高一数学讲义 第六章 三角函数
高一数学三角函数讲义

三角函数讲义知识要点:一、角的概念与推广:任意角的概念;象限角(轴线角)、终边相同的角;二、弧度制:把长度等于半径的弧所对的圆心角叫做1弧度;弧长公式:r l α=扇形面积:S=α22121r r l =⋅三角函数线:如右图,有向线段A T与M P O M 分别叫做α 的的正切线、正弦线、余弦线。
三、三角函数的求值、化简、证明问题常用的方法技巧有:1、 常数代换法:如:αααααα2222tan sec cot tan cos sin 1-=⋅=+=2、 配角方法:ββαα-+=)(()βαβαα-++=)(222βαβαβ--+=3、 降次与升次:22cos 1sin 2αα-= 22cos 1cos 22αα+= 以及这些公式的变式应用。
4、 ()θααα++=+sin cos sin 22b a b a (其中ab=θtan )的应用,注意θ的符号与象限。
5、 常见三角不等式:(1)、若x x x x tan sin .2,0<<⎪⎭⎫⎝⎛∈则π (2)、若2cos sin 1.2,0≤+<⎪⎭⎫⎝⎛∈x x x 则π(3)、1cos sin ≥+x x 6、 常用的三角形面积公式:(1)、c b a ch bh ah S 212121===(2)、B ac A bcC ab S sin 21sin 21sin 21===(3)、S =四、三角函图象和性质:正弦函数图象的变换:()()αωαωω+=−−−→−+=−−−→−=−−−→−=x A y x y x y x y sin sin sin sin 振幅变换平移变换横伸缩变换万能公式:2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α 证:2tan 12tan22cos 2sin 2cos 2sin 21sin sin 222α+α=α+ααα=α=α2tan 12tan 12cos 2sin 2sin 2cos 1cos cos 222222α+α-=α+αα-α=α=α2tan 12tan22sin 2cos 2cos 2sin 2cos sin tan 222α-α=α-ααα=αα=α例1 已知5cos 3sin cos sin 2-=θ-θθ+θ,求3c os 2θ + 4sin 2θ 的值。
高一三角函数讲解

高一三角函数讲解三角函数是数学中的一门重要内容,主要涉及三角函数的定义、性质、图像、相关角以及三角函数的应用等方面。
下面将通过1200字以上的讲解,详细介绍高一三角函数的相关知识。
一、三角函数的定义与性质1.定义:在单位圆上,以圆心为端点A,过原点的x轴为端点B,弧AB对应的角θ,我们定义三角函数的值:(1) 正弦函数sinθ:sinθ = AB / OA。
(2) 余弦函数cosθ:cosθ = OB / OA。
(3) 正切函数tanθ:tanθ = AB / OB。
(4) 余切函数cotθ:cotθ = OB / AB。
(5) 正割函数secθ:secθ = OA / OB。
(6) 余割函数cscθ:cscθ = OA / AB。
2.性质:(1)周期性:正弦函数、余弦函数、正割函数、余割函数的周期都是2π,而正切函数和余切函数的周期是π。
即:f(x+T)=f(x),其中T为周期。
(2) 对称性:正弦函数是奇函数,即sin(-θ) = -sinθ;余弦函数是偶函数,即cos(-θ) = cosθ。
(3) 正弦、余弦函数的值域:-1 ≤ sinθ ≤ 1,-1 ≤ cosθ ≤ 1(4) 三角函数的基本关系式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ。
二、三角函数的图像与性质1. 正弦函数sinx的图像:(1) 周期性:sin(x + 2π) = sinx。
(2) 函数值域:-1 ≤ sinx ≤ 1(3)对称性:以原点为对称中心,关于y轴对称。
(4)最值点:最大值为1,最小值为-1,位于x=(2n+1)π/2的点为最值点。
(5)单调性:在[0,π]上单调递增,在[π,2π]上单调递减。
2. 余弦函数cosx的图像:(1) 周期性:cos(x + 2π) = cosx。
(2) 函数值域:-1 ≤ cosx ≤ 1(3)对称性:关于y轴对称。
沪教版(上海)高中数学高一下册6.1三角函数复习课件

D.4,π3
12345
解析 答案
5.已知函数f(x)=-sin2x+sin
x+a,若1≤f(x)≤
17 4
对一切x∈R恒成立,
三角函数的性质是本章复习的重点,在复习时,要充分利用数形结合思 想把图像与性质结合起来,即利用图像的直观性得到函数的性质,或由 单位圆中三角函数线表示的三角函数值来获得函数的性质,同时也能利 用函数的性质来描述函数的图像,这样既有利于掌握函数的图像与性质, 又能熟练运用数形结合的思想方法。
(k∈Z)时,ymin=-1
在开区间(kπ
在[-π+2kπ,2kπ](k∈Z) 上是 增加的;在[2kπ,π+2kπ]
-π2
,kπ+
π 2
)
(k∈Z)上是
(k∈Z)上是减少的
增加的
在x=2kπ(k∈Z)时,ymax=1; 在x=π+2kπ(k∈Z)时,ymin= -1
无最值
3.反三角函数
反余弦、反正切函数同理,性质如下:
解 因为 x∈-π2,-1π2,所以 2x+π6∈-56π,0,
于是,当 2x+π6=0,即 x=-1π2时,f(x)取得最大值 0;
当 2x+π6=-π2,即 x=-π3时,f(x)取得最小值-3.
