厦门大学 大学物理B 第08章 变化的电磁场(1)

合集下载

大学物理变化的电磁场理论及习题

大学物理变化的电磁场理论及习题

(D)三者中 E和 H可以是任意方向的,但都必须
与 u垂直。
填空题1:一根直导线在磁感应强度为的均匀磁场 中以速度运动切割磁力线,导线中对应于非静电
力的场强(又称非静电场场强)vB .
Ek
F vB q
填空题2:载有恒定电流 I 的长直导线旁有一半圆环 导线cd,半圆环半径为b,环面与直导线垂直,且半 圆环两端点连线的延长线与直导线相交,如图所示。
a
b
R
R 2R
2R (rR)0I dr
R
2r
0IR(1ln2) 2
ab b点电势髙
计算题2:将等边三角形平面回路ACDA放在磁感应强度大小 为 B = B0t(式中B0为常量)的均匀磁场中,回路平面垂直于 磁场方向,如图所示。回路中CD段为滑动导线,设 t = 0 时, CD段从A端出发,以匀速 v 远离A端运动,且始终保持回路为 等边三角形。求回路ACDA中的感应电动势与时间 t 的关系。
动生电动势: 在稳恒磁场中运动着的导体内产生的感应 电动势.
感生电动势: 导体不动, 因磁场的变化产生的感应电动势.
动生电动势
感生电动势
恒定磁场中运动的导体
B B r
导体不动B , 磁B 场r发,t生变化
磁通量发生变化的原因
d dt
• 动生电动势
导线运动时,内部 自由电子受到向下洛
感应电流的效果总是反抗 引起感应电流I
a
d
楞次定律符合能量守恒和 转换定律.
• 法拉第电磁感应定律
当穿过回路所包围面积的磁通量发生变化时,回路中产生
的感应电动势的大小与穿过回路的磁通量对时间的变化率
成正比.
i


