最简二次根式PPT课件
合集下载
第16章 二次根式专题复习--分母有理化专题(共18张ppt)

x y 的有理化因式是 x y
a x b y 的有理化因式是 a x b y
展示方式:学生起立回答,要求说清楚过程,其 余同学直接站起来补充 (自学+展示2+2min)
指出下列各式的有理化因式
(1) 2 3
(1) 2 3
(2)2 3 (3) a 1 (4) x2 1 (5) 27
22 5
0.1;
算 2 2 9x 6 x 2x 1;
3
4
x
3 3 x 2x .
32
程序设计:自学、合学+展示(4+4min)
展示方式:每组派学生代表演板,要写清楚过程,
其余同学直接站起来纠错,小组内组长负责纠错
拓展探索
怎样计算下式?观察所得的积是否含有二次根式?
x y x y x y
求a2 ab b2的值
程序设计:合学+展示(2+3min) 方法导航:先将a、b的分母有理化,化为最简 二次根式再代入求值. 展示方式:学生主动班级展示,要讲清楚过程,
其余同学直接站起来补充。
分母都同乘分母的有理化因式。
一. 分母有理化常规基本法 ---分子分母同乘有理化因式
例如:化简 (1)
6
2 3
(2) 2 1 2 1
程序设计:自学、合学+展示(4+4min) 方法导航:分子和分母都乘以分母的有理化因式. 展示方式:随机抽取学生演板,要写清楚过程,
其余同学直接站起来补充,小组内组长负责纠错
(3) 3 2 3
(4) 3 1 3 1
程序:老师检测小组长做题情况,小组成员完成后 交给组长检查,组长负责纠错讲解。(3+2min)
a x b y 的有理化因式是 a x b y
展示方式:学生起立回答,要求说清楚过程,其 余同学直接站起来补充 (自学+展示2+2min)
指出下列各式的有理化因式
(1) 2 3
(1) 2 3
(2)2 3 (3) a 1 (4) x2 1 (5) 27
22 5
0.1;
算 2 2 9x 6 x 2x 1;
3
4
x
3 3 x 2x .
32
程序设计:自学、合学+展示(4+4min)
展示方式:每组派学生代表演板,要写清楚过程,
其余同学直接站起来纠错,小组内组长负责纠错
拓展探索
怎样计算下式?观察所得的积是否含有二次根式?
x y x y x y
求a2 ab b2的值
程序设计:合学+展示(2+3min) 方法导航:先将a、b的分母有理化,化为最简 二次根式再代入求值. 展示方式:学生主动班级展示,要讲清楚过程,
其余同学直接站起来补充。
分母都同乘分母的有理化因式。
一. 分母有理化常规基本法 ---分子分母同乘有理化因式
例如:化简 (1)
6
2 3
(2) 2 1 2 1
程序设计:自学、合学+展示(4+4min) 方法导航:分子和分母都乘以分母的有理化因式. 展示方式:随机抽取学生演板,要写清楚过程,
其余同学直接站起来补充,小组内组长负责纠错
(3) 3 2 3
(4) 3 1 3 1
程序:老师检测小组长做题情况,小组成员完成后 交给组长检查,组长负责纠错讲解。(3+2min)
二次根式的ppt课件

将二次根式化简成最简二 次根式,即根号内不含能 开方的因数或因式。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
最简二次根式及二次根式的加减法