解答
类型三 三角函数的最值和值域 命题角度1 可化为y=Asinωx+φ+k型 例3 求函数y=-2sin(x+π6 )+3,x∈[0,π]的最大值和最小值。
第6章 三角函数 复习课件
知识网络
三 角 函三角函数的图象与性质性图质象正 图周 奇 单 最弦 象期 偶 调 大曲 特性 性 性 、线 征最、小余值弦曲线、正切曲线
数
A、ω、φ对函数图象的影响
函数y=Asinωx+φ的图象图象画法五 变点 换法 法
高一数学三角函数知识点讲解

高一数学三角函数知识点讲解在高一数学的学习中,三角函数是一个非常重要的知识点,它不仅在数学领域中有着广泛的应用,还为后续学习物理等学科打下了坚实的基础。
下面,我们就来详细地讲解一下高一数学中三角函数的相关知识。
一、角的概念的推广在初中,我们对角的认识主要局限在 0°到 360°之间。
但在高中,为了更全面地研究角,我们将角的概念进行了推广。
正角:按逆时针方向旋转形成的角。
负角:按顺时针方向旋转形成的角。
零角:一条射线没有作任何旋转形成的角。
角的顶点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限就称这个角是第几象限角。
如果终边落在坐标轴上,就称这个角不属于任何象限。
二、弧度制角度制是用度(°)作为度量单位来度量角的大小。
而弧度制则是以“弧度”为单位来度量角的大小。
如果半径为 r 的圆的圆心角α所对弧的长为 l,那么角α的弧度数的绝对值是|α| = l / r 。
弧度与角度的换算:180°=π 弧度,1°=π / 180 弧度,1 弧度=(180 /π)°。
在弧度制下,扇形的弧长公式为 l =|α| r ,扇形的面积公式为 S = 1/2 |α| r² 。
三、任意角的三角函数设α是一个任意角,它的终边上任意一点 P(x,y),r =√(x²+y²) ,那么正弦函数:sinα = y / r余弦函数:cosα = x / r正切函数:tanα = y / x (x ≠ 0)三角函数值在各象限的符号:第一象限:正弦、余弦、正切都是正的;第二象限:正弦是正的,余弦、正切是负的;第三象限:正切是正的,正弦、余弦是负的;第四象限:余弦是正的,正弦、正切是负的。
四、同角三角函数的基本关系平方关系:sin²α +cos²α = 1商数关系:tanα =sinα /cosα (cosα ≠ 0)五、诱导公式诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。
数学三角函数知识点高一

数学三角函数知识点高一三、三角函数的基本概念和性质一、正弦函数与余弦函数在平面直角坐标系中,以原点O为顶点,建立一个单位圆。
设圆上一点P的坐标为(x,y)。
将OP的终边与x轴正向的交点记为M。
则OP与正向的夹角A称为弧度角。
根据三角形的定义,可以得到以下关系式:OM = cosA, PN = sinA其中,- x = cosA (cosA为弧度角A对应的点的横坐标)- y = sinA (sinA为弧度角A对应的点的纵坐标)这两个函数称为正弦函数和余弦函数。
二、正切函数与余切函数在平面直角坐标系中,以原点O为顶点,建立一个单位圆。
设圆上一点P的坐标为(x,y)。
将OP的终边与x轴正向的交点记为M。
则OP与正向的夹角A称为弧度角。
根据三角形的定义,可以得到以下关系式:tgA = y / x = sinA / cosActgA = x / y = cosA / sinA这两个函数称为正切函数和余切函数。