d

大物B课后题08-第八章 电磁感应 电磁场

大物B课后题08-第八章 电磁感应 电磁场

习题之阳早格格创做8-6 一根无限少曲导线有接变电流0sin i I t ω=,它中间有一与它共里的矩形线圈ABCD ,如图所示,少为l 的AB 战CD 二边与曲导背仄止,它们到曲导线的距离分别为a 战b ,试供矩形线圈所围里积的磁通量,以及线圈中的感触电动势. 解 修坐如图所示的坐标系,正在矩形仄里上与一矩形里元dS ldx =,载流少曲导线的磁场脱过该里元的磁通量为 通过矩形里积CDEF 的总磁通量为由法推第电磁感触定律有8-7 有一无限少曲螺线管,单位少度上线圈的匝数为n ,正在管的核心搁置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线仄止,设螺线管内电流变更率为dI dt ,球小线圈中感触的电动势.解 无限少曲螺线管里里的磁场为通过N 匝圆形小线圈的磁通量为由法推第电磁感触定律有8-8 部分积为S 的小线圈正在一单位少度线圈匝数为n ,通过电流为i 的少螺线管内,并与螺线管共轴,若0sin i i t ω=,供小线圈中感死电动势的表白式.解 通过小线圈的磁通量为由法推第电磁感触定律有8-9 如图所示,矩形线圈ABCD 搁正在16.010B T -=⨯的匀称磁场中,磁场目标与线圈仄里的法线目标之间的夹角为60α=︒,少为0.20m 的AB 边可安排滑动.若令AB 边以速率15.0v m s -=•背左疏通,试供线圈中感触电动势的大小及感触电流的目标.解 利用动死电动势公式感触电流的目标从A B →.8-10 如图所示,二段导体AB 战BC 的少度均为10cm ,它们正在B 处相接成角30︒;磁场目标笔曲于纸里背里,其大小为22.510B T -=⨯.若使导体正在匀称磁场中以速率11.5v m s -=•疏通,目标与AB 段仄止,试问AC 间的电势好是几? 哪一端的电势下?解 导体AB 段与疏通目标仄止,不切割磁场线,不电动势爆收.BC 段爆收的动死电动势为AC 间的电势好是C 端的电势下.8-11 少为l 的一金属棒ab ,火仄搁置正在匀称磁场B 中,如图所示,金属棒可绕O 面正在火仄里内以角速度ω转动,O 面离a 端的距离为l k .试供a,b 二端的电势好,并指出哪端电势下(设k>2)解 修坐如图所示的坐标系,正在Ob 棒上任一位子x 处与一微元dx ,该微元爆收的动死电动势为Ob 棒爆收的动死电动势为共理,Oa 棒爆收的动死电动势为金属棒a,b 二端的电电势好果k>2,所以a 端电势下.8-12 如图所示,真空中一载有稳恒电流I 的无限少曲导线旁有一半圆形导线回路,其半径为r ,回路仄里与少曲导线笔曲,且半圆形曲径cd 的延少线与少曲导线相接,导线与圆心O 之间距离为l ,无限少曲导线的电流目标笔曲纸里背内,当回路以速度v 笔曲纸里背中疏通时,供:(1)回路中感触电动势的大小;(2)半圆弧导线cd 中感触电动势的大小.解 (1) 由于无限少曲导线所爆收的磁场目标与半圆形导线天圆仄里仄止,果此当导线回路疏通时,通过它的磁通量不随时间改变,导线回路中感触电动势0ε=.(2)半圆形导线中的感触电动势与曲导线中的感触电动势大小相等,目标好异,所以可由曲导线估计感触电动势的大小采用x 轴如图8.7所示,正在x 处与线元dx,dx 中爆收感触电动势大小为其中02I B xμπ= 导线cd 及圆弧cd 爆收感触电动势的大小均为8-13 正在半径0.50R m =的圆柱体内有匀称磁场,其目标与圆柱体的轴线仄止,且211.010dB dt T s --=⨯•,圆柱体中无磁场,试供离启核心O 的距离分别为0.1,0.25,0.50,1.0m m m m 战各面的感死电场的场强.解 变更的磁场爆收感死电场线是以圆柱轴线为圆心的一系列共心圆,果此有 而22,L S B dB E dl E r dS r t dtππ∂•=-•=-∂⎰⎰⎰感感当r R <时, 22dB E r r dtππ=-感 所以0.1r m =时,415.010E V m --=⨯•感;0.25r m=时,.311.310E V m --=⨯•感当r R >时 22dB E r R dtππ=-感 所以0.50r m =时, 312.510E V m --=⨯•感; 1.0r m =时311.2510E V m --=⨯•感8-14 如图所示,磁感触强度为B 的匀称磁场充谦正在半径为R 的圆柱体内,有一少为l 的金属棒ab 搁正在该磁场中,如果B 以速率dB dt 变更,试证:由变更磁场合爆收并效率于棒二端的电动势等于12dB dt 说明 要领一 对接Oa,Ob,设念Oab 形成关合回路,由于Oa,Ob 沿半径目标,与通过该处的感死电场处笔曲,所以Oa,Ob 二段均无电动势,那样由法推第电磁感触定律供出的关合回路Oab 的总电动势便是棒ab 二端电动势.根据法推第电磁感触定律要领二 变更的磁场正在圆柱体内爆收的感死电场为棒ab 二端的电动势为8-15 如图所示,二根横截里半径为a 的仄止少曲导线,核心相距d ,它们载有大小相等、目标好异的电流,属于共一回路,设导线里里的磁通量不妨忽略不计,试说明那样一对于导线少为l 的一段的自感为0ln l d a L aμπ-=. 解 二根仄止少曲导线正在它们之间爆收的磁感触强度为 脱过二根导线间少为dx 的一段的磁通量为所以,一对于少为的一段导线的自感为8-16一匀称稀绕的环形螺线管,环的仄稳半径为R ,管的横截里积为S ,环的总匝数为N ,管内充谦磁导率为μ的磁介量.供此环形螺线管的自感系数L .解 当环形螺线管中通有电流I 时,管中的磁感触强度为 通过环形螺线管的磁链为则环形螺线管的自感系数为8-17由二薄圆筒形成的共轴电缆,内筒半径1R ,中筒半径为2R ,二筒间的介量1r μ=.设内圆筒战中圆筒中的电流目标好异,而电流强度I 相等,供少度为l 的一段共轴电缆所储磁能为几?解 有安培环路定理可供得共轴电缆正在空间分歧天区的磁感触强度为1r R <时, 10B =12R r R <<时, 022I B rμπ=2r R >时, 30B =正在少为L ,内径为r ,中径为r dr +的共轴薄圆筒的体积2dV rldr π=中磁场能量为所以,少度为l 的一段共轴电缆所储能为补充正在共时存留电场战磁场的空间天区中,某面P 的电场强度为E ,磁感触强度为B ,此空间天区介量的介电常数0εε≈,磁导率0μμ≈.供P 面处电场战磁场的总能量体稀度w . 解 电场能量稀度为磁场能量稀度为总能量稀度为8-19 一小圆线圈里积为21 4.0S cm =,由表面绝缘的细导线绕成,其匝数为150N =,把它搁正在另一半径220R cm =,2100N =匝的圆线圈核心,二线圈共轴共里.如果把大线圈正在小线圈中爆收的磁场瞅成是匀称的,试供那二个线圈之间的互感;如果大线圈导线中的电流每秒缩小50A ,试供小线圈中的感触电动势.解 当大圆形线圈通偶尔2I ,它正在小圆形线圈核心处的磁感触强度大小为若把大圆形线圈正在小圆形线圈中爆收的磁场瞅成是匀称的,则通过小圆形线圈的磁链为二个线圈之间的互感为如果大线圈导线中的电流每秒缩小50A ,则小线圈中的感触电动势为8-20 一螺线管少为30cm .由2500匝漆包导线匀称稀绕而成,其中铁芯的相对于磁导率100r μ=,当它的导线中通有的电流时,供螺线管核心处的磁场能量稀度.解 螺线管中的磁感触强度为螺线管中的磁场能量稀度为8-21 一根少曲导线载有电流I ,且I 匀称天分散正在导线的横截里上,试供正在少度为l 的一段导线里里的磁场能量. 解 有安培环路定理可得少曲导线里里的磁感触强度为 正在少度为l 的一段导线里里的磁场能量8-22一共轴线由很少的曲导线战套正在它表里的共轴圆筒形成,它们之间充谦了相对于磁导率为1r μ=的介量,假定导线的半径为1R ,圆筒的内中半径分别为2R 战3R ,电流I 由圆筒流出,由曲导线流回,并匀称天分散正在它们的横截里上,试供:(1)正在空间各个范畴内的磁能稀度表白式;(2)当12310, 4.0, 5.0,10R mm R mm R mm I A ====时,正在每米少度的共轴线中所储藏的磁场能量.解 (1)有安培环路定理可得正在空间各个范畴内的磁感触强度为1r R <时 01212Ir B R μπ= ;12R r R << 时022I B r μπ=23R r R <<时2203322322I R r B r R R μπ-=-;3r R >时 40B =相映天,空间各个范畴内的磁能稀度为1r R <时222012201128m I r B w R μμπ==;12R r R <<时20228m I w r μπ=; 23R r R <<时2222032222328m I R r w r R R μπ⎛⎫-= ⎪-⎝⎭;3r R >时0m w =.(2) 每米少度的共轴线中所储藏的磁场能量为8-23说明电容C 的仄止板电容器,极板间的位移电流强度d dUI C dt =,U 是电容器二极板间的电势好.说明 由于仄止板中D σ=,所以脱过极板位移电位移通量 仄止板电容器中的位移电流强度8-24 设圆形仄止板电容器的接变电场为()51720sin 10E t V m π-=•,电荷正在电容器极板上匀称分散,且边沿效力不妨忽略,试供:(1)电容器二极板间的位移电流稀度;(2)正在距离电容器极板核心连线为 1.0r cm =处,通过时间52.010t s -=⨯时的磁感触强度的大小.解 (1)电容器二极板间的位移电流稀度为(2)以电容器极板核心连线为圆心,以 1.0r cm =为半径干一圆周.由齐电流安培环路定律有所以通过时间时52.010t s -=⨯,磁感触强度的大小为8-25 试决定哪一个麦克斯韦圆程相称于或者包罗下列究竟:(1)电场线仅起初或者末止与电荷或者无贫近处;(2)位移电流;(3) 正在静电仄稳条件下,导体里里大概有所有电荷;(4)一变更的电场,肯定有一个磁场伴伴它;(5)关合里的磁通量末究为整;(6)一个变更的磁场,肯定有一个电场伴伴它;(7)磁感触线是无头无尾的;(8)通过一个关合里的洁电通量与关合里里里的总电荷成正比;(9)不存留磁单极子;(10)库仑定律;(11)静电场是守旧场.解 1Ni i s D ds q =•=∑⎰⎰相称于或者包罗究竟:(1),(3),(8),(10);L S B E dl dS t ∂•=-•∂⎰⎰⎰相称于或者包罗究竟:(6),(11); 0S B dS •=⎰⎰相称于或者包罗究竟:(5),(7),(9);1N D i i L d H dl I dt φ=•=+∑⎰相称于或者包罗究竟:(2),(4);。

