材料分析测试的技术-习题

合集下载

材料分析测试方法习题整理

材料分析测试方法习题整理
Байду номын сангаас
准确度 <1000∽30 辐射对样品作 用体积 约 0.1-0.5mm3≈1μm(数量级) 样品固体(一般为晶态)薄膜(一般为晶态) 应用塑性形变的射线分析:孪晶与滑移面 指数的测定(单晶定向)、形变与再结 晶织构测定、应力分析等; 相变过程与产物的 X 射线研究(如马 氏体相变、合金时效等):相变过程中 产物(相)结构的变化及最终产物、 工艺参数对相变的影响、新生相与母 相的取向关系等; 固溶体的 X 衍射分析:固溶极限测定、 点阵有序化(超点阵)参数测定、短 程有序分析等; 高分子材料的 X 衍射分析:高聚物鉴 定、晶态与非晶态及晶型的确定、结 晶度测定、微晶尺寸测定等 微区晶体结构分析与物相鉴定(如第二相 在晶内析出过程分析(如析出物与晶体取 向关系、惯习面指数等),晶体缺陷分析 表面(1-5 个原子层)结构分析[原子二维 排列周期(单元网格)、层间原子相对位置 及层间距等],表面吸附现象分析(吸附原 子排列周期、吸附原子相对基本原子位置、 吸附是否导致表面重建等),表面缺陷(不 完善结构)分析(空位、台阶表面等) 表面结构分析,表面缺陷分析(样品的无 序程度、台阶特征等),表面原子逐层生长 过程分析(是否形成结晶、表面重构等) 典型应用:RHEED 监控人造超晶格材料的 生长(分子束外延、原子层外延或分子层 外延生长等) 11、用爱瓦尔德图解法证明布拉格定律。 答:作一个长度等于 1/λ的矢量 K0,使它平行于入射光束,并取该矢量的端点 O 作为倒点阵的原点。然后用与矢量 K0 相同的比例尺作倒点阵。以矢量 K0 的起 始点 C 为圆心,以 1/λ为半径作一球,则从(HKL)面上产生衍射的条件是对应的 倒结点 HKL(图中的 P 点)必须处于此球面上,而衍射线束的方向即是 C 至 P 点的 联接线方向,即图中的矢量 K 的方向。当上述条件满足时,矢量(K- K0)就是倒 点阵原点 O 至倒结点 P(HKL)的联结矢量 OP,即倒格失 R*HKL.于是衍射方程 K- K0=R*HKL 得到了满足。即倒易点阵空间的衍射条件方 程成立。

材料分析测试习题及答案1

材料分析测试习题及答案1

1.计算0.071 nm (MoK α)和0.154 nm (CuK α)的X 射线的振动频率和能量。

解:由公式max 0hceU h νλ==得 将题目中数据带入= = =892.998100.15410-⨯⨯= = == = 考虑相对论效应,220/1cv m m -=,结果会有小许不同。

2.计算当管电压为50 kv 时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。

解:已知U=50kV ,电子的质量为m0 =9.1×10-31kg ,光速为c=2.998×108m/s ,电子电量e=1.602×10-19C ,普朗克常数:h=6.626×10-34J.s电子从阴极飞出到达靶的过程中所获得的总动能为E=eU=1.602×10-19C ×50kv=8.01×10-15J由于所以电子与靶碰撞时的速度为=1.32×108m/s所发射连续谱的短波限=12400/U=0.248Å 辐射出来的光子的最大动能为= = 8.01×10-15J3.分析下列荧光辐射产生的可能性,为什么? (1)用CuK α X 射线激发CuK α荧光辐射; (2)用CuK β X 射线激发CuK α荧光辐射; (3)用CuK α X 射线激发CuL α荧光辐射。