三、三角函数的基本性质1. 周期性:正弦函数和余弦函数的周期都是2π,即f(x + 2π) =f(x)。
正切函数和余切函数的周期都是π,即f(x + π) = f(x)。
2. 奇偶性:正弦函数是奇函数,即sin(-x) = -sin(x);余弦函数是偶函数,即cos(-x) = cos(x)。
正切函数是奇函数,即tg(-x) = -tg(x);余切函数是奇函数,即ctg(-x) = -ctg(x)。
3. 定义域和值域:正弦函数和余弦函数的定义域是整个实数集,值域是[-1, 1]。
正切函数和余切函数的定义域是除了一切使得cosA或sinA为零的实数之外的所有实数,值域是整个实数集。
4. 增减性:正弦函数在[0, π]上是增函数,在[π, 2π]上是减函数。
余弦函数在[0, π]上是减函数,在[π, 2π]上是增函数。
5. 最值:正弦函数和余弦函数的最大值是1,最小值是-1。
正切函数的最大值是无穷,最小值是负无穷。
高一第六章数学知识点归纳

高一第六章数学知识点归纳数学作为一门重要的科学学科,涉及到各个学年的学习内容。
而在高中数学中,第六章是一个重要的知识点集合,主要涉及到三角函数与解三角形。
本文将对这一章的主要知识点进行归纳,以帮助学生更好地理解和掌握这些内容。
1. 三角函数的概念首先,我们需要了解三角函数的概念。
在平面直角坐标系中,对于任意一个实数x,我们可以定义它的正弦(sin x)、余弦(cos x)和正切(tan x)。
这些函数与直角三角形的边长之间有密切的关系,通过对角度与弧度的转换,我们可以得到更为精确的数值。
2. 三角函数的性质了解了三角函数的概念之后,我们需要深入了解它们的性质。
比如,正弦函数和余弦函数的图像都是周期函数,而正切函数的图像则呈现出周期性和奇偶性的特点。
此外,还有诸如反三角函数的定义域、值域以及图像等方面的性质需要掌握。
3. 三角恒等式的运用在解题过程中,三角恒等式的应用是不可或缺的。
熟练掌握各种三角恒等式可以帮助我们化简复杂的表达式,同时也能用于解决一些等式和不等式的求解问题。
比如,利用余弦定理可以处理不等边三角形的相关计算,而正弦定理则适用于处理含有角度的等式和比例关系。
4. 三角函数的解析式对于给定的一个三角函数,我们可以通过数学推导得到其解析式。
例如,正弦函数的解析式是sin x = a/b,其中a表示三角形的对边,b表示斜边的长度。
借助这些解析式,我们可以利用已知条件求解未知量,解决一些几何问题。
5. 解三角形的方法除了研究三角函数的性质和解析式,解三角形也是这一章的重点内容之一。
常见的解三角形的方法有正弦定理、余弦定理以及正弦规则等。
通过运用这些方法,我们可以求解确定三角形各边和角的未知量,从而获得完整的三角形信息。
6. 三角函数在物理问题中的应用最后,三角函数的应用不仅仅局限在纯数学的领域,它也广泛应用于物理学中。
比如,通过运用三角函数可以计算物体在斜面上受到的重力分力和垂直分力,进而求解物体在斜面上的运动轨迹。
三角函数的概念高一数学精讲课件

则 PM y , P0M 0 y0 ,OM x ,OM 0 x0 ,
OMP OM0P0.
所以得到 P0M0 PM ,
1r
即 y0
y.
r
因为
y与
y0 同号,所以
y0
y r
,即sin
y.
r
同理可证:cos x ,tan y .
r
x
PART 2 三角函数值的正负
根据三角函数的定义,请将三角函数值的符号填入下图:
所以tan 672 0;
(3)因为3 2,所以3角的终边位于 x轴的非正半轴上, 所以tan3 0.
