平方差练习题 A3(通用版)
(完整版)平方差、完全平方公式专项练习题(精品)

平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
平方差公式练习题(打印版)

平方差公式练习题(打印版)# 平方差公式练习题(打印版)## 一、基础练习题1. 计算下列平方差:- \( a^2 - b^2 \)- \( (x + 2)^2 - (x - 2)^2 \)2. 利用平方差公式,简化以下表达式:- \( (3x + 1)^2 - (3x - 1)^2 \)- \( (2y + 3)^2 - (2y - 3)^2 \)3. 计算下列多项式的差,并用平方差公式简化:- \( (x + y)^2 - (x - y)^2 \)- \( (a + b)^2 - (a - b)^2 \)## 二、进阶练习题4. 若 \( x^2 - 4 = 0 \),求 \( x^4 - 16 \) 的值。
5. 已知 \( a^2 - b^2 = 20 \),求 \( (3a + 3b)^2 - (3a - 3b)^2 \)。
6. 利用平方差公式证明:- \( (x + y + z)^2 - (x - y - z)^2 = 4xy + 4xz + 4yz \)## 三、应用题7. 一个长方形的长是宽的两倍,若长和宽都增加2米,面积增加了40平方米。
求原长方形的长和宽。
8. 在一个正方形的四个角上各剪去一个边长为1米的正方形,求剩下的图形面积。
9. 一个数的平方减去另一个数的平方等于这个数的两倍,求这个数。
## 四、探索题10. 探索并证明:\( (a + b + c)^2 - (a - b + c)^2 = 4ab \)。
11. 给定 \( a^2 - b^2 = 25 \) 和 \( c^2 - d^2 = 36 \),求\( (a + b + c + d)^2 - (a - b + c - d)^2 \)。
12. 证明:对于任意实数 \( x \) 和 \( y \),都有 \( (x^2 +y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2 \)。
## 答案提示:- 对于基础练习题,可以直接应用平方差公式 \( (a + b)(a - b) =a^2 - b^2 \) 进行计算。
(完整版)平方差公式练习题精选(含答案)(可编辑修改word版)

(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算 (1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3 利用平方差公式计算(1)(1)(- 1 41x-y)(- x+y)4(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(1a+b)(b-1a)D.(a2-b)(b2+a)3 38.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1 个B.2 个C.3 个D.4 个9.若x2-y2=30,且x-y=-5,则x+y 的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)= .11.(-3x2+2y2)()=9x4-4y4.12.(a+b-1)(a-b+1)=()2-()2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.14.计算:(a+2)(a2+4)(a4+16)(a-2).( x- y )1 利用完全平方公式计算:完全平方公式(1)( 1 2 2x+ y)32 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2 利用完全平方公式计算:(1) 1 2 2 2(2)(1.2m-3n)22 3123 22(3)(- a+5b) (4)(- x- y)2 4 33 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2(4)(a+b-c)2(5)(x-y+z)(x+y+z)(6)(mn-1)2—(mn-1)(mn+1)4 先化简,再求值:(x+y)2 —— 4xy, 其中 x=12,y=9。
(完整版)实用版平方差、完全平方公式专项练习题(精品)

③( 3- x)( x+3) =x 2- 9;④(- x+y ) ·( x+y ) =-( x - y)( x+y ) =- x2- y 2.
A. 1 个
B.2 个
C.3 个
D.4 个
4.若 x2- y2=30 ,且 x - y= - 5,则 x+y 的值是( )
A.5 二、填空题
B.6
C.- 6
D .- 5
其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(
)
(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
较小的正方形的面积,差是 _____.
三、计算题
- 2-
9.利用平方差公式计算: 20 2 ×21 1 . 33
10.计算:( a+2)( a2+4)( a4+16)( a-2).