解:(网上参考答案)根据经典原子模型,原子内的电子分布在一系列量子化的壳层上,在稳定状态下,每个壳层有一定数量的电子,他们有一定的能量。

最内层能量最低,向外能量依次增加。

根据能量关系,M 、K 层之间的能量差大于L 、K 成之间的能量差,K 、L 层之间的能量差大于M 、L 层能量差。

由于释放的特征谱线的能量等于壳层间的能量差,所以 K β的能量大于 K α的能量,K α能量大于L α的能量,即 。

因此在不考虑能量损失的情况下: CuK α能激发CuK α荧光辐射;(能量相同) CuK β能激发CuK α荧光辐射; (K β>K α)cνλ=0M ν892.998100.07110-⨯⨯1814.2310s -⨯Cu ν1811.9510s -⨯O M eU 34186.62610 4.2310-⨯⨯⨯152.810J -⨯Cu eU 34186.62610 1.9510-⨯⨯⨯151.2910J-⨯2012E mv =12002E v m ⎛⎫= ⎪⎝⎭0λ0E 00hc h νλ=CuKα能激发CuLα荧光辐射;(Kα>Lα)解:假设E K为K壳层的能量,E L为L壳层的能量,E M为M壳层的能量,CuKαX射线的能量为E K-E L,CuKβX射线的能量为E K-E M,CuKα荧光辐射的能量为E K-E L,CuLα荧光辐射的能量为E L-E M,(1)不可能,用CuKαX射线激发CuKα荧光辐射,需要E K的能量;(2)不可能,用CuKβX射线激发CuKα荧光辐射,需要E K的能量;(3)有可能,用CuKαX射线激发CuLα荧光辐射,需要E L的能量,具体能不能还要比较E K-E L 和E L的大小。

材料现代分析试方法复习题

材料现代分析试方法复习题

《材料现代分析测试方法》习题及思考题一、名词术语波数、原子基态、原子激发、激发态、激发电位、电子跃迁(能级跃迁)、辐射跃迁、无辐射跃迁,分子振动、伸缩振动、变形振动(变角振动或弯曲振动)、干涉指数、倒易点阵、瑞利散射、拉曼散射、反斯托克斯线、斯托克斯线、 X射线相干散射(弹性散射、经典散射或汤姆逊散射)、X射线非相干散射(非弹性散射、康普顿-吴有训效应、康普顿散射、量子散射)、光电效应、光电子能谱、紫外可见吸收光谱(电子光谱)、红外吸收光谱、红外活性与红外非活性、弛豫、K系特征辐射、L系特征辐射、Kα射线、Kβ、短波限、吸收限、线吸收系数、质量吸收系数、散射角(2θ)、二次电子、俄歇电子、连续X射线、特征X射线、点阵消光、结构消光、衍射花样的指数化、连续扫描法、步进扫描法、生色团、助色团、反助色团、蓝移、红移、电荷转移光谱、运动自由度、振动自由度、倍频峰(或称泛音峰)、组频峰、振动耦合、特征振动频率、特征振动吸收带、内振动、外振动(晶格振动)、热分析、热重法、差热分析、差示扫描量热法、微商热重(DTG)曲线、参比物(或基准物、中性体)、程序控制温度、(热分析曲线)外推始点、核磁共振。

二、填空1.原子中电子受激向高能级跃迁或由高能级向低能级跃迁均称为( )跃迁或( )跃迁。

2.电子由高能级向低能级的跃迁可分为两种方式:跃迁过程中多余的能量即跃迁前后能量差以电磁辐射的方式放出,称之为( )跃迁;若多余的能量转化为热能等形式,则称之为( )跃迁。

3.多原子分子振动可分为( )振动与( )振动两类。

4.伸缩振动可分为( )和( )。

变形振动可分为( )和( )。

5.干涉指数是对晶面( )与晶面( )的标识。

6.晶面间距分别为d110/2,d110/3的晶面,其干涉指数分别为( )和( ).7. 倒易矢量r*HKL的基本性质为:r*HKL垂直于正点阵中相应的(HKL)晶面,其长度|r*HKL|等于(HKL)之晶面间距dHKL的( )。

