历年(2016)高考真题分类汇编(共14套)含答案精品打包下载

合集下载

2016高考真题含答案

2016高考真题含答案

2016高考真题含答案题目:2016高考真题2016高考数学试题一、选择题1. 若函数f(x)经过点(2, 5),则f(x)可能是以下哪个函数?(A) f(x) = 2x + 1(B) f(x) = 3x - 1(C) f(x) = 2x - 1(D) f(x) = x^2 + 1答案:C2. 若a,b为正数,且(a+b)^2=81,下列结论中正确的是:(A) a^2 + b^2 = 81(B) a^2 + 2ab + b^2 = 9(C) a + b = √81(D) a - b = 3答案:B3. 若函数f(x)的图像关于点(1, 3)对称,则函数f(x)可能是以下哪个函数?(A) f(x) = 2x + 1(B) f(x) = x^2 - 1(C) f(x) = x^3 + 3x(D) f(x) = √x答案:B二、填空题4. 一个球从100m的高度自由落下,在每次撞地后弹起的高度是它下一次落下的高度的1/2,求第10次落地时共经过的距离。

答案:300m5. 某池塘有一种蚊蜂,蚊每10天滋生2000只,蜂每30天滋生200只,现已知某天时,池塘内共有6200只蚊蜂,该天距今多少天?答案:29天三、解答题6. 已知等比数列{an}的前三项分别为a₁=2,a₂=6,a₃=18,求公比r及第n项的表达式。

解答:由题意,可得 a₂/a₁ = a₃/a₂则 6/2 = 18/6得 r = 3又可得 a₃/a₂ = a₄/a₃则 18/6 = a₄/18得 a₄ = 54所以,公比r为3,第n项的表达式为:aₙ = 2 * 3^(n-1)四、解答题7. 已知在一个三角形ABC中,∠B = 120°,AC = 3,AB = 2√3,则BC的长度为多少?解答:由三角形ABC,我们可以通过余弦定理求得BC的长度。

设BC = x根据余弦定理:x^2 = 3^2 + (2√3)^2 - 2 * 3 * 2√3 * cos(120°)x^2 = 9 + 12 - 12√3 * (-1/2)x^2 = 21x = √21所以,BC的长度为√21。

2016年高考试题及答案word版

2016年高考试题及答案word版

2016年高考试题及答案word版一、语文试题1. 下列词语中,没有错别字的一项是()A. 明查暗访B. 黄梁美梦C. 再接再励D. 墨守成规答案:D2. 请将下列句子翻译成现代汉语:“学而不思则罔,思而不学则殆。

”答案:学习而不思考就会感到迷茫,思考而不学习就会陷入危险。

二、数学试题1. 若函数f(x) = 2x^2 - 3x + 1,求f(1)的值。

答案:f(1) = 2(1)^2 - 3(1) + 1 = 02. 解方程:x^2 - 5x + 6 = 0。

答案:x = 2 或 x = 3三、英语试题1. The word "unique" means()A. commonB. strangeC. usualD. one of a kind答案:D2. Fill in the blank with the correct preposition:She is very _______ her appearance.答案:conscious四、物理试题1. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,求第3秒末的速度。

答案:v = at = 2m/s² × 3s = 6m/s2. 一个质量为1kg的物体在水平面上,受到一个大小为10N的水平拉力,求物体的加速度。

答案:a = F/m = 10N / 1kg = 10m/s²五、化学试题1. 请写出水的化学式。

答案:H₂O2. 铁在氧气中燃烧生成的化合物是什么?答案:Fe₃O₄以上为2016年高考部分科目的试题及答案,均为word版排版格式。

2016年高考真题精校版

2016年高考真题精校版

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科综合能力测试(化学)注意事项:1•本试卷分第I卷(选择题)和第n卷(非选择题)两部分。

2•答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3•全部答案在答题卡上完成,答在本试题上无效。

4•考试结束后,将本试题和答题卡一并交回。

第I卷(选择题共126 分)本卷共21小题,每小题6分,共126分。

可能用到的相对原子质量:、选择题:本大题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

7•化学在生活中有着广泛的应用,下列对应关系错误的是8. 下列说法错误的是A. 乙烷室温下能与浓盐酸发生取代反应B. 乙烯可以用作生产食品包装材料的原料C. 乙醇室温下在水中的溶解度大于溴乙烷D. 乙酸在甲酸甲酯互为同分异构体9. 下列有关实验的操作正确的是10.已知异丙苯的结构简式如下,下列说法错误的是A. 异丙苯的分子式为 C 9H 12B. 异丙苯的沸点比苯高C. 异丙苯中碳原子可能都处于同一平面D. 异丙苯的和苯为同系物11. 锌-空气燃料电池可用作电动车动力电源,电池的电解质溶液为 +2H 2O===2Zn(OH) 44 一。

下列说法正确的是 A. 充电时,电解质溶液中 K +向阳极移动B. 充电时,电解质溶液中 c(OH -)逐渐减小- - 2Zn+4OH -2e ===Zn(OH) 4_D.放电时,电路中通过 2mol 电子,消耗氧气 22.4L (标准状况) 12. 四种短周期主族元素 W 、X 、Y 、Z 的原子序数依次增大,W 、X 的简单离子具有相同电子层结构, X 的原子半径是短周期主族元素原子中最大的, W 与Y 同族,Z 与X 形成的离子化合物的水溶液呈中性。

