最简二次根式定义
二次根式的定义和概念

二次根式1、定义:一般形如a (a≥0)的代数式叫做二次根式。
当a≥0时,a 表示a 的算术平方根;当a 小于0时,非二次根式。
其中,a 叫做被开方数。
2、√ā的简单性质和几何意义(1)双重非负性:a≥0 且a ≥0(2)(a )2=a (a≥0),任何一个非负数都可以写成一个数的平方的形式。
3、二次根式的性质和最简二次根式 如:不含有可化为平方数或平方式的因数或因式的有)0(,3,2≥x x ;含有可化为平方数或平方式的因数或因式的有31,9,4,2)(y x +最简二次根式同时满足下列三个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开得尽的因式;(3)被开方数不含分母。
4、二次根式的乘法和除法(1)积的算数平方根的性质b a ab ⋅=(a≥0,b ≥0)(2)乘法法则b a ⋅=ab (a≥0,b≥0)(3)除法法则b a ba =(a≥0,b>0) (4)根式有理化如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。
对根式进行有理化处理,其实就是进行根式分母有理化。
5、二次根式的加法和减法(1)同类二次根式概念一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
(2)二次根式加减时,先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
如:25355=+6、二次根式的混合运算(1)确定运算顺序(2)灵活运用运算定律(3)正确使用乘法公式(4)大多数分母有理化要及时(5)在有些简便运算中也许可以约分,不要盲目有理化7.分母有理化分母有理化有两种方法I.分母是单项式,进行通分即可b ab bb b a b a =⨯⨯= II.分母是多项式,一般为根式的加减多数时间利用平方差公式形如b a b a b a b a b a b a --=-+-=+))((1根式中分母不能含有根号,且要变为最简,运算才会更加直接简便。
二次根式知识点

= · (a≥0,b≥0);
(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法 对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 除法没有交换律 比较数值 (1)、根式变形法 当时,①如果,则;②如果,则。 例1、比较与的大小。 (2)、平方法
当时,①如果,则;②如果,则。 例2、比较与的大小。
化简: 分析:常规思路是把后面的根式中的分母开出来。如果把外面的看作, 也可进行约分,这样会更简捷。 解:原式 直来直去,一鼓作气 计算: 分析:不要忙于把每个数做化简,利用乘除法的道理,先确定结果为负 的,然后在根号内直接进行乘除运算,这样省时省力。 解:原式 反思:做题时,不要急于求成,要多向思维,找到不同的方法,选择最 佳方案。代数题中也常有一题多解,有意识地加强这方面的训练,我们 就会变得更加机智灵活。 巧提公因数,化难为易 计算: 分析:若直接运用根式的性质去计算,须要进行两次分母有理化,计算 相当麻烦,观察原式中的分子与分母,可以发现,分母中的各项都乘 以,即得分子,于是可以简解如下: 解:原式==. 计算 分析:因为,所以中有公因数、提公因数后,可用平方差公式计 算。 解:原式 巧分组,出奇制胜 计算 分析:两个括号里的三项式中,有两项完全相同:;有一项互为相 反数;与如果把两个完全相同的项结合在一起即则可以用平方差公式计 算。 解:原式
较为简便. 化简(+ - )2+(- + )2 分析:若直接展开,计算较繁,如利用公式 (a+b)2+(a-b) 2=2(a2+b2),则使运算简化. 解:原式 =[+ (- )]2+[- (- )]2 =2[()2+(-)]2
计算:
第八讲 二次根式和最简二次根式-【暑假衔接】2021年新八年级数学(北师大版)(解析版)