a + 1 3a + 3 =( − ) ab b b 2a + 2 =− ab. b
二、例题和练习:
例5. 先化简,再求值. 解:原式
= x(x 2 + xy +
1 2 1 3 2 x + x y + xy + x + x y + xy2 . 其 x=9, y=5. 中 4 4
3 2
1 2 1 y ) + x( x 2 + xy + y 2 ) 4 4
如 − 27x, 1 2a 3 都不符合这个条件,而 m 2 + 9是最简二次根式. 3
一、主要知识点
1. 最简二次根式 (3)化简二次根式的一般步骤:
32 × 6a(a + 1) 2 54(a 3 +2a 2 +a) = 观察 5 5 6a 6a ⋅ 5 3 a +1) ( =3 a +1) ( =3 a +1) ( = 30a. 5 5⋅5 5 ①将被开方数分解质因数或因式分解,写成幂的积的形式. ②根据被开方数每个因式的指数小于2的要求,把开得尽方 的因式用算术根代替移到根号外面. ③根据根号内不含分母的要求,利用分式的性质,化去根号 内的分母.
1 1 = x(x+ y) 2 + x( x+y) 2 2 2 1 1 = (x + y) x + ( x + y) x 2 2 1 1 = (x + y+ x + y) x 2 2 3 = (x + y) x. 2
将x=9, y=5代入,
3 原式 = (9 + 5) ⋅ 9 = 21× 3=63. 2
二、例题和练习:
例5. 先化简,再求值. 解:原式
= x(x 2 + xy +
1 2 1 3 2 x + x y + xy + x + x y + xy2 . 其 x=9, y=5. 中 4 4
3 2
1 2 1 y ) + x( x 2 + xy + y 2 ) 4 4
如 − 27x, 1 2a 3 都不符合这个条件,而 m 2 + 9是最简二次根式. 3
一、主要知识点
1. 最简二次根式 (3)化简二次根式的一般步骤:
32 × 6a(a + 1) 2 54(a 3 +2a 2 +a) = 观察 5 5 6a 6a ⋅ 5 3 a +1) ( =3 a +1) ( =3 a +1) ( = 30a. 5 5⋅5 5 ①将被开方数分解质因数或因式分解,写成幂的积的形式. ②根据被开方数每个因式的指数小于2的要求,把开得尽方 的因式用算术根代替移到根号外面. ③根据根号内不含分母的要求,利用分式的性质,化去根号 内的分母.
1 1 = x(x+ y) 2 + x( x+y) 2 2 2 1 1 = (x + y) x + ( x + y) x 2 2 1 1 = (x + y+ x + y) x 2 2 3 = (x + y) x. 2
将x=9, y=5代入,
3 原式 = (9 + 5) ⋅ 9 = 21× 3=63. 2
二次根式及其性质课件

1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;
•
的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法
第五讲二次根式PPT课件

【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.
(2)( 10-3)2012·( 10+3)2013. 解 原式=( 10-3)2012·( 10+3)2012·( 10+3) =[( 10-3)( 10+3)]2012·( 10+3) =[( 10)2-32]2012·( 10+3) =(10-9)2012·( 10+3)=1×( 10+3)= 10+3.
4. 同类二次根式:把几个二次根式化为最 简二次根式以后,它们的被开方数相同.
常考类型剖析
类型一 二次根式有意义的条件
例1(’14巴中)要使式子 m 1 有意
m 1
义,则实数m的取值范围是
(D)
A. m>-1
B. m≥-1 C. m>-1且m≠1 D. m≥-1且m≠1
第4课时┃ 数的开方及二次根式 考点1 二次根式的相关概念与性质
当堂检测
1.[2014·拱墅二模] 16的值等于
(A)
A.4 B.-4 C.±2 D.2
2.[2014·孝感] 下列二次根式中,不能与 2合并的是
(C )
A.
1 2
B. 8
C.
12
D. 18
考点聚焦
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
3.[2014·济宁] 如果 ab>0,a+b<0,那么下面各式:①
C. 27÷ 3=3
D. (-3)2=-3
解析 27÷ 3= 27÷3= 9=3.
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
(2)( 10-3)2012·( 10+3)2013. 解 原式=( 10-3)2012·( 10+3)2012·( 10+3) =[( 10-3)( 10+3)]2012·( 10+3) =[( 10)2-32]2012·( 10+3) =(10-9)2012·( 10+3)=1×( 10+3)= 10+3.
4. 同类二次根式:把几个二次根式化为最 简二次根式以后,它们的被开方数相同.
常考类型剖析
类型一 二次根式有意义的条件
例1(’14巴中)要使式子 m 1 有意
m 1
义,则实数m的取值范围是
(D)
A. m>-1
B. m≥-1 C. m>-1且m≠1 D. m≥-1且m≠1
第4课时┃ 数的开方及二次根式 考点1 二次根式的相关概念与性质
当堂检测
1.[2014·拱墅二模] 16的值等于
(A)
A.4 B.-4 C.±2 D.2
2.[2014·孝感] 下列二次根式中,不能与 2合并的是
(C )
A.
1 2
B. 8
C.
12
D. 18
考点聚焦
杭考探究
当堂检测
第4课时┃ 数的开方及二次根式
3.[2014·济宁] 如果 ab>0,a+b<0,那么下面各式:①
C. 27÷ 3=3
D. (-3)2=-3
解析 27÷ 3= 27÷3= 9=3.
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
最简二次根式