下列说法正确的是A. 简单离子半径: W< X<ZB. W 与X 形成的化合物溶于水后溶液呈碱性C. 气态氢化物的热稳定性: W<YD. 最高价氧化物的水化物的酸性:Y>Z13. 下列有关电解质溶液的说法正确的是A.向0.1mol L’CH s COOH 溶液中加入少量水,溶液中D.向AgCl 、AgBr 的饱和溶液中加入少量 AgNO 3,溶液中°(° 不变c(Br~)KOH 溶液,反应为 2Zn+O 2+4OHC.放电时,负极反应为:迪减小c(CH 3COOH)B.将CH s COONa 溶液从20C 升温至30C ,溶液中c(CH 3COO Jc(CH 3COOH) c(OH ■)增大C.向盐酸中加入氨水至中性,溶液中c(NH 4) c(Cl 1第II卷(非选择题共174 分)二、非选择题:包括必考题和选考题两部分。

2016年高考语文真题分类汇编专题01语言运用之语音、字形、标点、修辞及综合运用等Word版含解析综

2016年高考语文真题分类汇编专题01语言运用之语音、字形、标点、修辞及综合运用等Word版含解析综

专题1:语言运用之语音.字形、标点.修辞及综合运用等一、【2016年高考山东卷】 (每小题3分,共15分)黟县的西递和宏村,拥有蜚声海内外的徽派建筑群。

两村背依青山,清流抱村穿户。

数 百幢明清时期的民居静静伫.立。

高大奇伟的马头墙有骄傲睥睨的表情、跌宕飞扬的韵质、① _错误!未找到引用源。

灰白的屋壁被时间涂画出斑驳的线条。

李白的“黟县小桃源,烟霞百 里间。

地多灵草木,人尚古衣冠”,道出了这里山水风物的(优美/幽美)、民风人情的淳.厚从容。

要真正(领略/领悟)徽派建筑之美,该是在西递村。

②_ 错误!未找到引用源。

在都市 的暄哗之外,西递向我们呈现了一种宁静质朴卜..的民间生活。

从远处望去,西递是一片线条简 洁的黑瓦铺成的屋顶和高大的白墙,黑白相间,③错落有致。

迈入老屋你会发现,这些老屋内部的(繁杂/繁复)精致与外部的简洁纯粹..形成鲜明的对照,徽派建筑中著名的三雕一一④ _____________ 木雕、砖雕、石雕在这里体现得淋漓尽至..。

1. 文中加点的字的注音和加点词语的字形,都正确的一项是2.依次选用文中括号里的词语,最恰当的一项是A . 优美 领略 繁杂.幽美 领略 繁复 C . 幽美 领悟 繁杂卜优美 领悟繁复3.文中画线处的标点,使用错误的一项是A.① B . ② C .③D .④【答案】 1. B 2.. B 3. A1.试题分析:A 血暄哗”应为“喧哗,形容声音大而朶乱.C "■伫(血应为"伫(如)”,伫立: 长时间地站立,没有动作;也泛指站立.漓尽至”应为“牀漓尽致”,形容文章或说话表达得非 常充分、透彻,或非常痛快口【考点定位】识记现代汉语普通话常用字的字音,识记并正确书写现代常用规范汉字。

能力 层级为识记A 。

【名师点睛】本题考查识记现代汉语普通话常用字的字音字形并正确书写现代常用规范汉字的能力,延续了 2015年高考题型,让考生在具体的语言环境中完成字音及字形的辨析。

16年高考数学真题高考题(8套)

16年高考数学真题高考题(8套)

2016年高考题全国Ⅰ卷文数题干+解析1.(2016·全国Ⅰ卷,文1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B等于( B )(A){1,3} (B){3,5} (C){5,7} (D){1,7}解析:集合A与集合B公共元素有3,5,故A∩B={3,5},选B.2.(2016·全国Ⅰ卷,文2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于( A )(A)-3 (B)-2 (C)2 (D)3解析:(1+2i)(a+i)=a-2+(1+2a)i,由已知,得a-2=1+2a,解得a=-3,选A.3.(2016·全国Ⅰ卷,文3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C ) (A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

解析:将4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为错误!未找到引用源。

,选C.4.(2016·全国Ⅰ卷,文4)△ABC的内角A,B,C的对边分别为a,b,c.已知a=错误!未找到引用源。

,c=2,cos A=错误!未找到引用源。

,则b等于( D )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)2 (D)3解析:由余弦定理得5=b2+4-2×b×2×错误!未找到引用源。

,解得b=3(b=-错误!未找到引用源。

舍去),选D.5.(2016·全国Ⅰ卷,文5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!未找到引用源。