第八讲 二次根式和最简二次根式【学习目标】认识二次根式和最简二次根式的概念,探索二次根式的性质;利用二次根式的性质将二次根式化为最简二次根式.【基础知识】1.(0a ≥) 的式子叫做根式;a 根式有意义的条件是:被开方数大于等于0,根式为零被开方数为0;2.二次根式的性质: ① 0a ≥0 (双重非负性)②2= a (0a ≥) 3.最简二次根式: ① 被开方数不含有分母(小数);② 被开方数中不含有可以开方开得出的因数或因式;【考点剖析】考点一:二次根式定义例1有意义,则x 的取值范围为( ) A .x≥12B .x≤-12C .x≥-12D .x≤12【答案】C 【解析】依题意120x +≥,解得x≥-12,故选C. 考点二:二次根式的非负性例2.若y 2,则x y =_____. 【答案】9 【解析】解:y 2有意义, 必须x ﹣3≥0,3﹣x≥0, 解得:x =3,代入得:y =0+0+2=2, ∴x y =32=9. 故答案为:9.考点三:二次根式的性质及应用例3.(1)先化简,再求值:a 1007a =.如图是小亮和小芳的解答过程.(1)________的解法是错误的; (2)化简:2(5)π-=________;(3)先化简,再求值:2269a a a +-+,其中2019a =-. 【答案】(1)小亮;(2) 5π-;(3)-2016 【解析】(1)∵1007a =, ∴1-a=-1006<0,∴212a a a +-+=2(1)|1|121a a a a a a a +-=+-=+-=- =2×1007-1 =2013.∴小亮的解法是错误的;(2)2(5)|5|(5)πππ-=-=--=5π- (3)∵2019a =-, ∴320220a -=-<, 则原式22(3)a a =+-2|3|a a =+- 2(3)a a =--3a =+ 2016=-.考点四:实数的大小比较例4.(1)把|3|,0,2,3--表示在数轴上(无理数近似表示在数轴上),并比较它们的大小,用“<”号连接.【答案】数轴表示见解析,2033-<-解:在数轴上表示为:用“<”连接为:2033-<<<-.(2)在数轴上标出下列各数,然后用“<”连接起来:2,2,0,|3|,( 4.5)----【答案】数轴见解析,()2023 4.5-<<<-<--【详解】 解:如图:用“<”连接为:()2023 4.5-<<-<--.考点五:例5.(1)下列二次根式中属于最简二次根式的是( ) A 24B 36C a bD 24x +【答案】D 【详解】A 2426=B 366=不是最简二次根式,不符合题意;C a ab b b=不是最简二次根式,不符合题意; D 24x + 故选:D .(212的结果是( ) A .43B .32C .23D .26【答案】C 【详解】221243232323⨯=⨯==(3_____.【详解】===.(4_____.【答案】4【详解】24x =⨯==故答案为:4【真题演练】1.下列代数式能作为二次根式被开方数的是( ) A .3﹣π B .a C .a 2+1 D .2x+4 【答案】C【解析】解:A 、3﹣π<0,则3﹣a 不能作为二次根式被开方数,故此选项错误; B 、a 的符号不能确定,则a 不能作为二次根式被开方数,故此选项错误; C 、a 2+1一定大于0,能作为二次根式被开方数,故此选项错正确;D 、2x+4的符号不能确定,则a 不能作为二次根式被开方数,故此选项错误; 故选:C .2.下列根式中,是二次根式的是( ).A .πB .13C D【答案】D 【解析】A. π不符合题意,故此选项不正确;B. 13不符合题意,故此选项不正确;C.D.符合题意,故此选项正确;故选D.3.下列各式:(b ≥2) , , , 其中是二次根式的个数有( ) A .2个 B .3个C .4个.D .5个【答案】B 【解析】(b ≥2),0,当小于0时无意义,不是二次根式;故选:B .4x 的取值范围是( ) A .1x ≤ B .1x <C .1x ≥D .1x >【答案】C 【解析】10x -≥解得:1x ≥ 故选C5x 的取值范围是( ) A .2x > B .2x <C .2x ≥D .2x ≤【答案】C 【解析】解:根据题意,得20x -,解得,2x . 故选C.6.下列式子中,a 不可以取1和2的是( )A B CD 【答案】D 【解析】A .由5a ≥0,所以a ≥0,故选项A 可取1和2;B .由a +3≥0,所以a ≥﹣3,故选项B 可取1和2;C .由a 2≥0,所以a 2+1≥1,故选项C 可取1和2;D .由2a-≥0且a ≠0,所以a <0,故选项D 不可取1和2; 故选:D .7.说明命题是假命题的一个正确的反例是( ) A .a=3 B .a=-3C .a=0.3D .a=0【答案】B 【解析】=a , ∴a≥0,故此命题是假命题的反例就是a 是一个负数, 故答案为:B.8.若代数式3x +有意义,则实数x 的取值范围是______. 【答案】1x - 【解析】解:∵代数式3x +有意义, ∴10x +≥,30x +≠, 解得:1x ≥-,3x ≠-, ∴实数x 的取值范围是:1x ≥-; 故答案为:1x ≥-.9.已知x ,y 是实数,且满足18______. 【答案】12【解析】解:∵由二次根式的定义得202x 0x -≥⎧⎨-≥⎩,解得:x=2,∴1y 008=++,即:18y =,12====.故答案为:1 2 .1012x-12x⎫>⎪⎭哪些是二次根式?哪些不是?为什么?【答案】见解析【解析】2,所以不是二次根式;-12x不含二次根号,不是二次根式;,不能确定被开方数是非负数,当0a<10x+<无意义,不一定是二次根式;40-<12x⎫>⎪⎭,因为120x-<a取何实数,22a--综上所述:12x-12x⎫>⎪⎭不是二次根式.11.当a=2,b=1.5时,求下列代数式的值.(1)a2+2ab+b2(2ab+1.【答案】(1)12.25;(2)7;【解析】解:(1)当a=2,b=1.5时,原式=22+2×2×1.5+1.52=12.25;(2)当a=2,b=1.5 1.5+1=7.12.平面直角坐标系中如果任意两点A、B的坐标分别为(x1,y1)、(x2,y2),,则A、B两点之间的距离可表示为AB;在平面直角坐标系中,(1)若点C的坐标为(3,4),O为坐标原点,则C、O两点之间的距离为______.(2)若点E(-2,3)、F(4,-5),求E、F两点之间的距离.【答案】(1)5;(2)10.(1)因为O点为原点,所以点O为(0,0,),由题意可得CO,故答案为5.(2)根据题意可得EF=10,故答案为10.13.若实数a,b,c满足(1)求a,b,c;(2)若满足上式的a,c为等腰三角形的两边,求这个等腰三角形的周长.【答案】(1)b=2,c=3;(26.【解析】解:(1)由题意可得:c-3≥0,3-c≥0,解得:c=3,∴=0,则b=2;(2)当a是腰长,c3,不能构成三角形,舍去;当c是腰长,a是底边时,任意两边之和大于第三边,能构成三角形,,.【过关检测】1.说明命题是假命题的一个正确的反例是( )A.a=3 B.a=-3 C.a=0.3 D.a=0【答案】B【解析】=a,∴a≥0,故此命题是假命题的反例就是a是一个负数,故答案为:B.2a,b应满足的条件是( )A.a,b均为非负数B.a,b同号C.a≥0,b>0 D.ab≥0【答案】D解:根据二次根式的意义,被开方数ab≥0;又根据分式有意义的条件,b≠0.故选D.3.2的值是()A B.3 C.±3 D.9 【答案】B【解析】解:原式=2=34.下列说法中,正确的是()A.无理数就是开方开不尽的数B0,则a≥0C.如果a=b,那么ac=bcD.若ba=1,则a与b互为相反数【答案】C【解析】解:A.无理数是无限不循环小数,包括开方不尽的数,故A错误;B. a+5>0,∴a>﹣5,故B错误;C. 如果a=b,根据等式的性质可得ac=bc,故C项正确;D. ba=1,则a=b且a≠0,故选D错误;故选:C.5.若代数式1x-在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0C.x≠0D.x≥0且x≠1【答案】D【解析】根据分式有意义的条件和二次根式有意义的条件,可知x-1≠0,x≥0,解得x≥0且x≠1.故选D.6a的取值为()A.0 B.12-C.﹣1 D.1【答案】B≥,=时为最小值. 即:210a+=,∴12 a=-.故选B.7.在平面直角坐标系中,点M(a,b)的坐标满足(a﹣3)20,则点M在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】解:∵(a﹣3)20,∴a=3,b=2,∴点M(3,2),故点M在第一象限.故选:A.8.已知x、y为实数,4,则y x的值等于()A.8 B.4 C.6 D.16【答案】D【解析】∵x﹣2≥0,即x≥2,①x﹣2≥0,即x≤2,②由①②知,x=2;∴y=4,∴y x=42=16.故选:D.940a-=)A B.C D.±【答案】A【解析】40a-=∴b-3=0,a-4=0∴ab=4223333==故选A.10.已知20n是整数,则正整数n的最小值为___【答案】5【解析】∵20=25n n,且20n是整数,∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.11.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:22164?a x a x+=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.【答案】()23a+a+3【解析】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻译为()23a+.∵a>0,∴()23+3.a a+=故答案为:()23a+;a+3.12.实数a、b在数轴上的位置如图所示,请化简:|a|﹣2a﹣2b.【解析】解:∵从数轴可知:a <0<b ,∴|a|=|a|﹣|a|﹣|b|=﹣|b|=﹣b .12.已知2(21)0a b -+=4=【答案】6【解析】因为2(21)0a b -+=,根据二次根式和平方的非负性可得21030a b b -+=⎧⎨-=⎩,计算得到53a b =⎧⎨=⎩;因4=,所以64c =,则将53a b =⎧⎨=⎩和64c =。
二次根式的基本定义