材料现代分析测试方法习题答案

材料现代分析测试方法习题答案

材料现代分析测试方法习题答案【篇一:2012年材料分析测试方法复习题及解答】lass=txt>一、单项选择题(每题 3 分,共 15 分)1.成分和价键分析手段包括【 b 】(a)wds、能谱仪(eds)和 xrd (b)wds、eds 和 xps(c)tem、wds 和 xps (d)xrd、ftir 和 raman2.分子结构分析手段包括【 a】(a)拉曼光谱(raman)、核磁共振(nmr)和傅立叶变换红外光谱(ftir)(b) nmr、ftir 和 wds(c)sem、tem 和 stem(扫描透射电镜)(d) xrd、ftir 和raman3.表面形貌分析的手段包括【 d】(a)x 射线衍射(xrd)和扫描电镜(sem) (b) sem 和透射电镜(tem)(c) 波谱仪(wds)和 x 射线光电子谱仪(xps) (d) 扫描隧道显微镜(stm)和sem4.透射电镜的两种主要功能:【 b】(a)表面形貌和晶体结构(b)内部组织和晶体结构(c)表面形貌和成分价键(d)内部组织和成分价键5.下列谱图所代表的化合物中含有的基团包括:【c 】(a)–c-h、–oh 和–nh2 (b) –c-h、和–nh2,(c) –c-h、和-c=c- (d) –c-h、和 co2.扫描电镜的二次电子像的分辨率比背散射电子像更高。

(√)3.透镜的数值孔径与折射率有关。

(√)5.在样品台转动的工作模式下,x射线衍射仪探头转动的角速度是样品转动角速度的二倍。

(√ )三、简答题(每题 5 分,共 25 分)1. 扫描电镜的分辨率和哪些因素有关?为什么?和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。

束斑尺寸越小,产生信号的区域也小,分辨率就高。

2.原子力显微镜的利用的是哪两种力,又是如何探测形貌的?范德华力和毛细力。

以上两种力可以作用在探针上,致使悬臂偏转,当针尖在样品上方扫描时,探测器可实时地检测悬臂的状态,并将其对应的表面形貌像显示纪录下来。

安徽工业大学材料分析测试技术复习题及答案

安徽工业大学材料分析测试技术复习题及答案

复习的重点及思考题以下蓝色的部分作为了解第一章X射线的性质X射线产生的基本原理。

●X射线的本质―――电磁波、高能粒子、物质●X射线谱――管电压、电流对谱的影响、短波限的意义等●高能电子与物质相互作用可产生哪两种X射线?产生的机理?连续X射线:当高速运动的电子(带电粒子)与原子核内电场作用而减速时会产生电磁辐射,这种辐射所产生的X射线波长是连续的,故称之为~特征(标识)X射线:由原子内层电子跃迁所产生的X射线叫做特征X射线。

X射线与物质的相互作用●两类散射的性质●吸收与吸收系数意义及基本计算●二次特征辐射(X射线荧光)、饿歇效应产生的机理与条件二次特征辐射(X射线荧光):由X射线所激发出的二次特征X射线叫X射线荧光。

俄歇电子:俄歇电子的产生过程是当原子内层的一个电子被电离后,处于激发态的电子将产生跃迁,多余的能量以无辐射的形式传给另一层的电子,并将它激发出来。

这种效应称为俄歇效应。

●选靶的意义与作用第二章X射线的方向晶体几何学基础●晶体的定义、空间点阵的构建、七大晶系尤其是立方晶系的点阵几种类型在自然界中,其结构有一定的规律性的物质通常称之为晶体● 晶向指数、晶面指数(密勒指数)定义、表示方法,在空间点阵中的互对应 ● 晶带、晶带轴、晶带定律,立方晶系的晶面间距表达式● 倒易点阵定义、倒易矢量的性质● 厄瓦尔德作图法及其表述,它与布拉格方程的等同性证明λ1= 为半径作一球; (b) 将球心置于衍射晶面与入射线的交点。

(c) 初基入射矢量由球心指向倒易阵点的原点。

(d) 落在球面上的倒易点即是可能产生反射的晶面。

(e) 由球心到该倒易点的矢量即为衍射矢量。

布拉格方程要灵活应用,比如结合消光规律等2d hkl sin θ = n λ ‥‥ 布拉格公式d hkl 产生衍射的晶面间距θ 入射线或衍射线与晶面的夹角-布拉格角n 称之为反射级数● 布拉格方程的导出、各项参数的意义,作为产生衍射的必要条件的含义。

