离子迁移质谱
离子迁移谱及其应用

离子迁移谱技术及其应用离子迁移谱(Ion Mobility Spectrometry,IMS)技术是上世纪60年代末70年代初发展起来的一种微量化学物质分析检测技术,早期也称为等离子色谱(Plasma Chromatography)。
其利用样品在大气压下电离形成的气相离子在弱电场中漂移,由于各离子的大小、电荷、质量和形状不同使得它们通过迁移管的时间不同,由此来进行离子的分离定性[1]。
1离子迁移谱技术的发展IMS诞生之前,质谱分析技术己经发展的比较成熟,气相色谱技术(GC)在当时也是一种发展比较成熟的化学分析方法。
随着时代的发展,仪器的小型化和样品分析时间的缩短成为人们关心的问题。
但是MS需要在真空条件下进行,仪器造价较高;而GC虽然是一种比较精确的测量方法,但复杂耗时。
针对MS和GC 的上述弱点,诞生了IMS技术。
第一台IMS的诞生,可以追溯到1965年,当时一个名为Franklin GNO Corporatoin的研究机构遇到了一个问题,就是如何在环境大气压下,把空气中某些化合物产生的负离子分离开来。
他们经过研究意识到可以制造一台仪器,利用离子迁移的原理进行化学分析,这样就首次出现了IMS。
Cohen等人在1970年对IMS作了具体描述,同时在杂志中也出现了越来越多的文章来介绍这项技术。
其中Karasek的一篇文章可谓影响深远,他在文中介绍了IMS中离子分子的形成过程,并与当时人们熟悉的色谱技术相比较,从此人们开始对IMS产生了浓厚的兴趣。
经过四十年的发展,传统的IMS技术已经发展的比较成熟,并且己经有商品化的产品在实际中应用,如加拿大的Barringer、美国的Ion Track Instruments 以及英国的Graseby Technology,它们生产的IMS产品已经在检测毒品、爆炸物以及化学毒气方面得到了广泛而卓有成效的应用[2]。
2IMS原理及仪器IMS的基本原理是被检测的样品蒸气或微粒先进行离子化形成离子,然后使产生的离子进入一弱电场中进行漂移,在漂移过程中离子与逆流的中性漂移气体分子不断发生碰撞。
行波离子迁移谱技术及应用研究进展

第 29 卷第 3 期分析测试技术与仪器Volume 29 Number 3 2023年9月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Sep. 2023综述(231 ~ 244)行波离子迁移谱技术及应用研究进展潘慢慢1, 2 ,李 杭2 ,徐一仟1, 2 ,杨其穆1, 2 ,蒋丹丹2 ,王卫国2 ,陈 创2, 3 ,李海洋2(1. 中国科学院大学,北京 100049;2. 中国科学院大连化学物理研究所,辽宁大连 116023;3. 国民核生化灾害防护国家重点实验室,北京 102205)摘要:离子迁移谱(ion mobility spectrometry,IMS)是利用离子迁移率K(离子碰撞截面)差异来实现不同离子的分离与测定,具有分析速度快、检测灵敏度高的优点,其与质谱联用在蛋白质组学、代谢组学、医药等领域已获得了广泛的应用. 随着分析对象复杂性的增加,对IMS的分辨能力也提出了更高要求. 行波离子迁移谱(travelling wave ion mobility spectrometry,TWIMS)采用时域连续的行波电场实现离子传输与分离,其分析通道的长度不受行波电压幅值的限制,理论上可以无限延长离子分析通道来提高分辨能力. 目前,TWIMS的分辨率最高可达1 860,对于分析存在多种同分异构体的复杂样品别具优势. 对TWIMS的原理及分辨能力的影响因素进行了介绍,进一步探讨了不同结构TWIMS仪器的特点、性能和应用,对TWIMS未来发展方向进行了展望.关键词:离子碰撞截面;行波离子迁移谱;循环式离子迁移谱;无损离子操纵结构;离子淌度质谱中图分类号:O657. 63 文献标志码:A 文章编号:1006-3757(2023)03-0231-14DOI:10.16495/j.1006-3757.2023.03.001Advancement of Traveling Wave Ion Mobility Spectrometry andIts ApplicationPAN Manman1, 2, LI Hang2, XU Yiqian1, 2, YANG Qimu1, 2, JIANG Dandan2,WANG Weiguo2, CHEN Chuang2, 3, LI Haiyang2(1. University of Chinese Academy of Sciences, Beijing 100049, China;2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning China;3. State Key Laboratory of NBC Protection forCivilian, Beijing 102205, China)Abstract:Ion mobility spectrometry (IMS) utilizes the difference