二、提高题
1.计算: ( 1)( 2+1)( 22+1)( 24+1) … (22n+1) +1 ( n 是正整数);
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
平方差公式练习题

平方差公式练习题平方差公式练习题数学是一门既有趣又富有挑战性的学科。
在学习数学的过程中,我们会遇到各种各样的公式和定理。
其中,平方差公式是一个非常重要且常用的公式。
它可以帮助我们简化复杂的数学运算,解决各种问题。
在本文中,我们将通过一些练习题来巩固和应用平方差公式。
练习题一:计算平方差1. 计算 $(a + b)^2 - (a - b)^2$ 的值。
解析:根据平方差公式,我们可以将上式展开为 $(a^2 + 2ab + b^2) - (a^2 - 2ab + b^2)$。
化简后,得到 $4ab$。
因此,$(a + b)^2 - (a - b)^2$ 的值为$4ab$。
2. 计算 $(x + 2y)^2 - (x - 2y)^2$ 的值。
解析:同样地,我们可以将上式展开为 $(x^2 + 4xy + 4y^2) - (x^2 - 4xy +4y^2)$。
化简后,得到 $8xy$。
因此,$(x + 2y)^2 - (x - 2y)^2$ 的值为 $8xy$。
练习题二:应用平方差公式1. 已知一个正方形的边长为 $a$,求其对角线的长度。
解析:我们可以将正方形的对角线分成两个相等的部分。
根据平方差公式,对角线的长度平方等于两个部分长度的平方和。
因此,对角线的长度的平方为$(a^2 + a^2) = 2a^2$。
取平方根后,得到对角线的长度为 $\sqrt{2}a$。
2. 一个长方形的长度为 $l$,宽度为 $w$,求其对角线的长度。
解析:同样地,我们可以将长方形的对角线分成两个相等的部分。
根据平方差公式,对角线的长度平方等于两个部分长度的平方和。
因此,对角线的长度的平方为 $(l^2 + w^2)$。
取平方根后,得到对角线的长度为 $\sqrt{l^2 + w^2}$。
练习题三:平方差公式的应用1. 已知一个正方形的面积为 $16$ 平方米,求其对角线的长度。
解析:设正方形的边长为 $a$,则根据题意可以得到 $a^2 = 16$。
平方差公式练习题精选(含答案)

平方差公式练习题精选(含答案)平方差公式是一种用于计算两个数的平方差的公式,可以用于简化计算。
下面给出了一些例子:1.(m+2)(m-2) = m^2 - 42.(1+3a)(1-3a) = 1 - 9a^23.(x+5y)(x-5y) = x^2 - 25y^24.(y+3z)(y-3z) = y^2 - 9z^2利用平方差公式,可以简化计算,例如:1.(5+6x)(5-6x) = 25 - 36x^22.(x-2y)(x+2y) = x^2 - 4y^23.(-m+n)(-m-n) = m^2 - n^2有些多项式的乘法可以用平方差公式计算,例如:7.B。
(-a+b)(a-b)有些计算中存在错误,例如:8.②(2a2-b)(2a2+b)=4a4-b2完全平方公式是一种用于计算两个数的平方和的公式,可以用于简化计算。
下面给出了一些例子:1.(x+y)^2 = x^2 + 2xy + y^22.(-2m+5n)^2 = 4m^2 - 20mn + 25n^23.(2a+5b)^2 = 4a^2 + 20ab + 25b^24.(4p-2q)^2 = 16p^2 - 16pq + 4q^2利用完全平方公式,可以简化计算,例如:1.(x-y^2)^2 = x^2 - 2xy^2 + y^42.(1.2m-3n)^2 = 1.44m^2 - 7.2mn + 9n^23.(-a+5b)^2 = a^2 - 10ab + 25b^24.(-x-y)^2 = x^2 + 2xy + y^2最后,我们可以用完全平方公式计算一些复杂的表达式,例如:14.(a+2)(a^2+4)(a^4+16)(a-2) = (a^6 - 4a^5 - 24a^4 - 64a^3+ 16a^2 + 128a + 128)完全平方公式还可以用于解方程,例如:9.x+y = -310.4x^2 - y^211.(3x^2+2y^2)^2 = 9x^4 - 4y^412.(a+b)^2 - (a-b+1)^2 = 4ab - 2a + 2b13.31.下列运算中,正确的是()A.(a+3)(a-3)=a2-9B.(3b+2)(3b-2)=9b2-4C.(3m-2n)(-2n-3m)=-12mnD.(x+2)(x-3)=x2-x-62.在下列多项式的乘法中,可以用平方差公式计算的是()C.(-a+b)(a-b)3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()B.64.若(x-5)2=x2+kx+25,则k=()D.-105.9.8×10.2=100.366.a2+b2=(a+b)2-2ab=(a-b)2+2ab7.(x-y+z)(x+y+z)=x2+y2+z2+2xy+2xz+2yz8.(a+b+c)2=a2+b2+c2+2ab+2ac+2bc9.(x+3)2-(x-3)2=12x+1810.1) 4a2-9b22) p4-q23) x2-4xy+4y24) 4x2+4xy+y211.1) 4a4-b22) 4xy(x+y)12.剩余的空地面积为(m-2n)2-n2(m-2n)2-n2,验证了平方差公式:(a-b)(a+b)=a2-b2.13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k 的值为()D.±214.已知a+=3,则a2+2,则a+的值是()B.715.若 $a-b=2$,$a-c=1$,则 $(2a-b-c)^2+(c-a)^2$ 的值为()答案:B。
(完整版)实用版平方差、完全平方公式专项练习题(精品)
其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(
)
(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072
.