材料分析测试技术考试复习题三

材料分析测试技术考试复习题三

填空题1.透射电镜、扫描电镜、电子探针、扫描燧道显微镜的英文字母缩写分别是、、、。

2.透射电镜主要由、、三大部分组成。

3.若一个分子是由N个原子组成,则非线性分子的振动自由度为,而线性分子的振动自由度为。

4.利用电子束与样品作用产生的特征X射线来分析样品的微区成分,有、i.二种方法。

5.透射电镜的复型技术主要有、、三类。

6.在光谱法中,测量的信号是物质内部能级跃迁所产生的发射、吸收或散射光谱的和。

7.根据光谱的波长是否连续,可将光谱分为三种类型,即光谱、光谱、光谱。

8.原子吸收分光光度计一般概括为四大基本组成部分,它们分别是:、、、。

9.根据分子轨道理论,当两个原子靠近而结合成分子时,两个原子的原子轨道就可以线性组合生成两个分子轨道。

其中一个分子轨道具有低能量,称为轨道。

另一个分子轨道具有高能量,称为轨道。

10.根据朗伯—比尔定律,一束平行电磁辐射,强度为0I,穿过厚度为b、组分浓度为c的透明介质溶液后,由于介质中粒子对辐射的吸收,结果强度衰减为e I,则溶液的吸光度A表示为。

11.透射电镜、扫描电镜、傅里叶变换红外光谱、核磁共振的英文字母缩写分别是、、、。

12.根据衍衬成像原理,透射电镜可进行二种衍衬成像操作,分别得到像和i.像。

13.电子探针分析主要有三种工作方式,分别是分析、分析和分析。

14.高能电子束照射在固体样品表面时激发的信号主要有、、、等。

(至少答四种信号)15.简正振动可分为振动和振动两种基本类型。

16.拉曼位移定义为_________________散射线与______________或________________i.散射线之间的频率差。

17.在电子能谱仪的试样系统中, 真空度往往要达到10-6~10-8Pa , 这是因为_________。

18.在电子能谱法中, 从X射线管中发出的特征X射线, 常常选择K系X射线作为激发辐射, 其原因是_______________________。

现代材料分析测试方法:期末考试卷和答案

现代材料分析测试方法:期末考试卷和答案

现代材料分析测试方法:期末考试卷和答案第一部分:选择题1. 以下哪项不是常用的材料分析测试方法?- A. 扫描电子显微镜(SEM)- B. 红外光谱(IR)- C. 傅里叶变换红外光谱(FTIR)- D. 核磁共振(NMR)答案:D2. 扫描电子显微镜(SEM)主要用于:- A. 表面形貌观察- B. 元素成分分析- C. 分子结构分析- D. 力学性能测试答案:A3. X射线衍射(XRD)常用于:- A. 表面形貌观察- B. 元素成分分析- C. 分子结构分析- D. 晶体结构分析答案:D4. 热重分析(TGA)主要用于:- A. 表面形貌观察- B. 元素成分分析- C. 分子结构分析- D. 热稳定性分析答案:D5. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)的区别在于:- A. SEM可以观察表面形貌,TEM可以观察内部结构- B. SEM可以观察内部结构,TEM可以观察表面形貌- C. SEM只能观察金属材料,TEM只能观察非金属材料- D. SEM只能观察非金属材料,TEM只能观察金属材料答案:A第二部分:简答题1. 简述红外光谱(IR)的原理和应用领域。

