二次根式基本运算
二次根式的化简与运算

二次根式的化简与运算二次根式是指含有根号的代数表达式,通常是一种简化和运算方式,可以将复杂的表达式化简为简单的形式,并进行加减乘除等基本运算。
本文将介绍二次根式化简与运算的基本方法和技巧。
一、二次根式的化简1. 同底数的根式相加减:当根式的底数相同且指数相同时,可以直接对系数进行加减运算,保持根号不变。
例如:√2 + √2 = 2√22. 二次根式的有理化:当二次根式的底数是一个整数,但含有一个或多个根号时,可以通过有理化的方法化简。
例如:√(2/3) = (√2)/(√3) = (√2)/(√3) × (√3)/(√3) = √6/33. 二次根式的合并:当二次根式的底数相同,但系数不同时,可以合并为一个根式,将系数加在一起,并保持底数不变。
例如:3√2 + 2√2 = 5√24. 二次根式的分解:当二次根式的底数是一个整数,且无法进行合并时,可以进行分解,并找出其中可以合并的部分。
例如:√12 = √(4 × 3) = 2√3二、二次根式的运算1. 加减运算:当二次根式的底数和指数都相同时,可以直接对系数进行加减运算,保持底数和指数不变。
例如:2√5 + 3√5 = 5√52. 乘法运算:当二次根式相乘时,可以将根式的系数分别相乘,并保持底数和指数不变。
例如:2√3 × 3√2 = 6√63. 除法运算:当二次根式相除时,可以将根式的系数分别相除,并保持底数和指数不变。
例如:6√8 ÷ 2√2 = 3√24. 乘方运算:当二次根式进行乘方运算时,可以将指数分别应用到系数和根号上,并保持底数不变。
例如:(2√3)^2 = 2^2 × (√3)^2 = 4 × 3 = 12总结:二次根式的化简与运算是一种常见的数学操作,在代数表达式的计算中经常会遇到。
通过适当的化简和运算,可以简化复杂的根式,得到更加简单和规范的表达形式。
熟练掌握二次根式的化简和运算方法,有助于提高数学计算的效率和准确性。
二次根式的化简与运算规则

二次根式的化简与运算规则二次根式是指具有形如√a的数学表达式,其中a是一个非负实数。
化简与运算二次根式是数学中的重要概念,本文将详细讨论二次根式的化简与运算规则。
一、二次根式的化简1. 化简含有相同因数的二次根式当二次根式中的被开方数具有相同的因数时,可以利用同底数幂的乘法规则将二次根式合并为一个较简单的表达式。
例如:√(4x^2) = 2x√(9y^6) = 3y^32. 化简含有互质因数的二次根式当二次根式中的被开方数的因数互质时,我们无法简化二次根式,只能保留原始形式。
例如:√(2x) 无法化简,保留原始形式3. 化简分数形式的二次根式当二次根式中的被开方数为分数时,可以将分子和分母分别进行开平方操作,然后将得到的结果进行约分。
例如:√(4/9) = 2/3二、二次根式的运算规则1. 加减法规则当两个二次根式相加或相减时,要求它们的被开方数和指数相同。
可以直接对被开方数进行加减操作,同时保留相同的根号。
例如:√5 + √5 = 2√52√3 - √3 = √32. 乘法规则当两个二次根式相乘时,我们可以利用指数运算规则对被开方数进行乘法操作,再将结果开平方。
例如:√2 × √3 = √(2 × 3) = √63. 除法规则当两个二次根式相除时,我们可以利用指数运算规则对被开方数进行除法操作,再将结果开平方。
例如:√8 / √2 = √(8 / 2) = √4 = 2三、例题解析1. 化简二次根式√(18x^2y^4z^6)解:√(18x^2y^4z^6) = √(9 × 2 × (xy^2z^3)^2)= 3xy^2z^3√22. 计算二次根式的和:√2 + √8解:√2 + √8 = √2 + √(4 × 2)= √2 + 2√2= 3√23. 计算二次根式的积:(2√6)(3√3)解:(2√6)(3√3) = 6√18= 6√(9 × 2)= 18√2四、总结二次根式的化简与运算规则是数学中的重要内容。
二次根式及其运算