2008 2006
20072
.
2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )
平方差公式专题练习50题有答案
平方差公式专项练习50题(有答案)知识点:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方差特点:具有完全相同的两项具有互为相反数的两项使用注意的问题:1、是否符合平方差公式使用的特点2、判断公式中的“a”和“b”是一个数还是一个代数式3、对“式”平方时要把全部平方,切忌出现漏乘系数的错误,如(a+2b)(a-2b)不要计算成a2-2b24、最好先把能用平方差的式子变形为(a+b)(a-b)的形式,再利用公式进行计算。
专项练习:1.9.8×10.22.(x-y+z)(x+y+z)3.(12x+3)2-(12x-3)24.(2a-3b)(2a+3b)5.(-p2+q)(-p2-q)6.(-1+3x)(-1-3x)7.(x+3) (x2+9) (x-3)8.(x+2y-1)(x+1-2y)9.(x-4)(4+x )10.(a+b+1)(a+b-1)11.(8m+6n )(8m-6n )12. (4a -3b )(-4a -3b )13. (a+b)(a-b )(a ²+b ²)14..15..16..17..,则18. 1.01×0.9919.20.21.22.23.23.24.25.26.27.28.29.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).32. 2023×191333.(a+2)(a2+4)(a4+16)(a-2).34.(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);35.(3+1)(32+1)(34+1)…(32008+1)-4016 3236. 2009×2007-20082.37.22007200720082006-⨯.38.22007 200820061⨯+.39.解不等式(3x-4)2>(-4+3x)(3x+4).40.x(x+2)+(2x+1)(2x-1)=5(x2+3),41.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?42.先化简,再求值,其中43.解方程:.44.计算:45.求值:46.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.47(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.48.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1所示,然后拼成一个平行四边形,如图2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.49.你能求出的值吗?50.观察下列各式:根据前面的规律,你能求出的值吗?平方差公式50题专项练习答案: 1.9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.2.(x-y+z )(x+y+z )=x 2+z 2-y 2+2xz3.(12x+3)2-(12x -3)2=(12x+3+12x -3)[12x+3-(12x -3)]=x ·6=6x .4.(2a-3b )(2a+3b )= 4a 2-9b 2;5.(-p 2+q )(-p 2-q )=(-p 2)2-q 2=p 4-q 26.(-1+3x )(-1-3x )=1-9x ²7.(x+3) (x 2+9) (x-3) =x 4-818.(x+2y-1)(x+1-2y)= x ²-4y ²+4y-19.(x-4)(4+x )=x ²-1610.(a+b+1)(a+b-1)=(a+b )²-1=a ²+2ab+b ²-111.(8m+6n )(8m-6n )=64m ²-36n ²12. (4a -3b )(-4a -3b )=13. (a+b)(a-b )(a ²+b ²)=.14.. 15.. 答: 16.. 答: 17..,则18.1.01×0.99=0.9999 19.= 20.= 21.=22.= 23. =8096 23. =24. =125. =26. =27. =28. =29. =.30.(2a-b)(2a+b)(4a2+b2)=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.31.(x+y-z)(x-y+z)-(x+y+z)(x-y-z).=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]=x2-(y-z)2-[x2-(y+z)2]=x2-(y-z)2-x2+(y+z)2=(y+z)2-(y-z)2=(y+z+y-z)[y+z-(y-z)]=2y·2z=4yz.32. 2023×1913=(20+23)×(20-23)=202-(23)2=400-49=39959.33.(a+2)(a2+4)(a4+16)(a-2)=(a-2)(a+2)(a2+4)·(a4+16)=(a2-4)(a2+4)(a4+16)=(a4-16)(a4+16)=a8-162=a8-256.34. 解:(1)(2+1)(22+1)(24+1)…(22n+1)+1=(2-1)(2+1)(22+1)(24+1)…(22n+1)+1=(22-1)(22+1)(24+1)…(22n+1)+1=(24-1)(24+1)…(22n+1)+1=…=[(22n)2-1]+1=24n-1+1=24n;35.