大物b课后题08-第八章电磁感应电磁场

大物b课后题08-第八章电磁感应电磁场

习题8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。

解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅=通过矩形面积CDEF 的总磁通量为0000ln ln sin 222bm ai il I l b bldx t x a aμμμφωπππ===⎰由法拉第电磁感应定律有00ln cos 2m d I l bt dt aφμωεωπ=-=- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt,球小线圈中感应的电动势。

解 无限长直螺线管内部的磁场为0B nI μ=通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ==由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。

解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-9 如图所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。

若令AB 边以速率15.0v m s -=•向右运动,试求线圈中感应电动势的大小及感应电流的方向。

解 利用动生电动势公式0.20()50.6sin(60)0.30()2B Av B dl dl V πε=⨯•=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-10 如图所示,两段导体AB 和BC 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。

大学物理变化的电磁场讲义省公开课获奖课件市赛课比赛一等奖课件

大学物理变化的电磁场讲义省公开课获奖课件市赛课比赛一等奖课件

SI中:K=1
m
i
d m dt
式中旳负号是楞次定律旳数学表达
-------------------------------------------------------------------------------
若线圈密绕了N匝(N匝线圈串联) : 则有
m mj —磁通链
j
i
d m1 dt
②若穿过闭合回路中旳磁通量增大,即磁通量旳变 化率大于零,则电动势小于零,则电动势旳方向与 回路绕行方向相反。
-------------------------------------------------------------------------------
感应电流--假如闭合回路为纯电阻R回路时,则
Q 1 R
m2 m1
dm dt
dt
1 R
(m1
m2)
测Q 能够得到m这就是磁通计旳原理 →测量磁感应强度(又称高斯计)
设回路有N 匝线圈,每匝线圈旳面积均为S
m Nm NSB
当线圈中磁场由0→B时,不考虑Q旳正负,则
Q 1 NSB B QR
R
NS
-------------------------------------------------------------------------------
思 考:在无限长直载流导线旁有大小相同
旳四个矩形线圈,分别作如图所示旳运动。 判断各回路中是否有感应电流.
I
v
v
v
(a) (b) (c) (d )
-------------------------------------------------------------------------------

大学物理课件第九章变化的电磁场(第一讲)

大学物理课件第九章变化的电磁场(第一讲)

绕行方向
i
(c ) 0 , 减少
( d ) 0 , 减少
9
1)闭合回路由 N 匝密绕线圈组成
,

d dt
磁通匝数(磁链) N Φ
[psi:] [fai]
2)若闭合回路的电阻为 R ,感应电流为
I

R

1 dΦ R dt
t t 2 t1 时间内,流过回路某横截面的电荷
c
v
B
b
16
一般情况下:对于一段任意形状的导线在磁场中的平动 或者一段直导线在磁场中的转动情况,用定义求解较好。
v B d l
而对于闭合线圈或一段曲导线在磁场中绕定轴转动的情 况,用法拉第感应定律求解较好。

d dt d dt S B d S
5

电磁感应(electromagnetic induction)现象 当穿过闭合回路 所围面积的磁通 量发生变化时, 回路中会产生感 应电流的现象, 称为电磁感应现 象。产生的电流 称为感应电流, 相应的电动势称 为感应电动势。
6

电磁感应定律
1845年,德国物理学家纽曼在法拉第研究的基础上推导 出感应电动势的表达式: 当穿过闭合回路所围面积的磁通量发生变化时,回 路中会产生感应电动势,且感应电动势正比于磁通量对 时间变化率的负值。
棒的一端转动,求铜棒两端的感应电动势. 解 d (v B ) dl + + + + + + + P + + + +d l+ + + vBdl

大学物理第八章课后习题答案

大学物理第八章课后习题答案

大学物理第八章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大23分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).48 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.5分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl M E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有6tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM == 当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入t ΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少7分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R RNBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.8分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高9分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.10 解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律t ΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高. 解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以 V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d m F mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22== 根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令mRl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d vv Kv v 积分后将gh 210=v 代入,可得()()[]1212t t K e gh K g g K----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为td d π4B d ρm I =式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为t t t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得 td d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=tB ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率td d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t .在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <t B 时,电场线绕向与B 方向满足右螺旋关系;当0d d >t B 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , t B R t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有 22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为 12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L I ΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R I μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍. 8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===S N Rqc I n μμB r 相对磁导率1991102==I n μS N Rqc μr8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 2=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管。