(2)原式=( 10-3)2016×( 10+3)2016×( 10-3) =[( 10-3)( 10+3)]2016×( 10-3) =[( 10)2-32]2016×( 10-3) =(10-9)2016×( 10-3)=1×( 10-3) = 10-3.
★名师指津 最简二次根式成立的条件缺一不可,而二次 根式在表达形式上,容易导致认识错误,例如 0.2b和 x2-y2,会误以为前者不含分母、后者含有能开方的因 式.应注意对数学概念的理解:小数可以转化成分数, 因式和项有区别.
易错点3
二次根式的性质
=|a|
1 1 1 2 【典例 3】 化简并求值:a+ a + 2-2,其中 a= . a 5 12 a - 1 1 1 【错解】 原式= + a = +a- =a. a a a 1 1 当 a= 时,原式=a= . 5 5 12 a - 1 【析错】 化简 a2+ 2-2= 根据 a2=|a|, a 时, a 可知结果一定是非负数. 12 1 a- a- 1 1 1 ∵当 a= 时,a- <0,∴ a = a = -a, 5 a a 1 而不是 a- . a
按时完成课后强化训练5,全面提升自我!
单击此处进入课后强化训练5
x≤ 9
x- 1 【类题演练 1】 (2016· 怀化)函数 y= 中, 自变量 x x- 2 的取值范围是 ( ) A. x≥0 B. x>1 C. x≥1 且 x≠2 D. x≠2
【解析】 根据二次根式有意义的条件,得 x-1≥0,由 分式有意义的条件,得 x-2≠0, ∴x≥1 且 x≠2.
【答案】 D
2.(2016· 自贡)下列根式中,不是最简二次根式的是( A. 10 B. 8 C. 6 D. 2
二次根式的运算

二次根式的运算二次根式是数学中常见的概念,它在代数学、几何学和物理学等领域都得到广泛应用。
本文将为您详细介绍二次根式的运算过程和相关概念。
一、定义与性质二次根式,顾名思义,就是一个数的根号形式,其中根号下是一个有理数。
一般形式为√a,其中a表示一个非负实数。
在二次根式中,根号下的数被称为被开方数。
二次根式的性质如下:1. 二次根式的运算结果是一个实数,要么是有理数,要么是无理数。
2. 二次根式的和差运算只有当根号下的被开方数相同时,才能进行。
3. 二次根式的乘法运算可以进行,即√a × √b= √(a × b)。
4. 二次根式的除法运算可以进行,即√a ÷ √b = √(a ÷ b),其中b不等于零。
二、二次根式的运算法则1. 化简当二次根式出现在分母中时,为了方便计算,我们通常会进行化简。
具体来说,如果根号下的被开方数可以被因式分解,我们就将其进行简化。
例如,对于√12,可以进行因式分解得到√(4 × 3),进而简化成2√3。
2. 相加相减当根号下的被开方数相同时,我们可以进行二次根式的相加与相减。
例如,√5 + √5 = 2√5,√7 - √7 = 0。
3. 乘法二次根式的乘法运算非常简单,只需要将根号下的被开方数相乘即可。
例如,√2 × √3 = √(2 × 3) = √6。
4. 除法二次根式的除法运算也很简单,只需要将根号下的被开方数相除即可。
例如,√8 ÷ √2 = √(8 ÷ 2) = √4 = 2。
三、例题解析为了更好地理解二次根式的运算过程,我们举几个例题进行解析。
例题1:化简下列二次根式。
(1) √72(2) √50 ÷ √2解析:(1) √72 = √(4 × 18) = √4 × √18 = 2√18。
由于18不能再进一步分解,所以2√18为最简形式的答案。
第5课 二次根式及其运算