in ion mobility K (collision cross section) to realize the separation and determination of different ions, which has the advantages of fast analysis speed and high sensitivity. And it coupling with mass spectrometry (IM-MS) was widely used in the fields of proteomics, metabolomics, medicine, etc.With the increasing complexity of the analyzed objects, higher demands are put on the resolution of the IMS. Traveling wave ion mobility spectrometry (TWIMS) uses a time-domain continuous traveling wave electric field to realize ion transport and separation. The analytical path length of the TWIMS is not limited by the amplitude of the travelling wave收稿日期:2023−05−24; 修订日期:2023−07−13.基金项目:国家自然科学基金项目(Nos. 22027804, 21974141),国民核生化灾害防护国家重点实验室科研基金项目(SKLNBC2021-16),大连化物所创新研究基金项目(DICP I202141)[Natural Science Foundation of China (Nos.22027804, 21974141), State Key Laboratory of NBC Protection for Civilian (SKLNBC2021-16), Dalian Institute of Chemical Physics (DICP I202141)]作者简介:潘慢慢(1998−),女,博士研究生,主要从事质谱分析工作,E-mail:通信作者:陈创(1984−),男,博士,《分析测试技术与仪器》青年编委,主要从事质谱分析工作,E-mail:;李海洋(1964−),男,博士,《分析测试技术与仪器》编委,主要从事质谱分析工作,E-mail:.voltage, theoretically the path can be extended indefinitely to improve the resolution. Currently, the resolution of TWIMS can reach up to 1 860, which is advantageous for the analysis of complex samples with the multiple isomers. The principle of TWIMS and the influencing factors of resolution were introduced, the characteristics, performance and applications of TWIMS instruments with different structures were further discussed, and finally the future development directions of TWIMS were prospected.Key words:collision cross section;travelling wave ion mobility spectrometry;cyclic ion mobility spectrometry;structure for lossless ion manipulation;ion mobility-mass spectrometry离子迁移谱(ion mobility spectrometry,IMS)是利用电场驱动气相离子在中性气体中迁移从而实现不同迁移率离子分离和识别的一种技术[1]. IMS能够灵敏检测pg或ng/L量级的目标物,并且具有ms级单谱图分析速度、适用于发展便携式仪器等优点,被广泛应用于化学战剂监测、爆炸物检测等领域. IMS与质谱(mass spectrometry,MS)的联用结合了IMS灵敏、快速、能提供离子结构信息和MS提供精确质量信息的特点,在食品安全、医药和生物分析等领域得到了迅速发展[2-6].