大学物理第8章变化的电磁场试题及答案.docx

第8章变化的电磁场一、选择题1.若用条形磁铁竖直插入木质圆坏,则在坏中是否产生感应电流和感应电动势的判断](A)产生感应电动势,也产生感应电流(B)产生感应电动势,不产生感应电流(C)不产生感应电动势,也不产生感应电流(D)不产生感应电动势,产生感应电流T 8-1-1 图2.关于电磁感应,下列说法中正确的是[](A)变化着的电场所产生的磁场一定随吋间而变化(B)变化着的磁场所产生的电场一定随时间而变化(C)有电流就有磁场,没有电流就一定没有磁场(D)变化着的电场所产牛:的磁场不一定随时间而变化3.在有磁场变化着的空间内,如果没有导体存在,则该空间[](A)既无感应电场又无感应电流(B)既无感应电场又无感应电动势(C)有感应电场和感应电动势(D)有感应电场无感应电动势4.在有磁场变化着的空间里没有实体物质,则此空间屮没有[](A)电场(B)电力(C)感生电动势(D)感生电流5.两根相同的磁铁分别用相同的速度同时插进两个尺寸完全相同的木环和铜环内,在同一时刻,通过两环包闱面积的磁通量[](A)相同(B)不相同,铜环的磁通量大于木环的磁通量(C)不相同,木环的磁通量大于铜环的磁通量(D)因为木环内无磁通量,不好进行比佼_6.半径为G的圆线圈置于磁感应强度为一B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为几当把线圈转动使其法向与〃的夹角曰=6(?时,线圈中通过的电量与线圈面积及转动的时间的关系是](A)与线圈面积成反比,与时间无关(B)与线圈面积成反比,与时间成正比(C)与线圈面积成正比,与时间无关(D)与线圈面积成正比,与时间成正比7.一个半径为r的圆线圈置于均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R・当线圈转过30。

时,以下各量中,与线圈转动快慢无关的量是[](A)线圈中的感应电动势(B)线圈中的感应电流(C)通过线圈的感应电量(D)线圈回路上的感应电场& 一闭合圆形线圈放在均匀磁场中,线圈平面的法线与磁场成30。

变化的电磁场-习题课ppt课件



d
l


H

d
l
L1
L2
(B)

H
d
l


H
d
l
L1
L2
(C)

H

d
l


H

d
l
L1
L2
(D) H d l 0
L1

H
L1
L2
10
7.一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行
的转轴 OO’ 转动,转轴与磁场方向垂直,转动角速度为ω,如图
则在过轴线的无限长直导线上,因场强处处与之垂直, 所以,电动势为零。而在无限远处 E 0, 故此回路中的
电动势就是给定的无限长直导线中的电动势。
该回路的磁通量: Φ 1 R2 B
2
dΦ (BS ) B 1 R2
dt t
t 2
与上述结果一致
15
[例3]电量Q均匀分布在半径为a、长为L(L >> a )的绝缘薄壁长
第17章 变化的电磁场电磁感应Fra bibliotek磁通量变化
磁场能量
感应电动势
1
Wm