,则该椭圆的离心率为( B )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(等式与不等式综合)汇编解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3} C .{3,1,0}-- D .{1,0,2}-2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 .3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}24.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .64.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .32参考答案解不等式1.(2024∙全国新Ⅰ卷∙高考真题)已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ( ) A .{1,0}- B .{2,3}C .{3,1,0}--D .{1,0,2}-【答案】A【详细分析】化简集合A ,由交集的概念即可得解.【答案详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-. 故选:A.2.(2024∙上海∙高考真题)已知,x ∈R 则不等式2230x x --<的解集为 . 【答案】{}|13x x -<<【详细分析】求出方程2230x x --=的解后可求不等式的解集. 【答案详解】方程2230x x --=的解为=1x -或3x =, 故不等式2230x x --<的解集为{}|13x x -<<, 故答案为:{}|13x x -<<.3.(2023∙全国新Ⅰ卷∙高考真题)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A .{}2,1,0,1--B .{}0,1,2C .{}2-D .{}2【答案】C【详细分析】方法一:由一元二次不等式的解法求出集合N ,即可根据交集的运算解出. 方法二:将集合M 中的元素逐个代入不等式验证,即可解出.【答案详解】方法一:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-. 故选:C .方法二:因为{}2,1,0,1,2M =--,将2,1,0,1,2--代入不等式260x x --≥,只有2-使不等式成立,所以M N ⋂={}2-.故选:C .4.(2020∙全国∙高考真题)已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ( ) A .{4,1}- B .{1,5} C .{3,5} D .{1,3}【答案】D【详细分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果. 【答案详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B = , 故选:D.【名师点评】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.基本不等式1.(2024∙北京∙高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详细分析】根据指数函数和对数函数的单调性结合基本不等式详细分析判断AB ;举例判断CD 即可. 【答案详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB :可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.2.(2021∙全国乙卷∙高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+ D .4ln ln y x x=+【答案】C【详细分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意. 故选:C .【名师点评】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.(2021∙全国新Ⅰ卷∙高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【详细分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【答案详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C . 【名师点评】4.(2020∙全国∙高考真题)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B【详细分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =等式,即可求得答案. 【答案详解】 2222:1(0,0)x y C a b a b -=>> ∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E 两点 不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B.【名师点评】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了详细分析能力和计算能力,属于中档题.。

2016年全国高考语文试题(含答案)

2016年全国高考语文试题(含答案)

2016年普通高等学校招生全国统一考试(天津卷)语文本试卷分为第I卷(选择题)和第II卷两部分,共150分,考试用时150分钟。

第I卷1至6页,第II卷7至11页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第I卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应上题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

一、(12分)1.下列词语中加点字的字音和字形,全都正确的一组是A. 惬.(qiè)意撕.(sī)杀狩.(shóu) 猎金榜题.(tí) 名B. 折.(zhé)本角.(jué) 逐按.(ān) 装舐.(shì) 犊情深C. 筵.(yán) 席偌.(ruó) 大着.(zháo) 陆前倨.(jù) 后恭D. 岿.(kuī) 然毗.(pí) 邻装帧.(zhēn) 噤.(jìn) 若寒蝉2.依次填入下面语段横线处的词语,最恰当的一组是何必执意认出每一个字?墨迹浓淡枯腴,运笔,或者如山,或者细若游丝,抚摸得到搏动于撇捺点画之间的内心,跌宕错落,奔走踊跃,蓬勃之势潮水般地过纸面,这样就是懂得草书了。

A. 抑扬顿挫凝重波动淌B. 顿挫缓急凝重波澜涌C. 抑扬顿挫厚重波澜淌 C. 顿挫缓急厚重波动涌语病的一句是3. 下列各句没有..A. 日前,来自京津翼的近千名鸟类摄影爱好者相聚在北大港湿地,在与可爱的飞翔精灵亲密接触并拍摄了大量照片的同时,还无形中上了一堂爱鸟护鸟知识课。

B. “双创特区”以围绕聚集青年大学生、高校和科研院所科技人才、海外人才、企事业人员四类人才为重点,创新创业。

2016高考语文真题与答案

2016高考语文真题与答案

上的一些列成就,特别是他运用机械化思想来考察数学,发现了数学的不同侧面,并建立了新的模式,这全面得益于他的独辟蹊径。

对我国的数学基础教育,吴文俊也颇有心得。

我国中学生多次在国际奥数竞赛中获奖,被当作我国数学教育成功的证明,但吴文俊更赞同丘成桐的观点:“奥数应该是一种建立在兴趣之上的研究性、高层次学习,中国的奥数学习过分关注海量题目,直接与考试、竞赛挂钩,对系统学数学不利。