在低电场条件下(E/N<2 Td),离子在中性气体中的迁移速度V d与电场强度E成正比,比例系数即为离子迁移率K,其关系如式(1):根据Revercomb等[7]对电场作用下气相离子的运动进行的研究,离子迁移率K与碰撞截面(collision cross section,CCS)满足式(2):其中,z是电荷数,e是单位电荷,N是中性气体的分子数密度,µ是离子和中性气体分子的约化质量,k是玻尔兹曼常数,T eff是有效温度,α为修正因子,ΩD (Teff)是离子的碰撞截面(即CCS),与离子的大小和形状有关,直接反映离子的结构信息. 因此IMS 可以区分MS无法分辨的同分异构体,离子的CCS 差异越小,要求IMS的分辨率越高.根据分离方式的不同,IMS可以分为迁移时间离子迁移谱(DTIMS)、非对称场离子迁移谱(FAIMS/DMS)、行波离子迁移谱(TWIMS)、阱离子迁移谱(TIMS)等,通过提高电场强度或延长离子迁移路径,可以提高IMS的分辨率[8]. 对于DTIMS 而言,延长路径的同时需要提高电压,由于空气击穿电压的限制,依靠延长路径提高分辨率非常有限.而与DTIMS依靠直流电场驱动离子不同,TWIMS 依靠沿迁移区轴向移动的脉冲电压驱动离子,电压幅值不随迁移路径的延长而增大,理论上可以无限延长迁移路径而不受电压的限制. 正是由于这一特性,TWIMS的分辨率目前已经超过1 860,成为目前超高分辨IMS-MS技术的主流[9]. 不同类型IMS 技术对比如表1所列.本文首先介绍TWIMS的原理及分辨能力的影响因素,进一步探讨不同结构TWIMS仪器的特点、性能和应用,最后对TWIMS未来发展方向进行展望.1 TWIMS原理1.1 TWIMS分离原理2004年,Giles等[14]首次将行波应用于环形电极堆栈离子导向器,提出一种使用行波进行离子迁表 1 不同IMS技术对比Table 1 Comparison of different IMSIMS技术工作气压[10]分离场CCS测量最高分辨率/(Ω/ΔΩ)联用技术迁移时间离子迁移谱(DTIMS)266 Pa~大气压强直流电场直接测量250[11]IMS-MS, GC (gaschromatography)-IMS等非对称场离子迁移谱(FAIMS/DMS)大气压强非对称射频电场无法测量Null GC-DMS, DMS-MS等行波场离子迁移谱(TWIMS)~533 Pa方波直流电场需经校准 1 860[9]550[12]TWIMS-MS阱离子迁移谱(TIMS)~400 Pa气流场结合直流电场需经校准400[13]TIMS-MS232分析测试技术与仪器第 29 卷移率分离的新模式,如图1所示. 通过在相邻电极环依次施加脉冲电压产生行波电场,离子在波前位置时,电场驱动离子轴向前进,而离子处于波后位置时,电场驱使离子反向运动,造成运动轨迹折返,即翻滚事件[图1(a)(c)]. 迁移率K较大的离子随波迁移能力强,发生翻滚的次数少,所需总迁移时间较短. 而迁移率K较小的离子随波迁移能力弱,发生翻滚的次数多,所需总迁移时间较长. 如此,不同迁移率离子即可分离. 当离子迁移率K足够大时,离子可以随波作“冲浪”运动[图1(b)].ion trajectory ring electrode(d)stacked-ring ionguidetimeringelectrodeions travelling wavevoltage pulse(a)(b)(c)图1 行波场中离子(a)(c)翻滚事件和(b)“冲浪”行为的SIMION轨迹模拟,(d)行波场的产生[14] Fig. 1 SIMION simulation showing ions (a) (c) roll over wave and (b) surf wave, (d) generation of travelling wave[14]此后数年,尽管TWIMS仪器和相关应用快速发展,但对于其分离原理的认识仍停留在定性阶段,影响离子传输时间和分辨率的因素没有得到深入研究. 直到2008年,Shvartsburg等[15]构建了简化的TWIMS数值分析模型,不考虑离子的速度弛豫、扩散和射频产生的聚焦场,使用推导和离子动力学模拟对迁移时间和分辨率进行预测,并与实际结果进行比较.定义c为行波前最大场强处(E max)的离子漂移速度和波速(s)的比值,如式(3)所列:以波长为b的三角波为例,其任一位置的电场E都相同,即E=Emax . 当c≥1,即KEmax≥s时,离子在波前的运动速度与波速相同,因此离子表现为随着行波一起运动,迁移时间t即为迁移管长L除以行波波速s.当c<1,即KE max<s时,由于离子的翻滚事件,造成迁移率分离. 离子在波前和波后的运动时间分别为t F和t B,其公式如式(4)(5)所列:由于t F>t B,离子每被一个三角波超越,在轴向会产生向前的净位移d,如式(6):v离子的平均运动速度为式(7):对于长度为L的迁移管,离子迁移时间t为式(8):对于形状更复杂的行波如半正弦波,在满足KEmax<<s时,有相似结论,即:从公式(9)可以看出,与DTIMS不同,TWIMS 中离子迁移速度与离子迁移率和电场强度并非线性关系,无法直接用迁移时间t计算CCS,需要使用结构相似的标准物进行校准方程的拟合,然后将待测物的迁移时间代入校准方程计算出CCS.2018年,Richardson等[16]进一步拓展了TWIMS 的理论,推导出平滑移动的正弦行波驱动下离子迁移时间的表达式,不经校准可直接测量CCS. 