B 2
HdV

dt
自感磁能
互感磁能
动生电动势
感生电动势
1 LI2 2

(v B) dl
L



L
E感
dl


s

B t
dS
自感电动势
互感电动势

第8章变化的电磁场

第八章 变化的电磁场一、选择题1、圆铜盘水平放置在均匀磁场中,B的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动.(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动.(C) 铜盘上有感应电动势产生,铜盘中心处电势最高. (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高. [ D ]难度:易2、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v向y 轴正方向移动,则伏特计指示的电压值为 (A) 0. (B)21vBl . (C) vBl . (D) 2vBl . [ A ]难度:中3、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的--t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势?[ A ]难度:中4、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向. (C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ B ]难度:中5、一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向. [ B ]难度:易6、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是t O (A)t O(C)t O (B)t O(D)C DOBI I(A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ B ]难度:易7、半径为a 的圆线圈置于磁感强度为B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B的夹角=60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关. [ A ]难度:中8、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等. [ D ]难度:易9、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ B ]难度:中10、在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一个方法?(A) 把线圈在自身平面内绕圆心旋转一个小角度. (B) 把线圈绕通过其直径的OO ′轴转一个小角度. (C) 把线圈向上平移.(D) 把线圈向右平移. [ C ]难度:易11、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使(A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. [ C ]难度:易b c db c dbcd vv I12、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近. (B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯. [ B ]难度:易13、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反.(A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻).(D) 把铁芯从螺线管中抽出. [ A ]难度:易14、一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为 (A) 2abB | cos t |. (B) abB | sin t |. (C)t abB cos 21. (D) abB | cos t |. [ D ]难度:中15、如图所示,一矩形线圈,放在一无限长载流直导线附近,开始时线圈与导线在同一平面内,矩形的长边与导线平行.若矩形线圈以图(1),(2),(3),(4)所示的四种方式运动,则在开始瞬间,以哪种方式运动的矩形线圈中的感应电流最大?(A) 以图(1)所示方式运动. (B) 以图(2)所示方式运动. (C) 以图(3)所示方式运动.(D) 以图(4)所示方式运动. [ C ]难度:中16、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)? (A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变. (C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度增大到原来的两倍. [ D ]难度:中O BabIvv(1) (2) (3) (4)v向OB17、在如图所示的装置中,把静止的条形磁铁从螺线管中按图示情况抽出时(A) 螺线管线圈中感生电流方向如A 点处箭头所示. (B) 螺线管右端感应呈S 极. (C) 线框EFGH 从图下方粗箭头方向看去将逆时针旋转.(D) 线框EFGH 从图下方粗箭头方向看去将顺时针旋转. [ C ]难度:易18、有甲乙两个带铁芯的线圈如图所示.欲使乙线圈中产生图示方向的感生电流i ,可以采用下列哪一种办法?(A) 接通甲线圈电源.(B) 接通甲线圈电源后,减少变阻器的阻值. (C) 接通甲线圈电源后,甲乙相互靠近.(D) 接通甲线圈电源后,抽出甲中铁芯. [ D ]难度:易19、在如图所示的装置中,当不太长的条形磁铁在闭合线圈内作振动时(忽略空气阻力),(A) 振幅会逐渐加大. (B) 振幅会逐渐减小.(C) 振幅不变. (D) 振幅先减小后增大. [ B ]难度:易20、尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中(A) 感应电动势不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同,感应电流相同.(D) 感应电动势相同,感应电流不同. [ D ]难度:易21、如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针指向为电流正方向,且不计线圈的自感)?[ D ]难度:中22、如图所示,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO 转动(角速度与B 同方向),BC 的长度为棒长的31,则(A) A 点比B 点电势高. (B) A 点与B 点电势相等. (B)A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.[ A ] 难度:易0 tI0 tItI 0tI(A)(B)(C)(D)OO ′ B BAC23、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为 (A) Blv . (B) Blv sin .(C) Blv cos. (D) 0.[ D ]难度:易24、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动.(C) 向左移动. (D) 向右移动. [ D ]难度:易25、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B . (B) =0,U a – U c =221l B . (C)=2l B ,U a – U c =221l B .(D)=2l B ,U a – U c =221l B .[ B ]难度:中lba vcabdNMBBabcl26、一根长度为L 的铜棒,在均匀磁场 B中以匀角速度绕通过其一端的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2t B L . (B)t B L cos 212. (C)B L 221. (D) B L 2 . [ C ]难度:中27、自感为 0.25 H 的线圈中,当电流在(1/16) s 内由2 A 均匀减小到零时,线圈中自感电动势的大小为:(A) 7.8 ×10-3 V . (B) 3.1 ×10-2 V .(C) 8.0 V . (D) 12.0 V . [ C ]难度:易28、两个相距不太远的平面圆线圈,怎样可使其互感系数近似为零?设其中一线圈的轴线恰通过另一线圈的圆心. (A) 两线圈的轴线互相平行放置. (B) 两线圈并联.(C) 两线圈的轴线互相垂直放置. (D) 两线圈串联. [ C ]难度:易29、两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.BL O b(B) 两线圈平面都垂直于两圆心连线. (C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反. [ C ]难度:易30、对于单匝线圈取自感系数的定义式为L =/I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L (A) 变大,与电流成反比关系. (B) 变小. (C) 不变.(D) 变大,但与电流不成反比关系. [ C ]难度:易31、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 (A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21. (C) 都大于L 21. (D) 都小于L 21.