知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.注意理解:1、定义是从结构形式上定义的,必须含有二次根号。
根指数省略不写。
不能从化简结果上判断,如,都是二次根式。
2、被开方数是一个数,也可以是含有字母的式子。
但前提条件是必须是大于或等于0.3、如果是给定的式子,就是有意义的。
、4、形如b(a的式子也是二次根式,b与是相乘关系,当b是分数时,写成假分数。
5、式子(a表示的是非负数。
6、+b(a和形式是含有二次根式的式子,不能叫二次根式。
二次根式定义:【例1】下列各式,其中是二次根式的是_________(填序号).变式练习:1、下列各式中,一定是二次根式的是()A D2中是二次根式的个数有______个3、下列的式子一定是二次根式的是()A.B.C.D.4、式子:①;②;③;④;⑤;⑥;⑦⑧中是二次根式的代号为()A.①②④⑥B.②④⑧C.②③⑦⑧D.①②⑦⑧【例2】若是正整数,最小的整数n是()A.6 B.3 C.48 D.2变式练习:1、已知:是整数,则满足条件的最小正整数n的值是()A.0 B.1 C.2 D.52、二次根式是一个整数,那么正整数a最小值是.注意掌握:1、二次根式具有双重非负性。
(a,2、如果式子中既含有二次根式又含有分式,那么它有意义的条件是:二次根式中的被开方数是非负数,分式中的分母不为0.3、如果式子中含有零指数幂或负整数指数幂,有意义的条件是,度数不为0.【例3】式子有意义的x 的取值范围是变式练习: 1、使代数式43--x x 有意义的x 的取值范围是() A 、x>3 B 、x ≥3C 、x>4D 、x ≥3且x ≠42x 的取值范围是3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 【例4】若y=5-x +x -5+2009,则x+y=变式练习:12()x y =+,则x -y 的值为()A .-1B .1C .2D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 取什么值时,代数式1取值最小,并求出这个最小值。
二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。
其中“”叫做二次根号,二次根号下的a 叫做被开方数。
性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。
3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。
第1课时:《二次根式》知识点总结复习(学生版)