然而,动力学推导仍被限制在轴向,没有考虑高场下的离子加热,且实际设备中行波并非是平滑移动的,关于TWIMS的理论仍然需要科研工作者继续探索.第 3 期潘慢慢,等:行波离子迁移谱技术及应用研究进展2331.2 TWIMS分辨率的影响因素在离子迁移与扩散相互独立的前提下,不考虑库伦斥力,对于三角波而言,扩散控制分辨率R TW 为式(10):其中,E与行波波幅U的关系为E=2U/b. 因此,在保证c<1适用于所有离子的前提下,可以通过提高行波波幅或减小波长以提高电场强度、延长路径来提高分辨率,这是TWIMS仪器设计改进的理论依据.而对于DTIMS,扩散控制分辨率R DT为式(11):提高电场强度和延长路径,同样可以提高DTIMS的分辨率. 然而,DTIMS的电场是通过在迁移管两端施加电压差形成的,越长的迁移路径,意味着越大的电压差,过高的电压会引起放电. 不同与DTIMS,TWIMS的电场是在电极单元的单个或多个电极上循环施加脉冲电压形成的行波电场,脉冲电压幅值与迁移路径总长度无关. 因此,通过延长路径提高分辨率不受电压限制.2 TWIMS的仪器进展TWIMS于2004年出现后,经过近二十年的发展,目前的仪器按照结构主要分为三类:第一类是Waters公司早期开发的环形电极堆栈结构(stacked ring ion guide,SRIG)的TWIMS,第二类是Waters 公司于2019年推出的循环离子迁移谱(cyclic ion mobility, cIM),第三类是基于无损离子操纵结构(structures for lossless ion manipulations,SLIM)的TW-SLIM. 下面将介绍它们的结构特点、性能以及应用.2.1 环形电极堆栈结构2006年,Waters推出首款基于SRIG的TWIM-Q-ToF-MS(TWIM-quadrupole-time of flight-MS)系统,即Synapt HDMS[17].如图2(b)所示,Synapt HDMS包括三个施加行波和射频限制的SRIG(即TriWave结构),依次为trap、IM和transfer,其中IM的结构如图2(a)所示. trap用于离子积累,然后将离子团簇释放到IM离子导向器中进行迁移率分离,transfer用于将分离后的离子传送到ToF-MS中进行质荷比分析.(a)sideplategas inion transmission aperturering electrodesprintedcircuitboardsendplateanalyte spray(b)lockspraybafflelockmassreference sprayT-waveion guidequadrupoledre lenstrapgateIMS transfereinzellens transferlensespusherreflectronair-cooled turbomolecular pumpsoil-freescroll pumpisolation valveand removablesample conedetector2 mmdiameteraperture图2 (a)第一代行波离子迁移管[14],(b)Synapt HDMS示意图[18]Fig. 2 (a) First generation TWIM separator[14], (b) schematic diagram of Synapt HDMS system[18]根据分辨率影响因素的理论基础,Waters公司于2009年对行波离子迁移管进行改进,推出了Synapt G2 HDMS. 相比第一代TWIM,Synapt G2的改进如图3所示,增加电极环的数目以延长迁移路径,脉冲电压施加到4个电极环上,比原来两个电极环时平均场强提高了约20%,行波幅值从30 V 提高到40 V,进一步提高了电场强度[19]. 由于低电场条件的限制,在提高行波幅值的同时,需要提高气压以避免离子热化. 因此,在IM前增加了一个充满氦气的腔室以平衡N2的压强,将工作气压从50 Pa提升到了300 Pa. 试验结果显示,Synapt G2将SDGRG和GRGDS两种反序小肽离子的分辨率提234分析测试技术与仪器第 29 卷高了近4倍,达到了45.在之后几年,Waters 公司又相继推出了Synapt G2-S 、Synapt G2-Si 和Vion 等产品,在分辨率、灵敏度和配套软件等方面均有所提升[20].由于技术成熟、商品化程度高, SRIG 的IMS-MS 系统在蛋白质组学[21-22]、脂质组学[23-24]、代谢组学[25-26]、医药[27-29]等领域得到了广泛应用. Hale等[21]使用液体萃取表面技术(LESA )结合TWIM-MS 对小鼠肾脏组织切片的蛋白质进行质谱成像分析,将蛋白质结构与组织特征进行关联. 其中,TWIMS 提供内源蛋白质的空间、构象和质量信息,以及计算检测到的蛋白质或蛋白质复合物的碰撞截面. 