练习.已知半径为120mm的圆上,有一条弧的长是 144mm,求该弧所对的圆心角(正角)的弧度数
3
2 1 0 1 2 3 -1
2 22
222
tana 0
3 3
1
3
/
3
-1 3 0
3
例题探究
例3. 确定下列三角函数的符号 (1)sin250° (2)tan(-672°) (3)tan3π
解:(1)因为250 是第三象限角,所以sin 250 0; (2)因为672 48 360 2,所以672 角的终边与48
() ( )
y
() ( )
O
x
() ( )
O
x
() ( )
O
x
() ( )
PART 3 特殊角的三角函数值
角α 0° 30° 45° 60° 90° 120° 135° 150° 180°
弧度 0
6
sina 0 1 2
432
2 31
22
2 3 5
3 46
3 21 0 2 22
高一数学备课课件三角函数的概念

介绍即将学习的三角函数的应用,包括解三角形、三角函数的和差化积与积化和 差公式等。
预习要求
要求学生提前预习相关内容,了解解三角形的基本方法、三角函数的和差化积与 积化和差公式的推导过程等。同时,鼓励学生思考如何将所学知识应用到实际问 题中,提出自己的疑问和想法。
感谢您的观看
THANKS
三角函数恒等式证明及应用
1 勾股定理在三角函数中的应用
$sin^2 alpha + cos^2 alpha = 1$,用于证明三角函 数的性质及求解相关问题。
2 倍角公式
$sin 2alpha = 2sin alpha cos alpha$,$cos 2alpha = cos^2 alpha - sin^2 alpha$,用于简化三角函数表 达式及求解相关方程。
余弦函数公式
$cos(alpha pm beta) = cos alpha cos beta mp sin alpha sin beta$
正切函数公式
$tan(alpha pm beta) = frac{tan alpha pm tan beta}{1 mp tan alpha tan beta}$
和差化积与积化和差公式
和差化积公式
$sin alpha + sin beta = 2sinfrac{alpha + beta}{2}cosfrac{alpha - beta}{2}$,$sin alpha - sin beta = 2cosfrac{alpha + beta}{2}sinfrac{alpha - beta}{2}$
学生自我评价报告分享
知识掌握情况
学生自我评价对于三角函数概念 的理解程度,包括定义、性质、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学讲义 第六章 三角函数6.1 正弦函数和余弦函数的性质与图像每一个实数x 都有唯一确定的角与之对应,而这个角又可以与它的三角比sin x (或cos x )对应,即每个实数x 都可以与唯一确定的值sin x (或cos x )对应.按这样的对应法则建立起来的函数,表示为sin y x =(或cos y x =),叫做自变量为x 的正弦函数(或余弦函数).sin y x =和cos y x =的定义域都是R ,值域都是[]11-,. ()()sin cos y x x y x x =∈=∈R R ,的性质:1.奇偶性根据诱导公式,对x ∀∈R ,有()sin sin x x -=-,()cos cos x x -=, ()sin y x x ∴=∈R 是奇函数,()cos y x x =∈R 是偶函数.2.周期性对于()()sin 2πsin k x x k +=∈Z ,当0k ≠时,2πk 是()sin f x x =的周期,2π是不是()sin f x x =的最小正周期呢?假设存在T ,满足02πT <<,且是函数()sin f x x =的周期,即()()f x T f x +=,令π2x =,得ππ1sinsin cos 22T T ⎛⎫==+= ⎪⎝⎭,与02πT <<时,cos 1T <矛盾. 3.函数图像 若把角x 的顶点置于坐标系uOv 的原点,角x 的始边与Ou 轴重合,终边与单位圆的交点为()P u v ,则sin cos x v x u ==,.当x 在区间[)02π,上连续变化的时候,都有单位圆上点()P u v ,与之对应.相应地在坐标系xOy 中,描绘出点()Q x v ,和点()R x u ,.点Q 便勾画出正弦函数sin y x =一个周期的图像(见图6-1),点R便勾画出余弦函数cos y x =一个周期的图像(见图6-2).然后再利用函数的周期性将图像向左右延伸,便得到正弦函数和余弦函数的图像(见图6-3).图6-34.单调性当ππ22x ⎡⎤∈-⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递增,∴函数sin y x =在ππ22⎡⎤-⎢⎥⎣⎦,上单调增.当π3π22x ⎡⎤∈⎢⎥⎣⎦,时,角x 的始边与单位圆的交点的纵坐标随x 的递增而递减,∴函数sin y x =在π3π22⎡⎤⎢⎥⎣⎦,上单调减.同理可得,函数cos y x =在[]0π,上单调减,在[]π2π,上单调增.拓展:函数sin y x =在ππ2ππ2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 说明:若()y f x =是定义在实数集R 上的周期函数,最小正周期是T ,[]a b ,是()y f x =的单调区间,则对任意整数k ,[]kT a kT b ++,均是()y f x =的单调区间. 