【例】 (1)已知x=2-
探究提高
1.二次根式混合运算,把若干个知识点综合在一起,
计算时要认真仔细. 2.可以适当改变运算顺序,使运算简便.
6 知能迁移3 (1) - 18-( 1 )0 2 2 解:原式=3 2 -3 2 -1 =-1
(2)(-3)2- 4 +( 1 )-1; 2 解:原式=9-2+2=9 (3)已知 10 的整数部分为a,小数部分为b,求a2-b2的值. 解:∵3< 10 <4,
第2课 二次根式
及实数运算
要点梳理
1.二次根式的概念:
式子 a (a≥0) 叫做二次根式. 2.二次根式的性质:
(1)( a )2= a(a≥0) ; a(a≥0) (2) a2=|a|= 0(a=0) -a(a< 0)
(3) ab = (4)
a · b(a≥0,b≥0) .
a (a≥0,b>0) . b
∴原式=
(2)已知a=3+2 5 ,b=3-2 5 ,求a2b-ab2的值;
解:∵a-b=(3+2
5)-(3-2 5 )=4 5 , ab=(3+2 5 )(3-2 5 )=-11,
∴a2b-ab2=ab(a-b)=(-11)×4 5 =-44 5 .
题型
二次根式运算中的技巧
,y=2+ 3 ,求:x2+xy+y2的值; 3 (2)已知x+ 1 =-3,求x- 1 的值. x x 解:(1)∵x=2- 3 ,y=2+ 3 , ∴x+y=(2- 3 )+(2+ 3 )=4, xy=(2- 3 )×(2+ 3 )=1, ∴x2+xy+y2=(x+y)2-xy=42-1=15.
∴ 10 的整数部分a=3,小数部分b= 10 -3. ∴a2-b2=32-( 10-3)2 =9-(10-6 10+9) =-10+6 10 .
二次根式的计算公式

二次根式的计算公式在咱们的数学世界里,二次根式可是个有点特别的存在。
就像一个调皮但又藏着规律的小家伙,总是让人又爱又恨。
先来说说二次根式的基本计算公式吧。
比如说,根号下 a 的平方,那就等于绝对值 a 。
这就好比你去买糖果,袋子里糖果的数量不管是正数还是负数,平方之后再开方,得到的结果都是它的绝对值。
还有啊,根号下ab 就等于根号下a 乘以根号下b ,但这里要注意,a 和 b 都得是非负数才行。
这就好像是把一个大蛋糕分成几小块,每小块的大小加起来就是原来大蛋糕的大小。
咱们来举个例子感受感受。
假设一个正方形的面积是 16,那它的边长是多少呢?这时候就用到二次根式啦,因为正方形面积等于边长的平方,所以边长就是根号下 16 ,也就是 4 。
记得我上中学那会,有一次数学考试,其中有一道题就是关于二次根式的计算。
题目是:计算根号下 27 除以根号下 3 。
我当时一看,心里一乐,这不是刚学的知识嘛。
我就先把根号下 27 化成 3 倍的根号下3 ,然后一除,答案就是 3 。
那次考试因为这道题做对了,还让我的成绩提高了不少呢。
再说说二次根式的加减运算。
只有同类二次根式才能相加减,就像只有同样类型的水果才能放在一起算数量一样。
比如说,2 倍的根号 2 加上 3 倍的根号 2 ,那结果就是 5 倍的根号 2 。
乘法运算也有它的规律。
根号下 a 乘以根号下 b 等于根号下 ab ,这个公式用起来可方便了。
比如说,计算根号下 6 乘以根号下 8 ,那就等于根号下 48 ,再化简就是 4 倍的根号 3 。
除法运算呢,根号下 a 除以根号下 b 就等于根号下 a 除以 b 。
比如说,计算根号下 18 除以根号下 2 ,结果就是 3 倍的根号 2 。
在实际应用中,二次根式的计算公式也大有用处。
比如建筑工人要计算一个直角三角形的斜边长度,已知两条直角边分别是 3 和 4 ,那斜边长度就是根号下 3 的平方加上 4 的平方,也就是 5 。
二次根式的乘除法PPT课件

二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。
表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。
乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。
非负性$sqrt{a} geq 0$($a geq 0$)。
除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。
二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。
根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。
计算$frac{sqrt{20}}{sqrt{5}}$。
根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。
化简$sqrt{18}$。
首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。
典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。
如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。
不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。
二次根式的乘除运算