《二次根式》题型分类知识点一:二次根式的概念【知识要点】二次根式的定义: 形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是 . 1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、使代数式221x x-+-有意义的x 的取值范围是3、如果代数式m nm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=1、若11x x ---2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 取什么值时,代数式211a ++取值最小,并求出这个最小值。
1.已知a 是5整数部分,b 是 5的小数部分,求12a b ++的值。
2.若7-3的整数部分是a ,小数部分是b ,则=-b a 3 。
3.若172+的整数部分为x ,小数部分为y ,求y x 12+的值.知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数. 注意:此性质可作公式记住,后面根式运算中经常用到.2. ()()a aa 20=≥. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系 (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的.【例4】若()22340a b c -+-+-=,则=+-c b a .1、若0)1(32=++-n m ,则m n +的值为 。
二次根式知识点总结大全

第二十一章二次根式【知识要点1.二次根式:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a)2=a(a≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就能够用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也能够将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0);=b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1其中是二次根式的是_________(填序号).a(a>0)==aa2a-(a<0)0 (a=0);例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x 例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x y y x x y y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-. 例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---3、在实数范围内分解因式例. 在实数范围内分解因式。
八年级数学下册二次根式之化简

八年级数学下册二次根式之化简知识点1、二次根式定义形如式子叫做二次根式;二次根式必须满足:含有二次根号;被开方数a必须是非负数(含有,且有意义)。
①被开方数可以是数,也可以是单项式、多项式、分式等代数式;②判断时一定要注意不要化简,一定要有意义。
知识点2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
①根号下无分母,分母中无根号;②被开方数中没有能开方的因数或因式。
知识点3、二次根式的性质(1)非负性√a (a≥0)是一个非负数注意:此性质可作公式记住,后面根式运算中经常用到.(2)(√a)^2=a (a≥0)注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或(3)非负代数式写成注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.知识点4、最简二次根式和同类二次根式(1)最简二次根式:☆最简二次根式的定义:①被开方数是整数,因式是整式②被开方数中不含能开得尽方的数或因式,分母中不含根号☆同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式知识点5、二次根式计算——分母有理化(1)分母有理化定义:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用来确定,如下,分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如下列式子,互为有理化因式(3)分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;知识点6、二次根式计算——二次根式的乘除(1)积的算术平方根的性质积的算术平方根,等于积中各因式的算术平方根的积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最简二次根式定义
二次根式是一种数学表达式,它由一个二次项和一个常数项组成,可以用来表示一个函数
的图像。
它的一般形式为:ax²+bx+c=0,其中a、b、c是常数,x是未知数。
二次根式的解法有多种,最常用的是利用平方根法。
根据二次根式的一般形式,可以将其
化为一个二次方程,即ax²+bx+c=0,可以求出x的值,即x=(-b±√(b²-4ac))/2a。
二次根式的应用非常广泛,它可以用来求解复杂的函数,也可以用来求解多元一次方程组。
此外,它还可以用来求解抛物线的焦点和准线,以及求解圆的方程。
二次根式的求解也是数学学习中的重要内容,它可以帮助我们更好地理解函数的性质,从
而更好地掌握数学知识。
总之,二次根式是一种重要的数学表达式,它可以用来求解复杂的函数,也可以用来求解多元一次方程组,是数学学习中不可或缺的重要内容。