5.最值回顾:函数sin y x =在ππ2π2π22k k ⎡⎤-+⎢⎥⎣⎦,上单调增,在π3π2π2π22k k ⎡⎤++⎢⎥⎣⎦,上单调减,其中k ∈Z . 函数cos y x =在[]2π2ππk k +,上单调减,在[]2ππ2π2πk k ++,上单调增,其中k ∈Z . 结论:当()π2π2x k k =+∈Z 时,函数sin y x =取最大值1; 当()π2π2x k k =-∈Z 时,函数sin y x =取最小值1-; 当()2πx k k =∈Z 时,函数cos y x =取最大值1; 当()2ππx k k =+∈Z 时,函数cos y x =取最小值1-.例1.求证:()sin f x x =是偶函数.证明:对x ∀∈R ,有()()()sin sin f x x x f x -=-==, ()sin f x x ∴=是偶函数.例2.研究函数()sin cos f x x x =+的奇偶性. 解:πππsin cos 0444f ⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, πππsin cos 444f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.另解:若()()f x f x -=,即()()sin cos sin cos x x x x -+-=+, 则sin 0x =,即πx k =,k ∈Z .若()()f x f x -=-,即()()sin cos sin cos x x x x -+-=--, 则cos 0x =,即ππ2x k =+,k ∈Z . ()sin cos f x x x ∴=+既不是奇函数,也不是偶函数.说明:对于()sin cos f x x x =+,虽然有无数多个实数x ,满足()()f x f x -=,但是()f x 并不是偶函数.同理()f x 也不是奇函数.函数的奇偶性是函数的整体性质.若()f x 是奇函数,则()()f x f x -=-对于定义域内的每一个x 恒成立; 若()f x 是偶函数,则()()f x f x -=对于定义域内的每一个x 恒成立.例3.已知A ωϕ、、都是常数,且0A >,ω>0,求证:函数()()sin f x A x ωϕ=+的最小正周期是2πω.解:对于任何实数x ,()2π2πsin sin 2πf x A x A x ωϕωϕωω⎡⎤⎛⎫⎛⎫+=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()sin A x f x ωϕ=+=,2πω∴是函数()()sin f x A x ωϕ=+的周期.可以证明2πω是函数()()sin f x A x ωϕ=+的最小正周期.例4.作出函数sin cos y x x =+在[]02π,上的图像.解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.描点作图,见图6-4.图6-4例5.求函数sin cos y x x =+的单调增区间. 解:πsin cos 4y x x x ⎛⎫=+=+ ⎪⎝⎭.πππ2π2π242k x k k -++∈Z ,≤≤,3ππ2π2π44k x k k ∴-+∈Z ,≤≤. ∴函数sin cos y x x =+的单调增区间是()3ππ2π2π44k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,.例6.求函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间.解:π2π32ππ3k xk k -+∈Z ,≤≤,2ππ2π4π3939k k x k ∴++∈Z ,≤≤.∴函数π2cos 33y x ⎛⎫=- ⎪⎝⎭的单调减区间是()2ππ2π4π3939k k k ⎡⎤++∈⎢⎥⎣⎦Z ,.例7.求函数()sin cos 0y a x b x ab =+≠的最值. 解:()sin cos y a x b x x ϕ=++,其中tan baϕ=, max min y y ∴==.例8.求下列函数的最值: (1)2sin 2cos y x x =+;(2)()22sin cos y a x b x a b =+≠; (3)()()3sin 2105sin 270y x x =+︒++︒;(4)66sin cos y x x =+.解:(1)()2111sin 2cos sin 2cos22222y x x x x x ϕ=+=++=++,max y ∴min y =. (2)()222sin cos sin y a x b x a b x b =+=-+,∴若a b >,则2sin 1x =时,max y a =;2sin 0x =时,min y b =.若a b <,则2sin 0x =时,max y b =;2sin 1x =时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.另解:221cos21cos2sin cos cos22222x x b a a by a x b x ab x -+-+=+=+=+, ∴若a b >,则cos21x =-时,max y a =;cos21x =时,min y b =.