二次根式的乘除运算1、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.2、有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.一、分母有理化:把分母中的根号化去,叫做分母有理化。
二、有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:1a =b a -与b a -等分别互为有理化因式。
2、两项二次根式:利用平方差公式来确定。
如a与a3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
例、已知x =y =,求下列各式的值:(1)x y x y +-(2)223x xy y -+ 小结:一般常见的互为有理化因式有如下几类: ①与; ②与; ③与; ④与.三、二次根式的乘除1、积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
a≥0,b≥0)2、二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
a≥0,b≥0)注意:1、公式中的非负数的条件;2、在被开方数相乘时,就应该考虑因式分解(或因数分解;3、c=abc( a ≥0,b≥0,c ≥03、商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根a≥0,b>0)4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
a≥0,b>0)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.例1.=,且x为偶数,求(1+x的值.解:由题意得9060xx-≥⎧⎨->⎩,即96xx≤⎧⎨>⎩∴6<x≤9∵x为偶数∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值.例2=成立的的x的取值范围是()A 、2x >B 、0x ≥C 、02x ≤≤D 、无解例3、·(m>0,n>0)解: 原式==-22n n m m =-例4、(a>0)解:原式规律公式:1、观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,32=-同理可得:计算代数式(+)的值.解:原式=(……)=() =2002-1=20012、观察下列各式及其验证过程:,验证:;验证:.(1)按照上述两个等式及其验证过程的基本思路,猜想(2)针对上述各式反映的规律,写出用a(a>1的整数)表示的等式,并给出验证过程.(aa>1))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容 基本要求 略高要求 较高要求 二次根式的化简和运算
理解二次根式的加、减、乘、除运算法则 会进行二次根式的化简,会进行二次根
式的混合运算(不要求分母有理化)
板块一 二次根式的乘除
最简二次根式:
二次根式a (0a ≥)中的a 称为被开方数.满足下面条件的二次根式我们称为最简二次根式: ⑴被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式)
⑵被开方数中不含能开得尽方的因数或因式
⑶分母中不含二次根式
二次根式的计算结果要写成最简根式的形式.
二次根式的乘法法则:a b ab ⋅=(0a ≥,0b ≥)
二次根式的除法法则:a a b b
=(0a ≥,0b >) 利用这两个法则时注意a 、b 的取值范围,对于ab a b =⋅,a 、b 都非负,否则不成立, 如(7)(5)(7)(5)-⋅-≠-⋅-
一、最简二次根式
【例1】 下列二次根式中,最简二次根式的个数是( ).
16x -,22a b +,22ab ,0.5ab ,
3a ,4
b ,24x ,244x x -+. A 。
1个 B.2个 C 。
3个 D.4个
【例2】 在下列二次根式22211025312232322
a a a a
b m x a b x a b +-++,,,,,,,,,,中,最简二次根式有____________________.
中考要求
例题精讲
二次根式基本运算、分母有理化
【例3】 下列根式 ) A .2个 B .3个 C .4个 D .5个
【例4】 把下列各式化成最简二次根式
( (2 (3)0x ≥
【例5】 化简:
【例6】 化简:
)0y x >>;
【例7】)20x y >>
【例8】 )0a ≥
【例9】 计算)00x y ≥,≥
【例10】 计)5a ≥
二、二次根式的乘除
分母有理化:
把分母中的根号化去叫做分母有理化.
互为有理化因式:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.
0.
【例11】把下列各式分母有理化:
2
【例12】把下列各式分母有理化:
⑴
⑵
⑶÷
【例13】化简
C D.不同于A C的答案
【例14】计
【例15】计
【例16】计
【例17
【例18
【例19】计算)
,,
>>>
000
a b c
32xy
【例20】计算:2
【例21】计算:
【例22】计
【例23】
三、二次根式的加减
1。
同类二次根式:
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.
=+
合并同类二次根式:(a b
【例24】若是可以合并的二次根式,则____
a=。
【例25】下)
A B C D
【例26】下列各组二次根式中,属于可以合并的是( )
A B C与D
【例27】判断下列各组二次根式是不是同类二次根式:
【例28】下列二次根式中,哪些是同类二次根式?(字母均为正数)
.
【例29】若最简二次根式a是同类根式,求2b
-的值.
a
【例30】如果最简根式a+与2a+是同类二次根式,求100
+的值.
a b
()
2。
二次根式的加减
【例31】化简
【例32】 计算
【例33】 -
【例34
【例35】 3-+
【例36】 计算:-
【例37】 计算:
【例38】 计算
【例39】 先化简后求值。
当149
x y ==,
四、二次根式的混合运算
【例40】 计算(-
【例41】 计算:
【例42】 计
【例43】
【例44】 计算:⎛+ ⎝
【例45】 计算:
)
12
【例46】 计算:。