作为基础学科,应着重引导学习的兴趣,不应当过分追求功利。

”吴文俊同样清醒认识到:“竞赛获奖固然可贵,但也不能看得过重,因为它不能代表学生对数学的深度理解,也不能有效地训练数学思维。

”他认为,数学教育更重要的是培养数学的思维方式。

有人曾揶揄数学家迂腐,吴文俊不但不迂腐,而且兴趣广泛,内心充满童趣,他说:“我是个想怎样就怎样的人,想玩就玩,想工作了就会安安静静地工作,从不多想。

”他喜欢看电影、读历史小说,也喜欢看围棋比赛。

老伴说他“贪玩”,他却说:“读历史书籍、看历史影片,帮助了我的学术研究;看围棋比赛,更培养了我的全局观念和战略眼光。

”吴文俊37岁时就获得了国家自然科学一等奖,四十多年后,他再次获得国家最高科技奖。

如此长的学术生命,在数学界是非常罕见的。

当记者提出疑问时,吴文俊反问道:“我为什么不能保持这么长的学术生命?”在他看来,学术生命是能够终生保持的,很多人做不到,那是他们自己的问题,应该自我反省。

他特别强调研究数学要下扎实的工夫。

他说:“外国许多数学家,尽管有的我非常佩服,可是我并不认同他们靠所谓巧思妙想研究数学的办法。

应该根据客观实际具体分析,一切以事实为主。

这是我主要的想法。

”(摘编自柯琳娟《吴文俊传》)相关链接①1974年,吴文俊转向中国数学史研究,从中得到启发,开创了具有中国传统数学特点的数学机械化之路。

他提出的“吴方法”,继承和发扬了中国古代数学基于“计算”的传统,与通常基于逻辑的方法根本不同,首次试想了高效的几何定理自动证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年(2016)高考真题分类汇编(共14套)含答案精品打包下载.doc数学A单元集合与常用逻辑用语A1 集合及其运算1.A1,E2[2016·北京卷] 已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B=() A.{0,1} B.{0,1,2}C.{-1,0,1} D.{-1,0,1,2}1.C[解析] 集合A={x||x|<2}={x|-2<x<2},B={-1,0,1,2,3},所以A∩B={-1,0,1}.20.D5,A1[2016·北京卷] 设数列A:a1,a2,…,a N(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有a k<a n,则称n是数列A的一个“G时刻”.记G(A)是数列A的所有“G 时刻”组成的集合.(1)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;(2)证明:若数列A中存在a n使得a n>a1,则G(A)≠∅;(3)证明:若数列A满足a n-a n-1≤1(n=2,3,…,N),则G(A)的元素个数不小于a N -a1.20.解:(1)G(A)的元素为2和5.(2)证明:因为存在a n 使得a n >a 1,所以{i ∈N *|2≤i ≤N ,a i >a 1}≠∅. 记m =min{i ∈N *|2≤i ≤N ,a i >a 1},则m ≥2,且对任意正整数k <m ,a k ≤a 1<a m . 因此m ∈G (A ),从而G (A )≠∅.(3)证明:当a N ≤a 1时,结论成立. 以下设a N >a 1. 由(2)知G (A )≠∅.设G (A )={n 1,n 2,…,n p },n 1<n 2<…<n p . 记n 0=1,则an 0<an 1<an 2<…<an p .对i =0,1,…,p ,记G i ={k ∈N *|n i <k ≤N ,a k >an i }.如果G i ≠∅,取m i =min G i ,则对任何1≤k <m i ,a k ≤an i <am i . 从而m i ∈G (A )且m i =n i +1.又因为n p 是G (A )中的最大元素,所以G p =∅.从而对任意n p ≤k ≤N ,a k ≤an p ,特别地,a N ≤an p . 对i =0,1,…,p -1,an i +1-1≤an i .因此an i +1=an i +1-1+(an i +1-an i +1-1)≤an i +1. 所以a N -a 1≤an p -a 1=i =1p (an i -an i -1)≤p.因此G(A)的元素个数p 不小于a N -a 1. 1.A1[2016·江苏卷] 已知集合A ={-1,2,3,6},B ={x |-2<x <3},则A ∩B =________. 1.{-1,2} [解析] 由题意可得A ∩B ={-1,2}. 20.A1、D3、D5[2016·江苏卷] 记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D .20.解:(1)由已知得a n =a 1·3n -1,n ∈N *.于是当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,所以30a 1=30,即a 1=1,故数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)证明:因为T ⊆{1,2,…,k },a n =3n -1>0,n ∈N *,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k .因此,S T <a k +1.(3)证明:下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集.令E =C ∩(∁U D ),F =D ∩(∁U C ),则E ≠∅,F ≠∅,E ∩F =∅. 于是S C =S E +S C ∩D ,S D =S F +S C ∩D ,进而由S C ≥S D ,得S E ≥S F . 设k 是E 中最大的数,l 为F 中最大的数,则k ≥1,l ≥1,k ≠l .由(2)知,S E <a k +1,于是3l -1=a l ≤S F ≤S E <a k +1=3k ,所以l -1<k ,即l ≤k . 又k ≠l ,故l ≤k -1,从而S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1,即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D . 1.A1,E3[2016·全国卷Ⅰ] 设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A .(-3,-32 )B .(-3,32)C .1,32D.32,3 1.D [解析] 集合A =(1,3),B =(32,+∞),所以A ∩B =(32,3).1.A1[2016·全国卷Ⅲ] 设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( )A .[2,3]B .(-∞,2]∪[3,+∞)C .[3,+∞)D .(0,2]∪[3,+∞)1.D [解析] ∵S ={x |x ≥3或x ≤2},∴S ∩T ={x |0<x ≤2或x ≥3}. 1.A1[2016·四川卷] 设集合A ={x |-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( )A .3B .4C .5D .61.C [解析] 由题可知,A ∩Z ={-2,-1,0,1,2},则A ∩Z 中元素的个数为5. 2.A1[2016·全国卷Ⅱ] 已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3} 2.C [解析] ∵B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z },∴B ={0,1},∴A ∪B ={0,1,2,3}.2.A1[2016·山东卷] 设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1)C .(-1,+∞)D .(0,+∞)2.C [解析] ∵A ={y |y >0},B ={x |-1<x <1},∴A ∪B =(-1,+∞). 1.A1[2016·天津卷] 已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =( )A .{1}B .{4}C .{1,3}D .