最简二次根式
思考:下列二次根式能否化简?
那么什么样的二次根式是最简二次根式呢? 满足下列条件的二次根式,叫做最简二次根式:
(1) 被开方数不含分母 (2) 被开方数中不含能开得尽方的因数或因式 注意:(1)这两个条件前提都是指的是被开方数。 (2)同时满足这两个条件的二次根式才是最简二次根式。
例:下列二次根式ቤተ መጻሕፍቲ ባይዱ什么不是最简二次根式?
分析: 又如:
不是最简二次根式,因为被开方数的因数为 分数或因式为分式,不符合条件(1),条件(1) 要求被开方数的分母中不带根号。
也不是最简二次根式,因为被开方数中含 有能开得尽方的因数或因式,不满足条件 (2).注意条件(2)是对被开方数分解成质因 数或分解成因式后而言的。
小结
(1) 被开方数是小数或带分数 时要换算成真分数或假分数后化 简。 (2)被开方数是多项式的时候 要注意因式分解后化简。
思考:下列二次根式能否化简?
那么什么样的二次根式是最简二次根式呢? 满足下列条件的二次根式,叫做最简二次根式:
(1) 被开方数不含分母 (2) 被开方数中不含能开得尽方的因数或因式 注意:(1)这两个条件前提都是指的是被开方数。 (2)同时满足这两个条件的二次根式才是最简二次根式。
例:下列二次根式ቤተ መጻሕፍቲ ባይዱ什么不是最简二次根式?
分析: 又如:
不是最简二次根式,因为被开方数的因数为 分数或因式为分式,不符合条件(1),条件(1) 要求被开方数的分母中不带根号。
也不是最简二次根式,因为被开方数中含 有能开得尽方的因数或因式,不满足条件 (2).注意条件(2)是对被开方数分解成质因 数或分解成因式后而言的。
小结
(1) 被开方数是小数或带分数 时要换算成真分数或假分数后化 简。 (2)被开方数是多项式的时候 要注意因式分解后化简。
《最简二次根式》课件

学习目标
掌握最简二次根式的 定义和性质。
通过实际应用,加深 对二次根式的理解, 提高数学应用能力。
学会化简二次根式的 方法和步骤。
02
最简二次根式的定义
根式的定义
根式的定义
如果一个代数式包含一个或多个 平方根符号,则称该代数式为根 式。
根式的分类
根据被开方数的次数和根指数的 不同,根式可以分为一次根式、 二次根式等。
《最简二次根式》ppt课件
目 录
• 引言 • 最简二次根式的定义 • 最简二次根式的化简方法 • 最简二次根式的应用 • 练习与巩固 • 总结与回顾
01
引言
课程背景
二次根式是数学中的重要概念 ,是初中数学的重要内容之一 。
学习二次根式有助于培养学生 的逻辑思维和数学应用能力。
本课件将介绍最简二次根式的 定义、性质和运算方法,帮助 学生掌握这一知识点。
运动学问题
波动问题
在解决运动学问题时,最简二次根式 可以用来表示速度、加速度等物理量 的关系。
在解决波动问题时,最简二次根式可 以用来表示波的传播速度、频率等物 理量的关系。
力学问题
在解决力学问题时,最简二次根式可 以用来表示力的关系,以及物体运动 轨迹的方程。
在实际生活中的应用
建筑学
在建筑设计中,最简二次根式可 以用来计算结构强度、稳定性等
举例
$sqrt{25x^2} = 5x$, $sqrt{4x^2y} = 2xy^{frac{1}{2}}$ 。
分母有理化法
01
总结词
分母有理化法是通过有理化分母来化简最简二次根式的方法。
02 03
详细描述
对于形如$frac{sqrt{a}}{sqrt{b}}$的根式,我们可以将分母有理化,即 乘以共轭式$sqrt{b}$,得到$frac{sqrt{a}}{sqrt{b}} times frac{sqrt{b}}{sqrt{b}} = frac{sqrt{ab}}{b}$。
二次根式的性质(第2课时 商的算术平方根的性质及最简二次根式)