此外,按到达时间过滤质荷比(m/z )维度中的离子信号,增加低强度信号来提高信噪比,进一步提高离子图像的特异性. Zang 等[25]使用流动注射法(flow injection ,FI )结合TWIM-MS 对61名前列腺癌患者和42名对照者的血清提取物进行非靶向代谢分析,将质量数、CCS 值和裂解模式与标准物或数据库进行匹配,鉴定出特征代谢物. 使用监督多元分类方法,将前列腺癌患者样本与对照样本区分开来,具有良好的准确性(88.3%~89.3%)、敏感性(88.5%~90.2%)和特异性(88.1%),展示了FI-TWIM-MS 作为用于代谢组学研究的高通量分析工具的潜力. 与超高效液相色谱(ultra-performance liquid chromatography ,UPLC )联用后,UPLC-TWIM-MS 的多维分离能力在复杂中药成分中已知、未知化合物及其异构体的发现和鉴定上有巨大的应用前景,对中药的质量评价和解释作用机制有重要意义,已成功应用于龟龄集[27]、桔梗[28]、丹芝片[29]等中药.此外,TWIM 有助于在Q-ToF-MS 仪器上实现电子转移解离功能(electron transfer dissociation ,ETD )[30]. ETD 是一种自由基驱动的裂解技术,与碰Synaptstacked ring ion guidenitrogenions in ionsin ions out ions out nitrogen out nitrogen outnitrogen outmax. field 25 V/cm (10 V applied)~90% of applied v oltagemax. field 21 V/cm (10 V applied)~60% of applied v oltage(b)(c)4 repeat pattern6 repeatpattern(a)helium outT-wave IMS cellT-wave IMS cellhelium cellheliumSynapt G2stacked ring ion guidenitrogen图3 Synapt HDMS 和Synapt G2 HDMS 的(a )IM 腔室,行波电压(b )施加方式和(c )重复模式对比图[19]Fig. 3 Comparison of (a) IM cells, (b) applied voltage and (c) repeat pattern of travelling wave betweenSynapt HDMS and Synapt G2 HDMS[19]第 3 期潘慢慢,等:行波离子迁移谱技术及应用研究进展235撞诱导解离(collision induced dissociation,CID)互补,在N-Cα键裂解后产生一系列c和z离子,对于蛋白质翻译后修饰的识别和定位非常有价值[31]. 在Synapt系统中,trap用于捕获辉光放电产生的阴离子,从而实现与进入的阳离子的气相反应. 改变行波的速度,可以精细地控制阴离子/阳离子相互作用的水平,从而控制ETD碎片的水平[32]. 结合电喷雾电离,TWIM-MS成为肽和蛋白质的测序和结构分析的有力工具.2012年,Waters基于SRIG开发出了Stepwave 技术,用于大气压离子源(如ESI)的离子传输[33]. 通过缺口处相对平行排列且内径不同的两个SRIG之间的施加电势差,实现离子的离轴传输和聚焦,而通过去除气体分子和未电离的中性分子,提高信噪比和灵敏度.2.2 循环离子迁移谱结构尽管TWIMS通过延长路径提高分辨率不受电压限制,但仍受到仪器体积的制约. 为了解决上述问题,2014年Giles等[34]提出一种循环离子迁移谱,即Cyclic Ion Mobility(如图4所示). cIM包括主体[图4(b]与MS系统的主离子光轴相交的接口区域[图4(c)]两个部分,路径长度共计98 cm,可以取代传统线性TWIM单元,嵌入到Synapt G2-Si系统中[图4(a)][12, 35]. 主体部分由印刷电路板支撑,电极结构如图4(d)所示. 相邻的cIM电极上同时施加反相的射频(2.5 MHz,300 V p-p)和行波脉冲(最大波幅45 V,波速300~1 000 m/s),射频形成的赝势阱提供z方向的限制,行波驱动离子进行迁移率分离.侧板上的repeller电极上施加高于行波波幅的直流电压(60 V),提供x方向的限制. cIM主体部分的电极形成了一个5 cm×0.5 cm的矩形离子通道,离子容量比孔径0.5 cm的线性TWIM高10倍[35]. z方向的窄电极间距,可以最大程度的减少“赛道效应”,即外圈的离子比内圈的离子迁移路径更长引起峰展宽. 接口区域是cIM的关键部分,需要在离子进入、射出和迁移率分离三种功能之间切换,且对离子传输率和分辨率不能有显著影响. Giles等[35]设计出阵列电极结构,将其分为两组,分别施加x方向[图4(e)]、y方向[图4(f)]的行波,从而实现功能切换. 此外,阵列电极结构允许cIM在多通道模式和旁道模式进行切换,在旁道模式下,离子不经过cIM的主体部分,不进行迁移率分离.cIM前后均连接传统线性TWIM,可以实现离子的注入、喷射、存储、激活. 