{1,4}1.D [解析] A ={1,2,3,4},B ={1,4,7,10},∴A ∩B ={1,4}. 1.A1[2016·浙江卷] 已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q )=( )A .[2,3]B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)1.B [解析] 易知∁R Q ={x |-2<x <2},则P ∪(∁R Q )={x |-2<x ≤3},故选B. A2 命题及其关系、充分条件、必要条件`4.A2,F1[2016·北京卷] 设a ,b 是向量,则“|a|=|b|”是“|a +b|=|a -b|”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.D [解析] 若|a |=|b |成立,则以a ,b 为边组成的平行四边形为菱形,a +b ,a -b 表示的是该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为边组成的平行四边形为矩形,矩形的邻边不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故选D.7.A2,E5[2016·四川卷] 设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( ) A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件7.A [解析] 如图,(x -1)2+(y -1)2≤2①表示圆心为(1,1),半径为2的圆及其内部; ⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1②表示△ABC 及其内部. 实数x ,y 满足②,则必然满足①,反之不成立. 故p 是q 的必要不充分条件.6.G3,A2[2016·山东卷] 已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.A [解析] 当两个平面内的直线相交时,这两个平面有公共点,即两个平面相交;但当两个平面相交时,两个平面内的直线不一定有交点.5.D3、A2[2016·天津卷] 设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件5.C [解析] 设数列的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2(1+q )<0,即q <-1,故选C. 15.A2[2016·上海卷] 设a ∈R ,则“a >1”是“a 2>1”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件15.A [解析] 由a >1,得a 2>1;由a 2>1,得a >1或a <-1.所以“a >1”是“a 2>1”的充分非必要条件.A3 基本逻辑联结词及量词 4.A3[2016·浙江卷] 命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2 D .∃x ∈R ,∀n ∈N *,使得n <x 2 4.D [解析] 由全称命题的否定是特称命题,特称命题的否定是全称命题得,命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是“∃x ∈R ,∀n ∈N *,使得n <x 2”.A4 单元综合 3.[2016·衡阳一模] 设集合A ={}x |-1≤x <2,B ={}x |x <a ,若A ∩B ≠∅,则实数a 的取值范围是( )A .a <2B .a >-2C .a >-1D .-1<a ≤23.C [解析] 结合数轴可知,只要a >-1,就可使A ∩B ≠∅.10.[2016·贵州普通高中模拟] 已知双曲线x 2a 2-y 24=1(a >0)的离心率为e ,则“e >2”是“0<a <1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.B [解析] 由e =a 2+4a>2,得0<a <2,所以当0<a <1时,一定有e >2,反之不成立.故“e >2”是“0<a <1”的必要不充分条件.8.[2016·东莞模拟] 设p ,q 是两个命题,若綈(p ∨q )是真命题,则( ) A .p 是真命题且q 是假命题 B .p 是真命题且q 是真命题 C .p 是假命题且q 是真命题 D .p 是假命题且q 是假命题8.D [解析] 綈(p ∨q )是真命题⇔p ∨q 是假命题⇔p ,q 均为假命题.数 学 B 单元 函数与导数B1 函数及其表示5.B1[2016·江苏卷] 函数y =3-2x -x 2的定义域是________.5.[-3,1] [解析] 令3-2x -x 2≥0可得x 2+2x -3≤0,解得-3≤x ≤1,故所求函数的定义域为[-3,1].11.B1、B4[2016·江苏卷] 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R .若f (-52)=f (92),则f (5a )的值是________.11.-25 [解析] 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.B2 反函数5.B2[2016·上海卷] 已知点(3,9)在函数f (x )=1+a x 的图像上,则f (x )的反函数f -1(x )=________.5.log 2(x -1),x ∈(1,+∞) [解析] 将点(3,9)的坐标代入函数f (x )的解析式得a =2,所以f (x )=1+2x ,所以f -1(x )=log 2(x -1),x ∈(1,+∞).B3 函数的单调性与最值14.B3,B12[2016·北京卷] 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) [解析] 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.13.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) [解析] 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [解析] f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B4 函数的奇偶性与周期性 11.B1、B4[2016·江苏卷] 设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,25-x ,0≤x <1,其中a ∈R .若f (-52)=f (92),则f (5a )的值是________.11.-25 [解析] 因为f (x )的周期为2,所以f (-52)=f (-12)=-12+a ,f (92)=f(12)=110,即-12+a =110,所以a =35,故f (5a )=f (3)=f (-1)=-25.15.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 [解析] 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x-3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.14.B4[2016·四川卷] 已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f -52+f (1)=________.14.-2 [解析] 因为f (x )是周期为2的函数,所以f (x )=f (x +2). 因为f (x )是奇函数,所以f (x )=-f (-x ), 所以f (1)=f (-1),f (1)=-f (-1),即f (1)=0. 又f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12,f 12=412=2, 所以f ⎝⎛⎭⎫-52=-2,从而f ⎝⎛⎭⎫-52+f (1)=-2. 