红外光谱是一种基于物质吸收、散射和透射红外光的测试方法。

它利用物质分子的特定振动模式与入射红外光发生相互作用,从而获得物质的结构信息和化学成分。

红外光谱广泛应用于有机物的鉴定、无机物的分析、聚合物材料的检测以及药物和食品的质量控制等领域。

2. 简述傅里叶变换红外光谱(FTIR)的原理和优势。

傅里叶变换红外光谱是一种红外光谱的分析技术,它通过对红外光信号进行傅里叶变换,将时域信号转换为频域信号,从而获得高分辨率和高灵敏度的红外光谱图谱。

相比传统的红外光谱,FTIR 具有快速测量速度、高信噪比、宽波数范围和高分辨率等优势。

它广泛应用于材料分析、有机合成、生物医学和环境监测等领域。

3. 简述热重分析(TGA)的原理和应用领域。

热重分析是一种测量物质在升温过程中质量变化的测试方法。

材料测试与分析技术习题-第八章 扫描电子显微分析

材料测试与分析技术习题-第八章 扫描电子显微分析

第八章扫描电子显微分析
一、选择题
1. 在扫描电子显微镜中,下列二次电子像衬度最亮的区域是()。

A.和电子束垂直的表面;
B. 和电子束成30º的表面;
C. 和电子束成45º的表面;
D. 和电子束成60º的表面。

3. 可以探测表面1nm层厚的样品成分信息的物理信号是()。

A. 背散射电子;
B. 吸收电子;
C. 特征X射线;
D. 俄歇电子。

4. 扫描电子显微镜配备的成分分析附件中最常见的仪器是()。

A. 波谱仪;
B. 能谱仪;
C. 俄歇电子谱仪;
D. 特征电子能量损失谱。

5. 波谱仪与能谱仪相比,能谱仪最大的优点是()。

A. 快速高效;
B. 精度高;
C. 没有机械传动部件;
D. 价格便宜。

二、填空题
1.扫描电子显微镜的放大倍数是的扫描宽度与的扫描宽度的比值。


衬度像上颗粒、凸起的棱角是衬度,而裂纹、凹坑则是衬度。

2.分辨率最高的物理信号是为 nm,分辨率最低的物理信号是为
nm以上。

3.扫描电子显微镜可以替代进行材料观察,也可以对进行
分析观察。

三、名词解释
1.背散射电子
2.吸收电子
3.特征X射线
4.波谱仪
5.能谱仪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1.什么是连续X射线谱?为什么存在短波限λ0?答:对X射线管施加不同的电压,再用适当的方法去测量由X射线管发出的X射线的波长和强度,便会得到X射线强度与波长的关系曲线,称之为X射线谱。

在管电压很低,小于20kv时的曲线是连续的,称之为连续谱。

大量能量为eV的自由电子与靶的原子整体碰撞时,由于到达靶的时间和条件不同,绝大多数电子要经过多次碰撞,于是产生一系列能量为hv的光子序列,形成连续的X射线谱,按照量子理论观点,当能量为eV的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,在极限情况下,极少数的电子在一次碰撞中将全部的能量一次性转化为一个光量子,这个光量子具有最高的能量和最短的波长,即λ0。

2.什么是特征X射线?它产生的机理是什么?为什么存在激发电压Vk?答:当X射线管电压超过某个临界值时,在连续谱的某个波长处出现强度峰,峰窄而尖锐,这些谱线之改变强度,而峰位置所对应的波长不便,即波长只与靶的原子序数有关,与电压无关,因为这种强度峰的波长反映了物质的原子序数特征,故称为特征X射线,由特征X射线构成的X射线谱叫做特征X射线谱。

它的产生是与阳极靶物质的原子结构紧密相关当外来的高速粒子(电子或光子)的动能足够大时,可以将壳层中的某个电子击出,或击到原子系统之外,击出原子内部的电子形成逸出电子,或使这个电子填补到未满的高能级上。

于是在原来位置出现空位,原子系统处于激发态,高能级的电子越迁到该空位处,同时将多余的能量e=hv=hc/λ释放出来,变成光电子而成为德特征X射线。

由于阴极射来的电子欲击出靶材的原子内层电子,比如k层电子,必须使其动能大于k 层电子与原子核的结合能Ek或k层的逸出功Wk。

即有eV k=1/2mv2〉-Ek=Wk,故存在阴极电子击出靶材原子k电子所需要的临界激发电压Vk。

3、X射线与物质有哪些互相作用?答;X射线的散射:相干散射,非相干散射X射线的吸收:二次特征辐射(当入射X射线的能量足够大时,会产生二次荧光辐射);光电效应:这种以光子激发原子所产生的激发和辐射过程;俄歇效应:当内层电子被击出成为光电子,高能级电子越迁进入低能级空位,同时产生能量激发高层点成为光电子。

4、线吸收系数μl和质量吸收系数μm的含义答:线吸收系数μl:在X射线的传播方向上,单位长度的X射线强度衰减程度[cm-1](强度为I的入射X射线在均匀物质内部通过时,强度的衰减率与在物质内通过的距离x成正步-dI/I=μdx,强度的衰减与物质内通过的距离x成正比)。

与物质种类、密度、波长有关。

质量吸收系数μm:他的物理意义是单位重量物质对X射线的衰减量,μ/P=μm[cm2/g]与物质密度和物质状态无关,而与物质原子序数Z和μm=kλ3Z3,X射线波长有关。