[ D ]难度:中32、如图所示的电路中,A 、B 是两个完全相同的小灯泡,其内阻r >>R ,L 是一个自感系数相当大的线圈,其电阻与R 相等.当开关K 接通和断开时,关于灯泡A 和B 的情况下面哪一种说法正确?(A) K 接通时,I A >I B . (B) K 接通时,I A =I B .(C) K 断开时,两灯同时熄灭.(D) K 断开时,I A =I B . [ A ]难度:中33、有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且tit i d d d d 21 ,并设由i 2变化在线圈1中产生的互感电动势为12,由i 1变化在线圈2中产生的互感电动势为21,判断下述哪个论断正确. (A) M 12 = M 21,21 =12. (B) M 12≠M 21,21 ≠12.(C) M 12 = M 21,21 >12. (D) M 12 = M 21,21 <12.[ C ]难度:中34、在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b ,a 和b 相对位置固定.若线圈b 中电流为零(断路),则线圈b 与a 间的互感系数:(A) 一定为零. (B)一定不为零.(C) 可为零也可不为零, 与线圈b 中电流无关. (D) 是不可能确定的. [ C ]难度:易ABI AI B r rL, .R R K35、在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个?[ D ] 难度:中36、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21表示,线圈2的电流所产生的通过线圈1的磁通用12表示,则21和12的大小关系为:(A)21 =212. (B)21 >12.(C)21 =12.(D)21 =2112.[ C ]难度:中37、如图,一导体棒ab 在均匀磁场中沿金属导轨向右作匀速运动,磁场方向垂直导轨所在平面.若导轨电阻忽略不计,并设铁芯磁导率为常数,则达到稳定后在电容器的M 极板上0 I 0 0(A)(B)(C)(D)(b)(a)12S2 SI I铁芯M NabBv(A) 带有一定量的正电荷. (B) 带有一定量的负电荷.(C) 带有越来越多的正电荷. (D) 带有越来越多的负电荷. [ B ] 难度:中38、在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和 bb ′如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A) M 1 = M 2 ≠0. (B) M 1 = M 2 = 0.(C) M 1 ≠M 2,M 2 = 0. (D) M 1 ≠M 2,M 2 ≠0. [ D ]难度:中39、在一中空圆柱面上绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和bb ′如图(1)绕制及联结时,ab间自感系数为L1;如图(2)彼此重叠绕制及联结时,ab 间自感系数为L 2.则 (A) L 1 = L 2 =0.(B) L 1 = L 2 ≠ 0.(C) L 1 = 0,L 2 ≠ 0.(D) L 1 ≠ 0,L 2 = 0. [ D ]难度:中40、用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m(A) 只适用于无限长密绕螺线管.图(2)(2)(B) 只适用于单匝圆线圈. (C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ D ]难度:易41、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为1和2.设r 1∶r 2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为: (A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ C ]难度:中42、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为 (A)221LI . (B) 221LId π2])(2π2[2002r r r r d I r I I(C) ∞.(D)221LI 020ln 2r dI [ A ]难度:难43、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为II d2r 0(A)200)2(21a I (B) 200)2(21a I (C) 20)2(21Ia (D) 200)2(21a I [ B ]难度:中44、 两根很长的平行直导线,其间距离为a ,与电源组成闭合回路,如图.已知导线上的电流为I ,在保持I 不变的情况下,若将导线间的距离增大,则空间的 (A) 总磁能将增大. (B) 总磁能将减少. (C) 总磁能将保持不变. (D) 总磁能的变化不能确定. [ A ]难度:难45、如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H的环流与沿环路L 2的磁场强度H的环流两者,必有: (A)1d L l H 2d L l H.(B) 1d L l H 2d L l H.(C)1d L l H2d L l H.(D) 0d 1L l H.[ C ]难度:中46、在感应电场中电磁感应定律可写成t l E LK d d d,式中K E 为感应电场的电场强度.此式表明:(A) 闭合曲线L 上K E处处相等. (B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线.(D) 在感应电场中不能像对静电场那样引入电势的概念.[ D ]难度:中47、用导线围成的回路(两个以O点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向?[ B ]难度:难48、用导线围成如图所示的回路(以O点为心的圆,加一直径),放在轴线通过O点垂直于图面的圆柱形均匀磁场中,如磁场方向垂直图面向里,其大小随时间减小,则感应电流的流向为[ B ]难度:难(A)49、在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在AB 导线中产生. (B) 电动势只在AB 导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等.(D) AB 导线中的电动势小于AB 导线中的电动势. [ D ]难度:难50、如图所示.一电荷为q 的点电荷,以匀角速度作圆周运动,圆周的半径为R .设t = 0 时q 所在点的坐标为x 0 = R ,y 0 = 0 ,以i 、j分别表示x 轴和y 轴上的单位矢量,则圆心处O 点的位移电流密度为:(A)i t R qsin 42 (B) j t Rq cos 42(C) k R q 24 (D) )cos (sin 42j t i t R q[ D ]难度:难51、在一通有电流I 的无限长直导线所在平面内,有一半径为r 、电阻为R 的导线小环,环中心距直导线为a ,如图所示,且a >> r .当直导线的电流被切断后,沿着导线环流过的电荷约为(A) )11(220r a a R Ir(B) ar a R Ir ln 20 Ir a(C)aRIr 220 (D)rRIa 22[ C ]难度:难OA BB(i x)(j yR q O52. 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空r 的关系定性地如图所示.正确的图是[B]难度:中53. 在一个磁性很强的条形磁铁附近放一条可以自由弯曲的软导线,如图所示.当电流从上向下流经软导线时,软导线将 (A) 不动. (B) 被磁铁推至尽可能远. (C) 被磁铁吸引靠近它,但导线平行磁棒. (D) 缠绕在磁铁上,从上向下看,电流是顺时针方向流动的.(E) 缠绕在磁铁上,从上向下看,电流是逆时针方向流动的.[D]难度:易53.如图所示,一个矩形线圈与通有相同大小电流的平行直导线在同一平面,而且处在两导线的中央,则(A )两电流方向相同时,穿过线圈的磁通量为零 (B )两电流方向相反时,穿过线圈的磁通量为零N II Sa OBbr(A)OBbr(B) aOBbr(C) aOBbr(D) a(C)两电流同向和反向时,穿过线圈的磁通量大小相等(D)因两电流产生的磁场不均匀,因此不能判断穿过线圈的磁通量是否为零[ A ]难度:易54.恒定的匀强磁场中有一圆形的闭合导体线圈,线圈平面垂直于磁场方向,要使线圈中能产生感应电流,线圈在磁场中应做(A)线圈沿自身所在的平面做匀速运动(B)线圈沿自身所在的平面做匀加速运动(C)线圈绕任意一条直径转动(D)线圈沿磁场方向平动[ C ]难度:易55.在赤道平面上空沿东西方向水平放置一根直导线,如果让它保持水平位置自由下落,那么导线两端的电势差(A)为零(B)不为零(C)恒定不变(D)以上说法均不对[ B ]难度:易56.如图所示,闭合矩形铜框的两条边与一闭合铜环相切,环可沿矩形框的长边滑动,整个装置处于匀强磁场中,磁场方向垂直它们所在的平面向里,当环向右运动时,下列说法中正确的是(A)因铜环内磁通量不变,铜环中无电流(B)矩形铜框中有顺时针方向的电流(C)矩形铜框中有逆时针方向的电流(D)铜环中一定有电流[ D ]难度:中57.有一种高速磁悬浮列车的设计方案是在每节车箱底部安装强磁铁(磁场方向向下),并在两条铁轨之间沿途平放一系列线圈.下列说法中不正确的是 (A )车运动时,通过线圈的磁通量会发生变化 (B )车速度越快,通过线圈的磁通量变化越快 (C )列车运动时,线圈中会产生感应电流 (D )线圈中的感应电流的大小与列车速度无关[ D ]难度:中58.如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度的大小随时间变化。