9.B4[2016·山东卷] 已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,fx +12=fx -12.则f (6)=( )A .-2B .-1C .0D .29.D [解析] ∵当x >12时,f (x +12)=f (x -12),∴f (x )的周期为1,则f (6)=f (1).又∵当-1≤x ≤1时,f (-x )=-f (x ),∴f (1)=-f (-1).又∵当x <0时,f (x )=x 3-1,∴f (-1)=(-1)3-1=-2,∴f (6)=-f (-1)=2. 13.B3、B4[2016·天津卷] 已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.13.(12,32) [解析] 由f (x )是偶函数,且f (x )在区间(-∞,0)上单调递增,得f (x )在区间(0,+∞)上单调递减.又f (2|a -1|)>f (-2),f (-2)=f (2),∴2|a -1|<2,即|a -1|<12,∴12<a <32.18.B3,B4[2016·上海卷] 设f (x ),g (x ),h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是增函数,则f (x ),g (x ),h (x )中至少有一个增函数;②若f (x )+g (x ),f (x )+h (x ),g (x )+h (x )均是以T 为周期的函数,则f (x ),g (x ),h (x )均是以T 为周期的函数.下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题18.D [解析] f (x )=[f (x )+g (x )]+[f (x )+h (x )]-[g (x )+h (x )]2.对于①,因为增函数减增函数不一定为增函数,所以f (x )不一定为增函数,同理g (x ),h (x )不一定为增函数,因此①为假命题.对于②,易得f (x )是以T 为周期的函数,同理可得g (x ),h (x )也是以T 为周期的函数,所以②为真命题.B5 二次函数B6 指数与指数函数5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0 D .ln x +ln y >05.C [解析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.19.B6、B9、B12[2016·江苏卷] 已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值;(2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.6.B6[2016·全国卷Ⅲ] 已知a =243,b =425,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b6.A [解析] b =425=245<243=a ,c =523>423=243=a ,故b <a <c .12.B6、B7[2016·浙江卷] 已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b=________.12.4 2 [解析] 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t +1=0,解得t =12,故b =a ,所以a b =a a ,b a =(a )a =a 12a ,则a =12a ,即a 2-4a =0,得a =4,b =2.B7 对数与对数函数5.E1,C3,B6,B7[2016·北京卷] 已知x ,y ∈R ,且x >y >0,则( )A.1x -1y>0 B .sin x -sin y >0 C.12x -12y <0 D .ln x +ln y >05.C [解析] 选项A 中,因为x >y >0,所以1x <1y ,即1x -1y <0,故结论不成立;选项B中,当x =5π6,y =π3时,sin x -sin y <0,故结论不成立;选项C 中,函数y =12x 是定义在R 上的减函数,因为x >y >0,所以12x <12y ,所以12x -12y <0;选项D 中,当x =e -1,y =e -2时,结论不成立.8.B7,B8,E1[2016·全国卷Ⅰ] 若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C [解析] 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为b c -1<a c -1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a c log b c =log c b log c a =log a b ,此时a b >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b ,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立. 21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1. 令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A .9.B7,E6[2016·四川卷] 设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1图像上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)9.A [解析] 不妨设P 1(x 1,y 1),P 2(x 2,y 2),其中0<x 1<1<x 2.由l 1,l 2分别是点P 1,P 2处的切线,且f ′(x )=⎩⎨⎧-1x,0<x <1,1x,x >1,得l 1的斜率k 1=-1x 1,l 2的斜率k 2=1x 2.又l 1与l 2垂直,且0<x 1<x 2,所以k 1·k 2=-1x 1·1x 2=-1⇒x 1·x 2=1,l 1:y =-1x 1(x -x 1)-ln x 1①,l 2:y =1x 2(x -x 2)+ln x 2②,则点A 的坐标为(0,1-ln x 1),点B 的坐标为(0,-1+ln x 2), 由此可得|AB |=2-ln x 1-ln x 2=2-ln(x 1·x 2)=2.联立①②两式可解得交点P 的横坐标x P =2-ln (x 1x 2)x 1+x 2=2x 1+x 2,所以S △P AB =12|AB |·|x P |=12×2×2x 1+x 2=2x 1+1x 1≤1,当且仅当x 1=1x 1,即x 1=1时,等号成立.而0<x 1<1,所以0<S △P AB <1,故选A.12.B6、B7[2016·浙江卷] 已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b=________.12.4 2 [解析] 设t =log a b ,则log b a =1t .∵a >b >1,∴0<t <1.由t +1t =52,化简得t 2-52t +1=0,解得t =12,故b =a ,所以a b =a a ,b a =(a )a =a 12a ,则a =12a ,即a 2-4a =0,得a =4,b =2.B8 幂函数与函数的图像 7.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-27.D [解析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x .