的算术平方根.
我们可以运用它来进行二次根式的解题和化简,化去根号
内的分母.
例1
化简:
(1)
解:(1)
3
25
;(2)
3
3
3
= .
5
25
25
(2)
=
45
.
169
45
45
9×5 3 5
=
= 2= .
169
169
13
13
议一议
如何化去
根号内的分母?
1
可以先利用分式的基本性质将 的分子与分母同乘2
2
,使分母成为完全平方数,再利用商的算术平方根
A. 7
B. C.
D.
3
1
2
2
)
3.化简:
解:
3
(1)
;
100
75
(2)
;
27
3
3
3
(1)
=
=
.
100
100 10
75
(2)
=
27
补充解法:
52 × 3
52 5
=
= .
2
2
3 ×3
3
3
5 3 5
75
75
=
= .
=
27
3 3 3
27
81
(3)
>0 ;
2
25
还有其他解法
吗?
81
(3)
>0 ;
2
2 二次根式的性质
第2课时 商的算术平方根的性质及最简二次根式
学习目标
1.理解商的算术平方根的性质. (重点)
我们可以运用它来进行二次根式的解题和化简,化去根号
内的分母.
例1
化简:
(1)
解:(1)
3
25
;(2)
3
3
3
= .
5
25
25
(2)
=
45
.
169
45
45
9×5 3 5
=
= 2= .
169
169
13
13
议一议
如何化去
根号内的分母?
1
可以先利用分式的基本性质将 的分子与分母同乘2
2
,使分母成为完全平方数,再利用商的算术平方根
A. 7
B. C.
D.
3
1
2
2
)
3.化简:
解:
3
(1)
;
100
75
(2)
;
27
3
3
3
(1)
=
=
.
100
100 10
75
(2)
=
27
补充解法:
52 × 3
52 5
=
= .
2
2
3 ×3
3
3
5 3 5
75
75
=
= .
=
27
3 3 3
27
81
(3)
>0 ;
2
25
还有其他解法
吗?
81
(3)
>0 ;
2
2 二次根式的性质
第2课时 商的算术平方根的性质及最简二次根式
学习目标
1.理解商的算术平方根的性质. (重点)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)被开方数中不含能开得尽方的因数 或因式;
2020/10/13
6
后
教
采用兵教兵和小组讨论的 方法共同解决引言中的问 题
2020/10/13
7
生师小结
1.什么是最简二次根式?
2.最简二次根式化简的条件 是什么?
2020/10/13
8
谢谢您的指导
THANK YOU FOR YOUR GUIDANCE.
3
2020/10/13
3
学4 生自学,老师巡
视,现在自学竞赛 开始!
2020/10/13
4
检测自学效果
1.抽学生回答练习2结果,其
他学生进行补充。
2下列哪些是最简二次式 根: 2 5、 36、 12、 27
3.总结最简二次根式的条件ຫໍສະໝຸດ 2020/10/135
最简二次根式的两个条件: (1)被开方数不含分母;(即因数是整数, 因式是整式
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
汇报人:XXXX 日期:20XX年XX月XX日
9
22.2. 3最简二次根式
平舆八中九年级数学组
2020/10/13
1
学习目标
1灵活运用乘除法则进 行运算
2 理解最简二次根式的 概念,并能够运用它进 行二次根式的化简
2020/10/13
2
自学指导
1.认真自学课本P10内容理解记忆最 简二次根式的概念
2.做练习2(提问答案)
1 3.学习例7
4.用两种化简方法化简
2020/10/13
6
后
教
采用兵教兵和小组讨论的 方法共同解决引言中的问 题
2020/10/13
7
生师小结
1.什么是最简二次根式?
2.最简二次根式化简的条件 是什么?
2020/10/13
8
谢谢您的指导
THANK YOU FOR YOUR GUIDANCE.
3
2020/10/13
3
学4 生自学,老师巡
视,现在自学竞赛 开始!
2020/10/13
4
检测自学效果
1.抽学生回答练习2结果,其
他学生进行补充。
2下列哪些是最简二次式 根: 2 5、 36、 12、 27
3.总结最简二次根式的条件ຫໍສະໝຸດ 2020/10/135
最简二次根式的两个条件: (1)被开方数不含分母;(即因数是整数, 因式是整式
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
汇报人:XXXX 日期:20XX年XX月XX日
9
22.2. 3最简二次根式
平舆八中九年级数学组
2020/10/13
1
学习目标
1灵活运用乘除法则进 行运算
2 理解最简二次根式的 概念,并能够运用它进 行二次根式的化简
2020/10/13
2
自学指导
1.认真自学课本P10内容理解记忆最 简二次根式的概念
2.做练习2(提问答案)
1 3.学习例7
4.用两种化简方法化简