大学物理复习——变化的电磁场

⼤学物理复习——变化的电磁场变化的电磁场电磁感应定律电磁感应现象:当穿过闭合回路的磁通量发⽣变化时,不管这种变化是由于什么原因引起的,回路中都有电流产⽣,这种现象称为电磁感应现象,回路中产⽣的电流称为感应电流法拉第电磁感应定律电磁感应定律定量表达式:导体回路中产⽣的感应电动势的⼤⼩,与穿过导体回路的磁通量对时间的变化率成正⽐\varepsilon_i=-\frac{dN\Phi_m}{dt}其中N为匝数据此,穿过导线截⾯的感应电量为:q=-\int_{t_1}^{t_2}\frac{1}{R}\frac{d\Phi_m}{dt}dt=\frac{1}{R}(\Phi_1-\Phi_2)楞次定律楞次定律:闭合回路中感应电流的⽅向总是使其所激发的磁场来阻⽌或者补偿引起感应电流的磁通量变化动⽣电动势和感⽣电动势动⽣电动势:动⽣电动势使由于导体或者导体回路在恒定磁场中运动⽽产⽣的电动势动⽣电动势公式:\varepsilon_i=\int_b^a(\vec v \times \vec B)\cdot d\vec l感⽣电动势和感⽣电场感⽣电动势由于磁场发⽣变化⽽激发的电动势麦克斯韦假设:变化的磁场在其周围空间会激发⼀种涡旋状的电场,称为涡旋电场或感⽣电场\oint_L \vec E_涡\cdot\vec l=-\int_s\frac{\partial\vec B}{\partial\vec t}\cdot d\vec S⾃感与互感⾃感现象回路⾃⾝电流、回路的形状、或回路周围的磁介质发⽣变化时,穿过该回路⾃⾝的磁通量随之变化,从⽽在回路中产⽣感应电动势的现象\psi=LI其中L为⾃感系数\psi=N\phi_m,单位为亨利,则⾃感电动势为:\varepsilon_L=-\frac{d(LI)}{dt}=-L\frac{dI}{dt}-I\frac{dL}{dt}若只有电流⼤⼩发⽣了改变,则\varepsilon_L=-L\frac{dI}{dt}L总是阻碍电流的变化互感现象因两个载流线圈中电流变化⽽在对⽅线圈中激起感应电动势的现象称为互感应现象\Psi_{21}=M_{21}I_1,\Psi_{12}=M_{12}I_2其中M为互感系数,据实验M_{21}=M_{12}\varepsilon_{12}=-\frac{d\Psi_{12}}{dt}=-M\frac{dI_2}{dt},\varepsilon_{21}=-\frac{d\Psi_{21}}{dt}=-M\frac{dI_1}{dt}⾃感线圈的串联等效电感为:L=L_1+L_2+2ML=L_1+L_2-2M为了反应两个回路磁场耦合的松紧程度,引⼊了耦合系数的概念M=k\sqrt{L_1L_2}其中k即为耦合系数在⼀般情况下,由于漏磁等现象,k<1磁场能量⾃感能量在⼀仅有电阻与电感的电路中,电流的随时间变化有如下公式i=\frac{\varepsilon}{R}(1-e^{-\frac{R}{L}t})在完成充电之后,电感拥有能量W=\frac{1}{2}LI^2互感能量两个相邻的线圈分别与电源相连,在通电过程中,两线圈的磁能为:W=\frac{1}{2}L_1I_1^2+\frac{1}{2}L_2I_2^2+MI_1I_2磁场的能量由螺线管特例W=\frac{1}{2}BHV可以推出W=\int_vwdV=\int_v\frac{1}{2}BHdV麦克斯韦电磁场理论电容器上极板在充放电过程中,造成极板上电荷累积随时间变化,单位时间内极板上电荷的增加或减少等于通⼊或流⼊极板的电流I=\frac{dQ}{dt}=\int_s\frac{\partial\vec D}{\partial t}\cdot d\vec S此即是位移电流,其电流密度为\vec j_d=\frac{\partial\vec D}{\partial t}全电流定律全电流定律:通过某⼀截⾯的全电流是通过这⼀截⾯的传导电流、运流电流和位移电流的代数和麦克斯韦⽅程\begin{cases}\oint_s\vec D\cdot d\vec S=\sum q&说明静电场是有源场\\\oint_L\vec E\cdot d\vec l=0&说明静电场是保守场、⽆旋场\\\oint_s \vec B\cdot d\vec S=0&稳恒磁场是⽆源场 \\\oint_L\vec H\cdot d\vec l=\sum I&稳恒磁场是⾮保守场\end{cases}⾃由空间的麦克斯韦⽅程\begin{cases}\oint_s\vec D\cdot d\vec S=0\\\oint_L\vec E \cdot d\vec l=-\int_s\frac{\partial\vec B}{\partial t}\cdot d\vec S\\\oint_s\vec B\cdot d \vec S=0\\\oint_L\vec H\cdot d\vec l=\int_s\frac{\partial\vec D}{\partial t}d\vec S\end{cases}介质的物质⽅程\vec D=\varepsilon\vec E\vec B=\mu E\vec j=\sigma\vec E其中\sigma为电导率电磁波据麦克斯韦理论:\oint_L\vec E \cdot d\vec l=-\int_s\frac{\partial\vec B}{\partial t}\cdot d\vec S,\oint_L\vec H\cdot d\vec l=\int_s\frac{\partial\vec D}{\partialt}d\vec S这样,电场与磁场可以互相激发,以波的形式在空间中传播电磁波的性质1. 电磁波是横波,电场强度,磁场强度,电磁波速度相互垂直,构成正交右旋,2. 电磁波是偏振波3. 电场强度与磁场强度同相位4. 同⼀点的电场强度与磁场强度满⾜\sqrt\varepsilon E=\sqrt\mu H5. 传播速度为v=\frac{1}{\sqrt{\varepsilon\mu}}近似光速电磁波的能量能量密度据w_e=\frac{1}{2}\varepsilon E^2,w_m=\frac{1}{2}\mu H^2得到电磁场的能量密度为w=\varepsilon E^2=\mu E^2能流密度单位时间内穿过垂直于传播⽅向的单位⾯积的辐射能量(s)\vec S=\vec E \times \vec H电磁波的辐射电磁振荡⼀个不计电阻的LC电路可以实现电磁振荡,且有频率\omega=\frac{1}{\sqrt{LC}}缺点(1)振荡频率低(2)电磁场仅局限于电容器与⾃感线圈之间Processing math: 0%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线内的产生的动 生电动势。
b ab Ek dl (v B) dl a a Ek v B dl Rd , 方向如图
b
解:







v








b















Ek

dl

; 2
a


R
O
b
作业:
习题8-3: 长为L的铜棒,以距端点r处为支点,以角速率 ω 绕通过支点且垂直于铜棒的轴转动。设磁感强度 为B的均匀磁场与轴平行,求棒两端的电势差。
Ek

dl

; 2
a


R
O
b
d (v B) dl
vBdl cos vBdl sin
ab (vBR sin )d
0

2vBR
方向:b→a
v
b ab Ek dl (v B) dl a a Ek v B dl Rd , 方向如图


I

b +
B
-e


v
Blx
dx i Bl dt
d
Fk - a
x
i Blv
电动势方向与约定方向一致!
示例 一根长为 L 的铜棒在均匀磁场中以角速度ω 在与磁场方向垂直的平面上作匀速转动。求棒的两 端之间的感应电动势大小。

c





b I
R
F

v
F
d



a
楞次定律与能量守恒定律一致。
有关回路方向、磁通量及电动势 的约定: 1)对任一回路取一绕行方向。
d i dt
流 I ,其一旁有一长为 L 的直导线 ab 绕一端 a 以角速 度作匀速转动,设a点到无限长直导线的垂直距离
为r,求ab转到与水平方向夹角为 的位置时,ab内
的动生电动势。 b 解: E dl ab a k b ( v B ) dl
a