令f (x )=2x 2-e x ,则f ′(x )=4x -e x ,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.8.B7,B8,E1[2016·全国卷Ⅰ] 若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba cC .a log b c <b log a cD .log a c <log b c8.C [解析] 根据幂函数性质,选项A 中的不等式不成立;选项B 中的不等式可化为b c -1<a c -1,此时-1<c -1<0,根据幂函数性质,该不等式不成立;选项C 中的不等式可以化为a b >log a c log b c =log c b log c a =log a b ,此时a b >1,0<log a b <1,故此不等式成立;选项D 中的不等式可以化为lg c lg a <lg c lg b ,进而1lg a >1lg b ,进而lg a <lg b ,即a <b ,故在已知条件下选项D 中的不等式不成立.12.B8[2016·全国卷Ⅱ] 已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则(x i +y i )=( )A .0B .mC .2mD .4m12.B [解析] 由f(-x)=2-f(x)得f(x)的图像关于点(0,1)对称,∵y =x +1x =1+1x的图像也关于点(0,1)对称,∴两函数图像的交点必关于点(0,1)对称,且对于每一组对称点(x i ,y i )和(x′i ,y′i )均满足x i +x′i =0,y i +y′i =2,∴=0+2·m2=m.B9 函数与方程19.B6、B9、B12[2016·江苏卷] 已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.15.B9[2016·山东卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.15.(3,+∞) [解析] 画出函数f (x )的图像如图所示,根据已知得m >4m -m 2,又m >0,解得m >3,故实数 m 的取值范围是(3,+∞).B10 函数模型及其应用 B11 导数及其运算21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a ,此时,当x ∈(0,12a )时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).B12 导数的应用14.B3,B12[2016·北京卷] 设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________.14.①2 ②(-∞,-1) [解析] 由(x 3-3x )′=3x 2-3=0,得x =±1,作出函数y =x 3-3x 和y =-2x 的图像,如图所示.①当a =0时,由图像可得f (x )的最大值为f (-1)=2.②由图像可知当a ≥-1时,函数f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >a 3-3a ,所以a <-1.17.G1、G7、B12[2016·江苏卷] 现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P - A 1B 1C 1D 1,下部的形状是正四棱柱ABCD - A 1B 1C 1D 1(如图1-5所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 为多少时,仓库的容积最大?图1-517.解:(1)由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P - A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3), 正四棱柱ABCD - A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21,所以2a 22+h 2=36,即a 2=2(36-h 2).于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值.因此,当PO 1=2 3 m 时,仓库的容积最大.19.B6、B9、B12[2016·江苏卷] x (a >0,b >0,a ≠1,b ≠1).(1)设a =2,b =12.①求方程f (x )=2的根;②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.19.解:(1)因为a =2,b =12,所以f (x )=2x +2-x .①方程f (x )=2,即2x+2-x =2,亦即(2x )2-2×2x +1=0, 所以(2x -1)2=0,于是2x =1,解得x =0.②由条件知f (2x )=22x +2-2x =(2x +2-x )2-2=[f (x )]2-2. 因为f (2x )≥mf (x )-6对于x ∈R 恒成立,且f (x )>0,所以m ≤[f (x )]2+4f (x )对于x ∈R 恒成立.而[f (x )]2+4f (x )=f (x )+4f (x )≥2f (x )·4f (x )=4,且[f (0)]2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2)因为函数g (x )=f (x )-2只有1个零点,而g (0)=f (0)-2=a 0+b 0-2=0, 所以0是函数g (x )的唯一零点.因为g ′(x )=a x ln a +b x ln b ,又由0<a <1,b >1知ln a <0,ln b >0,所以g ′(x )=0有唯一解x 0=log b a -ln aln b.令h (x )=g ′(x ),则h ′(x )=(a x ln a +b x ln b )′=a x (ln a )2+b x (ln b )2,从而对任意x ∈R ,h ′(x )>0,所以g ′(x )=h (x )是(-∞,+∞)上的单调增函数. 于是当x ∈(-∞,x 0)时,g ′(x )<g ′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x )>g ′(x 0)=0. 因而函数g (x )在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,于是g x 02<g (0)=0,又g (log a 2)=a log a 2+b log a 2-2>a log a 2-2=0,且函数g (x )在以x 02和log a 2为端点的闭区间上的图像不间断,所以在区间x 02,log a 2上存在g (x )的零点,记为x 1.因为0<a <1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g (x )的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g (x )的非0的零点,矛盾.因此,x 0=0.于是-ln a ln b=1,故ln a +ln b =0,所以ab =1.7.B8,B12[2016·全国卷Ⅰ] 函数y =2x 2-e |x |在[-2,2]的图像大致为( )图1-27.D [解析] 易知该函数为偶函数,只要考虑当x ≥0时的情况即可,此时y =2x 2-e x .令f (x )=2x 2-e x ,则f ′(x )=4x -e x ,则f ′(0)<0,f ′(1)>0,则f ′(x )在(0,1)上存在零点,即f (x )在(0,1)上存在极值,据此可知,只能为选项B ,D 中的图像.当x =2时,y =8-e 2<1,故选D.21.B12[2016·全国卷Ⅰ] 已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.21.解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). (i)设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.(ii)设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a 2(b -2)+a (b -1)2=a (b 2-32b )>0,故f (x )存在两个零点.(iii)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1.故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞) 时,f ′(x )>0.因此f (x )在(1,ln(-2a ))单调递减,在(ln(-2a ),+∞)单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2.