(3+1)(32+1)(34+1)…(32008+1)-4016 32=12(3-1)(3+1)(32+1)(34+1)…(32008+1)-401632=12(32-1)(32+1)·(34+1)…(32008+1)-401632=…=12(34-1)(34+1)…(32008+1)-401632=…=12(34016-1)-401632=401632-12-401632=-12.36. 2009×2007-20082=(2008+1)×(2008-1)-20082=20082-1-20082=-1.37.22007200720082006-⨯=220072007(20071)(20071)-+⨯-=2220072007(20071)--=2007.38.22007200820061⨯+=22007(20071)(20071)1+⨯-+=222007200711-+=2220072007=1.39.解不等式(3x-4)2>(-4+3x)(3x+4).(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.x<43.40.x(x+2)+(2x+1)(2x-1)=5(x2+3),x2+2x+4x2-1=5x2+15,x2+4x2-5x2+2x=15+1,2x=16,x=8.41.解:(2a+3)(2a-3)=(2a)2-32=4a2-9(平方米).42. 原式=43.解方程:.百度文库- 让每个人平等地提升自我44.计算: =5050.45.求值: =46.(1)1-x n+1(2)①-63;②2n+1-2;③x100-1(3)①a2-b2②a3-b3③a4-b4点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题①中利用观察到的规律可知,原式=1-26=1-64=-63;②中原式=2(1+2+22+…+2n-1)=-2(1-2)(1+2+22+…+2n-1)=-2(1-2n)=-2+2·2n=2n+1-2;③中原式=-(1-x)(1+x+x2+…+x97+x98+x99)=-(1-x100)=x100-1.47.解:(m+2n)(m-2n)=m2-4n2.点拨:本题答案不唯一,只要符合要求即可.48.解:题图1中的阴影部分(四个等腰梯形)的面积为a2-b2,题图2•中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(a-b),故它的面积为(a+b)(a-b),•由此可验证:(a+b)(a-b)=a2-b 2.图1 图249.解; 提示:可以乘以再除以.50.解:=11。
(完整word版)平方差公式练习题精选(含答案)
(1)(m+2) (m-2)(2)(1+3a) (1-3a)(3) (x+5y)(x-5y)(4)(y+3z) (y-3z)2、利用平方差公式计算(1)(5+6x) (5-6x)(2)(x-2y) (x+2y)(3)(-m+n)(-m-n)3利用平方差公式计算(1)(1)(-41x-y)(-41x+y)(2)(ab+8)(ab-8)(3)(m+n)(m-n)+3n 24、利用平方差公式计算(1)(a+2)(a-2)(2)(3a+2b)(3a-2b)(3)(-x+1)(-x-1)(4)(-4k+3)(-4k-3)(1)803×797(2)398×4027.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)8.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.A.1个B.2个C.3个D.4个9.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-510.(-2x+y)(-2x-y)=______.11.(-3x2+2y2)(______)=9x4-4y4.12.(a+b-1)(a-b+1)=(_____)2-(_____)2.13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.14.计算:(a+2)(a2+4)(a4+16)(a-2).完全平方公式1利用完全平方公式计算:(1)(21x+32y)2 (2)(-2m+5n)2(3)(2a+5b)2(4)(4p-2q)2 2利用完全平方公式计算:(1)(21x-32y 2)2 (2)(1.2m-3n)2(3)(-21a+5b)2 (4)(-43x-32y)23 (1)(3x-2y)2+(3x+2y)2 (2)4(x-1)(x+1)-(2x+3)2(3)(a+b)2-(a-b)2 (4)(a+b-c)2(5)(x-y+z)(x+y+z) (6)(mn-1)2—(mn-1)(mn+1)4先化简,再求值:(x+y)2 —— 4xy,其中x=12,y=9。
平方差计算题100道
平方差计算题100道下面是100道平方差计算题:1.计算$(3^2-1^2)$。
2.计算$(7^2-4^2)$。
3.计算$(10^2-8^2)$。
4.计算$(5^2-2^2)$。
5.计算$(6^2-3^2)$。
6.计算$(9^2-7^2)$。
7.计算$(4^2-1^2)$。
8.计算$(8^2-5^2)$。
9.计算$(2^2-1^2)$。
10.计算$(15^2-12^2)$。
11.计算$(10^2-5^2)$。
12.计算$(13^2-11^2)$。
13.计算$(6^2-1^2)$。
14.计算$(9^2-4^2)$。
15.计算$(8^2-3^2)$。
16.计算$(12^2-9^2)$。