若a b <,则cos21x =时,max y b =;cos21x =-时,min y a =. {}max max y a b ∴=,,{}min min y a b =,.(3)()()3sin 2105sin 270y x x =+︒++︒3cos10sin23sin10cos25cos70sin25sin70cos2x x x x =︒+︒+︒+︒()()3cos105cos70sin 23sin105sin 70cos2x x =︒+︒+︒+︒ ()7sin 2x ϕ=+,其中3sin105sin 70tan 3cos105cos70ϕ︒+︒=︒+︒,max 7y ∴=,min 7y =-.(4)664224sin cos sin sin cos cos y x x x x x x =+=-+()2222223sin cos 3sin cos 1sin 24x x x x x =+-=-,max 1y ∴=,min 14y =. 说明:在求函数的最值过程中,始终要贯彻“统一名称统一角”的观点. 基础练习1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+; (2)()sin f x x x =; (3)()πsin πf x x =;(4)()2sin sin 2f x x x =+;(5)()ππcos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭;(6)()22sin 2sin cos 3cos f x x x x x =++; (7)()66sin cos f x x x =+;(8)()()2222sin cos 0f x a x b x a b =++≠.2.用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别.(1)2sin 1y x =-;(2)12sin 2y x =.3.观察正弦曲线和余弦曲线.写出满足下列条件的区间: (1)sin 0x >; (2)cos 0x <; (3)1sin 2x >; (4)cos x <. 4.求下列函数的单调区间:(1)πcos 27y x ⎛⎫=-- ⎪⎝⎭;(2)π2sin 34y x ⎛⎫=-- ⎪⎝⎭;(3)lg cos 13xy ⎛⎫= ⎪⎝⎭.5.求下列函数的最值,及取得相应最值的x 值.(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭; (2)23cos 4sin 2y x x =--;(3)22sin 3sin 1y x x =-+,π2π33x ⎡⎤∈⎢⎥⎣⎦,.6.确定函数131log 4y x ⎤⎛⎫=- ⎪⎥⎝⎭⎦的定义域、值域、单调区间、奇偶性、周期性.能力提高7.设π02αβγ⎛⎫∈ ⎪⎝⎭、、,,满足:()()cos cos sin sin cos ααββγγ===,,,则αβγ,,的大小关系为__________.8.求下列函数的周期: (1)sin3cos y x x =+;(2)1sin cos 1sin cos 1sin cos 1sin cos x x x xy x x x x+++-=++-++; (3)()2cos 325y x =-+.9.求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程.10.(1)求函数()2sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数()2cos sin f x x a x b =-+的最大值为0,最小值为4-,实数0a >,求a b ,的值.6.2 正切函数的性质与图像定义:对于ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,都有唯一确定的值tan x 与之对应,按照此对应法则建立的函数tan y x =,叫做正切函数. 正切函数的性质:1.周期性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan πtan k x x k +=∈Z ,, tan t x ∴=是周期函数.可以证明函数tan y x =的最小正周期是π(见图6-5).图6-52.奇偶性ππ2x x x k k ⎧⎫∀∈≠+∈⎨⎬⎩⎭Z ,,有()tan tan x x -=-,tan y x ∴=是奇函数. 3.单调性12π02x x ⎡⎫∀∈⎪⎢⎣⎭、,,且12x x <,()121212sin tan tan cos cos x x x x x x --=12π02x x -<-<, ()12sin 0x x ∴-<. 1cos 0x >,2cos 0x >,()121212sin tan tan 0cos cos x x x x x x -∴-=>,即tan y x =在π0,2⎡⎫⎪⎢⎣⎭上单调增.tan y x =是奇函数, tan y x =在ππ22⎛⎫- ⎪⎝⎭,上单调增.tan y x =是周期为π的函数,∴函数tan y x =的单调增区间是()ππππ22k k k ⎛⎫-+∈ ⎪⎝⎭Z ,.4.值域函数tan y x =的值域是R .正切函数tan y x =在ππ22⎛⎫- ⎪⎝⎭,的图像如图6-6:图6-6利用正切函数的周期性,得到正切函数的图像. 例1.