由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2.设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ).所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0, 从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2. 15.B4、B12[2016·全国卷Ⅲ] 已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.15.y =-2x -1 [解析] 设x >0,则-x <0.∵x <0时,f (x )=ln(-x )+3x ,∴f (-x )=ln x-3x ,又∵f (-x )=f (x ),∴当x >0时,f (x )=ln x -3x ,∴f ′(x )=1x-3,即f ′(1)=-2,∴曲线y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),整理得y =-2x -1.21.B12、B14、B7[2016·全国卷Ⅲ] 设函数f (x )=αcos 2x +(α-1)(cos x +1),其中α>0,记|f (x )|的最大值为A .(1)求f ′(x ); (2)求A ;(3)证明:|f ′(x )|≤2A .21.解:(1)f ′(x )=-2αsin 2x -(α-1)sin x .(2)当α≥1时,|f (x )|=|αcos 2x +(α-1)(cos x +1)|≤α+2(α-1)=3α-2=f (0), 因此A =3α-2.当0<α<1时,将f (x )变形为f (x )=2αcos 2x +(α-1)cos x -1. 令g (t )=2αt 2+(α-1)t -1,则A 是|g (t )|在[-1,1]上的最大值,g (-1)=α,g (1)=3α-2,且当t =1-α4α时,g (t )取得极小值,极小值为g (1-α4α)=-(α-1)28α-1=-α2+6α+18α.令-1<1-α4α<1,解得α<-13(舍去)或α>15.(i)当0<α≤15时,g (t )在(-1,1)内无极值点,|g (-1)|=α,|g (1)|=2-3α,|g (-1)|<|g (1)|,所以A =2-3α.(ii)当15<α<1时,由g (-1)-g (1)=2(1-α)>0,知g (-1)>g (1)> g (1-α4α).又|g (1-α4α)|-|g (-1)|=(1-α)(1+7α)8α>0,所以A =|g (1-α4α)|=α2+6α+18α.综上,A =⎩⎨⎧2-3α,0<α≤15,α2+6α+18α,15<α<1,3α-2,α≥1.(3)证明:由(1)得|f ′(x )|=|-2αsin 2x -(α-1)sin x |≤2α+|α-1|.当0<α≤15时,|f ′(x )|≤1+α≤2-4α<2(2-3α)=2A .当15<α<1时,A =α8+18α+34≥1,所以|f ′(x )|≤1+α<2A . 当α≥1时,|f ′(x )|≤3α-1≤6α-4=2A ,所以|f ′(x )|≤2A . 21.B11,B12,E8[2016·四川卷] 设函数f (x )=ax 2-a -ln x ,其中a ∈R . (1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x -e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).21.解:(1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a,此时,当x ∈(0,12a )时,f ′(x )<0,f (x )单调递减;当x ∈(12a,+∞)时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=e x -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又s (1)=0,所以当x >1时,s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.当0<a <12时,12a>1.由(1)有f (12a )<f (1)=0,而g (12a)>0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x 2>0.因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立. 综上,a ∈[12,+∞).16.B12[2016·全国卷Ⅱ] 若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.16.1-ln 2 [解析] 曲线y =ln x +2的切线为y =1x 1·x +ln x 1+1(其中x 1为切点横坐标),曲线y =ln(x +1)的切线为y =1x 2+1·x +ln(x 2+1)-x 2x 2+1(其中x 2为切点横坐标).由题可知⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得⎩⎨⎧x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.21.B12[2016·全国卷Ⅱ] (1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x+x +2>0.(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.21.解:(1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x 2e x(x +2)2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0.(2)证明:g ′(x )=(x -2)e x +a (x +2)x 3=x +2x3[f (x )+a ].由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0,因此,存在唯一x a ∈(0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为 g (x a )=e x a -a (x a +1)x 2a =e x a +f (x a )(x a +1)x 2a =e x ax a +2, 于是h (a )=e x a x a +2.由e x x +2′=(x +1)e x (x +2)2>0(x >0),可知y =e xx +2(x >0)单调递增,所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24.因为y =e x x +2单调递增,对任意λ∈(12,e 24],存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ,所以h (a )的值域是(12,e 24].综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是(12,e 24].10.B12[2016·山东卷] 若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 310.A [解析] 由函数图像上两点处的切线互相垂直,可知函数在这两点处的导数之积为-1,经检验,选项A 符合题意.20.B12,B14[2016·山东卷] 已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .(1)讨论f (x )的单调性;(2)当a =1时,证明f (x )>f ′(x )+32对于任意的x ∈[1,2]成立.20.解:(1)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,若x ∈(0,1),则f ′(x )>0,f (x )单调递增,若x ∈(1,+∞),则f ′(x )<0,f (x )单调递减.。

相关文档
最新文档