5、什么是吸收限?为什么存在吸收限?答:1)当入射光子能量hv刚好击出吸收体的k层电子,其对应的λk为击出电子所需要的入射光的最长波长,在光电效应产生的条件时,λk称为k系激发限,若讨论X射线的被物质吸收时,λk又称为吸收限。

当入射X射线,刚好λ=λk时,入射X射线被强烈的吸收。

当能量增加,即入射λ〉λk时,吸收程度小。

6、如何选择滤波片和阳极靶?为什么?答:质量吸收系数为μm ,吸收限为λk 的物质,可以强烈的吸收λ〈=λk 的入射X 射线,在X 射线衍射分析中,希望得到单色的入射X 射线,因此需要将k 系特征谱线滤掉一条。

由于K β谱线波长更短,能量更高,可以选择吸收限λk 刚好位于辐射源的K α,K β之间的金属薄片作为滤波片,这样就能滤掉K β,而保留K α,铝箔片如果太厚对K α也会有吸收。

在X 射线衍射实验,若产生荧光X 射线,对衍射分析不利。

针对试样的原子序数,可以调整靶材种类避免产生荧光辐射,若试样的K 系吸收限为λk ,应选择靶的K α波长稍稍大于λk ,,并尽量靠近λk ,这样可产生K 系荧光,而且吸收又最小,Z 靶〈=Z 试样+1第二章1、推到布拉格方程,说明干涉面及其指数HKL 的含义,衍射极限条件是什么?答:根据波动光学理论,要产生干涉,则必须由两束光线的光程差为波长为波长的整数倍,故有2dsin θ=n λ(n=1、2、3……)这是晶面间距为1/n 的实际存在或不存在的假象晶面的一级反射,将这个晶面叫干涉面。

其晶面指数称为干涉指数,一般用HKL 表示,H=nh ,K=nk ,L=nl ,干涉指数和晶面指数的明显差别是,干涉指数有公约数,λ〈2d'产生衍射的条件极限条件:晶面间距〉=半波长才能产生衍射角。

2、什么是劳埃法,周转晶体法,详细说明多晶(粉末)法的原理答:劳埃法:用连续谱(波长不变)照不动(入射角不变)的单晶体而产生衍射的方法。

周转晶体法:用单色X 射线照射旋转的单晶体产生衍射的方法(波长不变)。

多晶法:用单色的X 射线照射多晶体试样,利用晶粒的不同取向来改变入射角,以满足布拉格方程。

把单晶体研磨成粉末,就有足够多的(hkl )晶面,在2θ方向上产生衍射,衍射线形成单晶体旋转的衍射圆锥。

第三章1、证明*g ()hklhkl ⊥晶面, *1hkl hklg d = 证:设ABC 是正点阵(hkl )晶面组中距原点最近的平面/OA a h =,/OB b k =,/OC c l =//AB OB OA b k a h=-=-,****g ()(//)0hkl AB ha kb lc b k a h ∙=++∙-=, *g hkl AB ⊥,*g hkl AC ⊥,所以*g ()hklhkl ⊥晶面。

设0n 是(hkl )面法向单位矢量,即*hkl g 方向上单位矢量→即*0*hkl hkl g n g =→单位矢量0n ,hkl d 等于ABC 面在晶轴的截距向0n 投影得到****0***1hkl hkl hklhkl hkl ha kb lc g a a d OA n h h g g g ++====,得证。

2、由布拉格方程推导衍射矢量方程*0//hkl g s s λλ=-,s 为单位矢量,*0hkl g k k =-,**00hkl hkl s s g s s g λλ-=⇒-=, 由图知:*02sin /2sin hkl hkl hkl s s d g d θλλθλ-===⇒=,2sin 2sin /hkl hkl d d θλθλ=⇒=, 02sin s s θ=-,**00hkl hkls s g s s g λλ-=⇒-=, *00//hkl g s s k k λλ=-=-3、简要总结一个电子、原子、晶胞、单晶体、多晶体衍射强度思路——〉反射强度与引起散射的粒子两的平方成反比振动因子取决于2θ。