I l
dl
结论:
当穿过闭合回路的磁通量 发生变化时,不管这种变化 是由于什么原因,回路中将 有电流产生。这一现象称为 电磁感应现象。
电磁感应现象中产生与感应电流相应的电动势称为 感应电动势。
2.法拉第电磁感应定律(纽曼 1845)
当穿过回路所包围面积的磁通量发生变化时, 回路中产生的感应电动势的大小与穿过回路的磁通 量对时间的变化率成正比。
习题8-4: 如图所示,一无限长直导线中通有电流 I 。在 其右侧置一与其共面的直角三角形线圈ABC 。线圈 以匀速 v 远离直导线,试求当 A 点距离导线为 d 时, 线圈中感应电动势大小及方向。
复习:
四类磁介质: 顺磁质、抗磁质、铁磁质、 完全抗磁体(超导体) 磁化强度与磁化电流: mi jS ' M en M V 有磁介质时的安培环路定理:
H dl I i
L i
铁磁质: 磁滞曲线 软磁材料、硬磁材料和矩磁材料
§8-1 电磁感应基本定律 §8-2 动生电动势 感生电动势
解: 设当I>0时,电流方向如图
设回路 L 方向如图, 建立坐标系如图
I
a l
B dS
S
d
dx
x
在任意坐标处取一面元 dS,
d i dt
B dS
S
I I 0 sin t
d a d
0 Il d a ln 2 d 0 I 0l d a ln sin t 2 d
1 2 N N 为磁通匝链数或全磁通。
式中的负号反映了感应电动势的方向,是楞 次定律的数学表示。
d i dt d 多匝回路: i dt
3.楞次定律(楞次 1834)
(感应电动势/电流方向判断法则)
闭合回路中的感应电流的方向,总是使得感
应电流所产生的通过回路的磁通量去补偿引起感 应电流的磁通量的变化。
整段导线 ab ab :
b
ab d (v B) dl
a a
b
b
Ek
dl
dl d :
d (v B) dl vBdl sin cos
(v , B) ( E , dl ) ( E v B) k k
习题8-2: 矩形回路与一无限长直导线共面,且有一边与 长直导线平行。导线中通有电流 i=I0cosωt,当回路 以速度 v 垂直地离开导线时,如图所示。求任意时 刻回路中的感应电动势。
感应电动势的两种基本形式:
动生电动势:磁场不变,导体运动
感生电动势:导体回路不动,磁场变化
从电源和场的角度来讲: 电磁感应对应的场是(非静电性)电场, ∵ 它可以(1)使静止电荷运动; (2)使电荷沿闭合路径运动。
d i dt
BdS
S
0 I ldx 2x
a I l
d
dx
x
0 I 0l d a ln cos t d 2
例 交流发电机:如图,一匝数为 N,面积为 S,电 阻为 R 的矩形线圈在匀强磁场中以角速度作匀速 转动,t=0 时线圈平面与磁场方向垂直。求 t 时刻 线圈中的感应电动势和感应电流。
感应电动势 i 的方向与绕行方向相反。
N
S
d 当 N 极移近线圈时: 0 dt d 由 i 知: 0 i dt
B 的方向与 n 的方向一致: 0
感应电动势 i 的方向与绕行方向相反。
n
N
感应电动势 i 的方向与绕行方向相同。
S
例 如图, 一长直载流导线通有交变电流旁有一矩形 线圈与之平行共面。求线圈中感应电动势。 已知: I I 0 sin t , ( I0 和 ω 是大于零的常数)
O



Bldl O 1 2 BL 2









动生电动势方向:aO
解:方法二









BS
B L 2 1 2 BL
v
B
a
闭合回路:
d (法拉第电磁感应定律) i d (v B) dl L L dt
示例 一矩形导体线框,宽为 l,与运动导体直棒构 成闭合回路。 如果导体棒以速度 v 作匀速直线运动, 求回路内的感应电动势。
解:方法一

b ab (v B) dl
0 Ildl
解: E dl ab a k b ( v B ) dl a d (v B) dl vBdl v l
b

I l
dl
b
r
a

0 I 0 I B 2x 2 (r l cos )
例 如图所示,一半径为R的半圆形导线在磁感应强 度为B的匀强磁场中沿垂直于其直径的方向以速度 v 作匀速运动, B 的方向垂直于导线所在平面。求导
解: N B dS
S
NBS cos t d i dt NBS sin t i NBS I sin t R R
N B dS cos t
S
t
t
I B
n
交变的电动势!
风力发电机
三峡发电机转子吊装
小型三相发电机
作业:
习题8-1: 真空中两个半径分别为 R和r的同轴圆形线圈相 距x,且x>>r。若大线圈通有电流I,而小线圈沿x轴 方向以速度v远离大线圈运动,试求:(1)当x=NR ( N 为正数)时小线圈回路中产生的感应电动势; (2)v>0时,小线圈回路内的感应电流方向。
1)当载流线圈 B 相对于
线圈 A 运动时,线圈回路 内有电流存在。
2)当载流线圈 B 相对于
线圈 A 静止时,如果改变 线圈 B 中的电流,则线圈
回路A中也会产生电流。
磁场变化产生感应电流!
II类:实验三
将闭合回路置于恒定磁场B中,当导体棒在导体轨道 上滑行时,回路内出现了电流。
Φ的变化 感应电动势 感应电流
b
d (v B) dl vBdl v l
r
a

0 I 0 I B 2x 2 (r l cos )
L I ldl 0 d ab 2 (r l cos ) 2 0 r l cos 0 I r L cos ( L cos r ln ) 2 2 cos r
研究的问题是: 动生电动势的非静电场? 感生电动势的非静电场?性质?
1. 动生电动势
1.1 动生电动势产生的微观机制 运动导体内的自 由电子受到洛伦兹 力的作用:
c I b +
相关文档
最新文档