17.计算$(7^2-2^2)$。
19.计算$(3^2-2^2)$。
20.计算$(14^2-10^2)$。
21.计算$(20^2-18^2)$。
22.计算$(16^2-13^2)$。
23.计算$(19^2-15^2)$。
24.计算$(17^2-14^2)$。
25.计算$(18^2-12^2)$。
26.计算$(21^2-19^2)$。
27.计算$(24^2-22^2)$。
28.计算$(25^2-23^2)$。
29.计算$(26^2-24^2)$。
30.计算$(27^2-25^2)$。
31.计算$(30^2-28^2)$。
32.计算$(29^2-27^2)$。
33.计算$(33^2-31^2)$。
34.计算$(32^2-30^2)$。
35.计算$(35^2-34^2)$。
36.计算$(36^2-35^2)$。
38.计算$(38^2-36^2)$。
39.计算$(41^2-39^2)$。
40.计算$(40^2-37^2)$。
41.计算$(44^2-41^2)$。
42.计算$(43^2-39^2)$。
43.计算$(42^2-40^2)$。
44.计算$(46^2-44^2)$。
45.计算$(45^2-42^2)$。
46.计算$(49^2-47^2)$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.3.1 平方差公式习题
平方差公式:
一、选择题
1.下列多项式乘法,能用平方差公式进行计算的是( )
A.(x+y)(-x-y)
B.(2x+3y)(2x-3z)
C.(-a-b)(a-b)
D.(m-n)(n-m)
2.下列计算正确的是( )
A.(2x+3)(2x-3)=2x2-9
B.(x+4)(x-4)=x2-4
C.(5+x)(x-6)=x2-30
D.(-1+4b)(-1-4b)=1-16b2
3.下列多项式乘法,不能用平方差公式计算的是( )
A.(-a-b)(-b+a)
B.(xy+z)(xy-z)
C.(-2a-b)(2a+b)
D.(0.5x-y)(-y-0.5x)
4.(4x2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( )
A.-4x2-5y
B.-4x2+5y
C.(4x2-5y)2
D.(4x+5y)2
5.a4+(1-a)(1+a)(1+a2)的计算结果是( )
A.-1
B.1
C.2a4-1
D.1-2a4
6.下列各式运算结果是x2-25y2的是( )
A.(x+5y)(-x+5y)
B.(-x-5y)(-x+5y)
C.(x-y)(x+25y)
D.(x-5y)(5y-x)
二、填空题
1.(a+b)(a-b)= ,公式的条件是,结论是 .
2.(x-1)(x+1)=_____,(2a+b)(2a-b)=_____,( x-y)( x+y)=_____.
3.(x+4)(-x+4)=_____,(x+3y)(_____)=9y2-x2,(-m-n)(_____)=m2-n2
4.98×102=(_____)(_____)=( )2-( )2=_____.
5.-(2x2+3y)(3y-2x2)=_____.
6.(a-b)(a+b)(a2+b2)=_____.
7.(_____-4b)(_____+4b)=9a2-16b2,(_____-2x)(_____-2x)=4x2-25y2
8.(xy-z)(z+xy)=_____,( x-0.7y)( x+0.7y)=_____.
9.( x+y2)(_____)=y4- x2
10.观察下列各式:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
根据前面各式的规律可得
(x-1)(x n+x n-1+…+x+1)=_____.
三、解答题
1、 a(a-5)-(a+6)(a-6)
2、 ( x+y)( x-y)( x2+y2)
3、 9982-4
4、 2003×2001-20022
5、 1.03×0.97
6、(2x-3y)(3y+2x)-(4y-3x)(3x+4y)
7、(2a-b)(2a+b)(4a2+b2) 8、(x+y-z)(x-y+z)-(x+y+z)(x-y-z).
提高题
一、选择题:
1.下列式中能用平方差公式计算的有( ) ①(x-12y)(x+1
2
y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)(100-1) A.1个 B.2个 C.3个 D.4个 2.下列式中,运算正确的是( )
①222(2)4a a =, ②2111
(1)(1)1339
x x x -++=-, ③235(1)(1)(1)m m m --=-,
④232482a b a b ++⨯⨯=.
A.①②
B.②③
C.②④
D.③④ 3.乘法等式中的字母a 、b 表示( )
A.只能是数
B.只能是单项式
C.只能是多项式
D.单项式、•多项式都可以
二、解答题
4.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1).
5、计算:2481511111
(1)(1)(1)(1)22222
+++++.
6.计算:22222110099989721-+-++- .
7.(1)化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2
,其中x=-1.
(2)解方程5x+6(3x+2)(-2+3x)-54(x-13)(x+1
3
)=2.
8.计算:22222
11111
(1)(1)(1)(1)(1)23499100
----- .。