答: 1)一个电子将X 射线散射后,在距电子为R 处的强度为I e =I 0[e 2/(4πε0mc 2)][(1+(cos2θ)2)/2]。

2)一个原子:Ia <ZIe ,引入系数f 为原子散射因子,f=Au/Ae=(Iu/Ie)0.5,评价原子散射能力。

3)晶胞:F=A 0/Ae=∑fie iφ,A 0为一个单胞内所有原子散射的相干散射波振幅,Ae 为一个电子系的相干散射波振幅,F-以一个散射波振幅为单位所表征的晶胞散射波振幅,F hkl =fj (sinθ/λ)4)单晶体:Ic=Ie|F hkl |2|G|25)多晶体:4、点阵体心和旋点原子种类不同时,消光条件有什么变化?答:|F hkl |与晶胞内原子的种类、原子个数、原子位置有关。

1)体心:h+k+l=偶数时不消光,为奇数时消光2)面心:h 、k 、l 为同性数时,即h+k,k+l,h+l 为偶数时不消光。

不同原子、散射因子f 不同,从而结构因子不同,消光规律和发射强度都发生变化5、试述干涉函数的意义答:干涉函数|G|2表示衍射线自身的强度分度,在hkl 倒易点阵周围|G|2不等于0的区域成为选择反射区,选择反射区中心是严格满足布拉格方程的倒易点hkl ,反射球与选择反射区任何部位相交都能产生衍射。

6、说明选择反射区与实际晶体之间的联系答:在hkl倒易点周围|G|2不等于0的区域成为选择反射区。

选择反射区中心(倒易点上)是严格满注布拉格方程的倒易点hkl,反射球与选择反射区任何部位相交产生衍射。

倒易点阵是与正点阵相对应量纲为长度倒数的一个三维空间点阵,在倒易空间中,hkl 倒易点周围|G|2不等于0。

电子衍射斑点就是与晶体相对应的倒易点阵中某一截面上点阵排列的点。

第9章1、电子波有何特征?与可见光有何异同?电子显微镜的照明源是电子波,电子波的波长比可见光短十万倍,电子波的波长取决于电子运动的速度和质量λ=h/mv2、分析电磁透镜对电子波的聚焦原理,说明电磁透镜的结构对聚焦能力的影响答:电磁透镜是利用磁场来使电子波聚焦成像的,其焦距总是正的,焦距f=kU r/(IN)2,改变激磁电流,电磁透镜的焦距和放大倍数将发生相应变化,是一种变焦距倍率的会聚透镜。

3、电磁透镜的像差是怎么产生的,如何来消除和减少像差?答:像差分为两类,即几何像差和色差。

几何像差是因为透镜磁场的几何形状上的缺陷造成的。

几何像差主要是指球差和象散;色差是由于电子波的波长或能量发生一定幅度的改变而造成的。

球差是球面像差,是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律而造成的。

用小孔径角成像时,可使球差明显减小。

象散是由透镜磁场的非旋转对称而引起的,可以通过“消象散器”消除。

色差是由于入射电子波长(或能量)的非均一性造成的,可采取稳定加速电压的方法减小色差。

4、说明影响光学显微镜和电磁透镜分辨率的关键因素是什么?如何提高电磁透镜的分辨率?答:是衍射效应和球差,Δr0=0.61λ/(Nsinα),孔径角α越大,Δr0越小,分辨率越高,但关键是确定最佳的孔径半角α0,使得衍射效应Airy斑和球差散焦斑尺寸大小相等。

5、景深受什么因素的影响?焦长受什么因素影响?景深和焦长改变是什么因素影响的结果?假设电磁透镜没有像差,也没有Airy斑,即分辨率极高,此时它的景深和焦长如何。

答:景深是受孔径半角α影响;焦长主要受孔径半角的影响(在放大倍数和分辨率本领一定时)。

电磁透镜的景深大,焦长长时孔径半角小的结果。

Df=2Δr o/α,Dl=2Δr o M2/α此时,他的景深大,焦距长,M-为透镜放大倍数。

第八章1、透射电镜主要由哪几大系统构成?各系统之间关系如何?答:透射电镜主要由电子光学系统,电源与控制系统及真空系统构成。

电子显微镜工作时,整个电子通道都是必须置于真空系统之内的;电子光学系统是透射电镜的核心,包括照明系统,成像系统和观察系统;电源与控制系统对整个透射电镜提供能源,并控制操作过程。

相关文档
最新文档