,桥 跨 &-.,


%/0.I 拱
为了
斜交对拱桥的 ,
拱桥 交、
斜交 &# 度、 斜交 !" 度、 斜交 %" 度
行实

#. 和 &". ,桥 拱 度
为 "23. I
拱桥



力 为 !456.!I
采用节
,拱

, 于实
节!"平
动自度,因此是否约束节点转自由度对计算没有任何影
I
1.2模型建立 采用 MIDAS
F-
行实
,斜
交 !及桥宽的不 共 立0 #. 型 ! &7! % 0I
型。其中斜交&#度桥宽
" '()*+,-./
于实
- !可1到2度3应力4 ,
56
78
(行 - I
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拱券结构是古代人们解决建筑跨度问题的有效方法,比如罗马的万神庙,我国的赵州桥都是拱券结构的典型代表。

拱券结构的特点是利用石块的楔形结构,将重力和压力沿拱向两边分解,最后由拱券两端的基石来承受。

现有六块大小、形状相同,质量相等的楔块组成一个半圆形实验拱券,如图乙所示。

如果每专人楔块的质量m=3kg,g取9.8m/s2,则;
(1)六块楔块组成的拱券对其一边的支撑物的压力是多大?
(2)如果在中间两块楔块3、4上加一个方向向下且大小为50N的压力F,如图乙所示,那么楔块2对楔块3和楔块5对楔块4的弹力F1、F2分别是多大?
(1)六块楔块受到的总重力为:
G=6mg=6×3×9.8=176.4N
由二力平衡条件知拱券对一边支撑物的压力为:
N=G2=176.42N=88.2N;
(2)以中间两楔块3、4为研究对象,其受力如图所示:
由对称性可知F1=F2
由互成120∘的二力合成特点知:
F1=F2=2mg+F=2×3×9.8+50=108.8N,
答:
(1)六块楔块组成的拱券对一边支撑物的压力是88.2N;
(2)楔块2对楔块3和楔块5对楔块4的弹力F1、F2分别是108.8N.
学生问题:第二问为什么是120度?正确答案如下图所示:
或者这样解释
请问为什么F1等于F2?。

相关文档
最新文档