判断函数()tan 1lgtan 1x f x x +=-的奇偶性.解:函数的定义域应满足tan 10tan 1x x +>-,即tan 1x <-,或tan 1x >.于是定义域是()ππππππππ2442k k k k k ⎛⎫⎛⎫--++∈ ⎪ ⎪⎝⎭⎝⎭Z ,,,定义域是关于原点对称的. ()()()1tan 11tan 1tan lg lg lg tan 1tan 1tan 1x x x f x x x --+-+⎛⎫-=== ⎪-----⎝⎭()tan 1lgtan 1x f x x +=-=--.所以,tan 1lgtan 1x y x +=-是奇函数.例2.解不等式:tan21x -≤.解:在ππ22⎛⎫- ⎪⎝⎭,内,πtan 14⎛⎫-=- ⎪⎝⎭.∴不等式tan21x -≤的解集由不等式()πππ2π24k x k k -<-∈Z ≤确定,解得()ππππ22428k k x k -<-∈Z ≤, ∴不等式tan21x -≤的解集为ππππ22428k k x x k ⎧⎫-<-∈⎨⎬⎩⎭Z ,≤.基础练习 1.有人说:“正切函数在整个定义域内是单调递增的函数.”这句话对吗?为什么? 2.求下列函数的周期: (1)()()tan 0y ax b a =+≠; (2)tan cot y x x =-. 3.求函数11tan 2y x=+五的定义域.4.求函数22tan tan 1tan tan 1x x y x x -+=++的最大值、最小值,并求函数取得最大值或最小值时自变量x 的集合.5.求下列函数的最大值和最小值:(1)sin 2sin 3x y x -=-;(2)sin 2cos 3x y x -=-.能力提高6.求函数sin cos π0,sin cos 2x x y x x x ⎛⎫⎡⎤=∈ ⎪⎢⎥+⎣⎦⎝⎭的最值.7.根据条件比较下列各组数的大小: (1)已知ππ32θ<<,比较sin θ,cot θ,cos θ的大小; (2)已知π04θ<<,比较sin θ,()sin sin θ,()sin tan θ的大小; (3)已知π02θ<<,比较cos θ,()cos sin θ,()sin cos θ的大小. 6.3 函数()sin y A x d ωϕ=++的图像与性质例1.对下列函数与函数()sin y x x =∈R 进行比较研究(最好利用几何画板进行动态的研究): (1)()sin 01y A x x A A =∈>≠R ,,;(2)()sin 01y x x ωωω=∈>≠R ,,; (3)()()sin 0y x x ϕϕϕ=+∈∈≠R R ,,; (4)()sin 0y x d x d d =+∈∈≠R R ,,; (5)()()sin 01100y A x d x A A d d ωϕωωϕϕ=++∈>≠>0≠∈≠∈≠R R R ,,,,,,,,. 解:(1)函数sin y A x =与sin y x =都是奇函数,具有相同的周期和单调区间,但值域不同.当1A >时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向拉伸得到;当01A <<时,函数sin y A x =的图像可以看成由函数sin y x =的图像纵向压缩得到(见图6-7).图6-7(2)函数sin y x ω=与sin y x =都是奇函数,值域相同,但函数sin y x ω=与sin y x =的周期和单调区间都不同.当ω>1时,函数sin y x ω=的图像可以看成由函数sin y x =的图像横向压缩得到;当0ω<<1时.函数sin y x ω=的图像可以看成由函数sin y x =的图像横向拉伸得到(见图6-8).图6-8(3)当()πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+是奇函数;当()ππ2k k ϕ=+∈Z ,函数()sin y x ϕ=+偶函数;函数()sin y x ϕ=+与sin y x =具有相同的周期和值域;当()2πk k ϕ-+=∈Z Z 时,函数()sin y x ϕ=+与sin y x =具有相同的单调区间.当ϕ>0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向左平移得到;当ϕ<0时,函数()sin y x ϕ=+的图像可以看成由函数sin y x =的图像向右平移得到(见图6-9).图6-9(4)函数sin y x d =+既不是奇函数,也不是偶函数;函数sin y x d =+与sin y x =具有相同的周期和单调区间,但值域不同.当0d >时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向上平移得到;当0d <时,函数sin y x d =+的图像可以看成由函数sin y x =的图像向下平移得到(见图6-10).图6-10(5)函数()sin y A x d ωϕ=++的图像可以由函数sin y x =的图像经过一系列的变换得到.首先把函数sin y x =的图像进行纵向的变化,让函数sin y x =的图像上点的横坐标保持不变,让点的纵坐标变为原来的A 倍,得到函数sin y A x =的图像(见图6-11).图6-11其次把函数sin y A x =的图像进行横向的变化,让函数sin y A x =的图像七点的纵坐标保持不变,让点的横坐标变为原来的1ω倍,得到函数sin y A x ω=。