将其与cIM的功能进行组合,可以实现IMS n(多级IMS)功能. IMS n可以选择将cIM中的特定迁移率范围的离子喷射出去,剩余的离子继续执行迁移率分离,重复这一过程将持续减小分析范围. 该功能可以避免在多通道试验中,较大迁移率离子超过较小迁移率离子产生的“套圈”现象. IMS n激活是指将特定迁移率的离子喷射回前级TWIM,其余离子被喷射到ToF中以去除,前级TWIM中的离子经过碰撞诱导激活/解离后重新注入cIM进行迁移率分离,再将分离后的离子喷射到ToF进行检测或者继续进行IMS n分析.√6初代cIM系统对松三糖和棉子糖的分析结果显示,6次循环后分辨率达到139,约为单次通过分辨率的倍,且相比于单次通过离子损失小于15%[34]. 2017年,第二代cIM系统问世,SDGRG和GRGDS两种反序肽离子经过50次循环后,分辨率超过500,实现了超高分辨离子迁移谱的一项巨大进步[12]. 2019年,Waters公司推出了商品化仪器Select Series cyclic IMS.Sisley等[36]使用LESA-QcIM-MS分析小鼠大脑和大鼠肾脏组织中的蛋白质,在cIM前通过四极杆隔离将m/z检测范围缩小到870~920(即QcIM)以避免“套圈”现象,1、2和3次通过后分别检测到24、37和54种蛋白质,充分体现了多通道cIM 的高分辨率在复杂生物样品检测上的优势.Eldrid等[37]研究了cIM中气相蛋白质离子的稳定性,并且利用IMS n结合碰撞诱导展开(CIU)探索了+7细胞色素C(CytC)离子的展开行为(如图5所示). 结果显示在与迁移率分离兼容的时间尺度上(几百毫秒),蛋白质可以很大程度保留其天然和多聚体状态. 对已激活的+7 CytC离子的不同到达时间范围的切片分别进行IMS n激活,探索了不同构象之间的转化现象以及展开顺序,展现了cIM在研究蛋白质动力学、稳定性和展开行为的应用潜力. 2021年,Eilrid等[38]将此方法命名为slice-CA(碰撞激活,collision activation),并研究了一种由胰岛β细胞产生的与Ⅱ型糖尿病有关的激素hIAPP,揭示了hIAPP解离前构象之间的相互转换.除了生物样品,cIM在石油组学上也获得了应用[39-40]. 石油作为最复杂的混合物之一,存在大量的236分析测试技术与仪器第 29 卷同分异构体和同量异位素,对IM-MS 的分辨率要求很高. Ruger 等[40]证明,在多次通过后,QcIM-MS可以更深入地了解瓦斯油中异构体的分布,并且消除同量异位素的干扰,结合碰撞诱导解离技术,可以分离多环芳烃和杂环化合物.2.3 无损离子操纵结构2014年,Garimella 等人提出了无损离子操纵结构(SLIM )[41-44]. SLIM 由一对蚀刻了条状电极的平行印刷线路板组成,通过在电极上施加电压产生静电场、射频电场和驱动电场,可以实现离子无损传输、迁移率分离、选择性离子捕获和积累等复杂操作[45-46]. SLIM 分为基于直流(DC )的DC-SLIM 和基于行波(TW )的TW-SLIM ,由于DC-SLIM 的分辨率有限,TW-SLIM 更受青睐.TW-SLIM 通常由6列射频电极和5列行波电极以及两边的保护电极组成(如图6所示),与cIM 相似,相邻两列射频电极上施加反相射频提供纵向限制,保护电极上施加直流电势提供横向限制,行波电极上施加行波驱动离子进行迁移率分离. 射频电极与行波电极间隔分布,既简化了电源,又保证离子束缚的有效性[47]. 由于印刷线路板工艺成熟,SLIM 具有加工方便、组装灵活、成本低廉的优点,结合TWIMS 电压不随迁移路径延长而增大的特点,目前TW-SLIM 已经实现了商品化[9].ESIstepwaveIGquadtrapIGHecyclic IMSpre-array store post-array store IG arrayreflectronrepellercIM electrode0.5 cm5 cmrepellerPCBs (d)yxPCBscIM electrodes(b)(c)(e)(f)array PCBentrancearray electrodescIM electrodesexitrepellerzx yzx yzx yentrancezxtransferWdetectorpusher(a)图4 cIM 的结构示意图[35](a )cIM 平台概览,(b )cIM 设备,(c )包含阵列电极结构的离子注入/喷射区域,(d )cIM 电极结构,(e )离子注入/喷射模式下行波方向为x 或-x ,(f )分离模式下行波方向为yFig. 4 Schematic diagram of structure of cIM[35](a) overview of cIM plateform, (b) cIM device, (c) ion entry/exit region, consisting of array electrodes, (d) structure of cIMelectrodes, (e) ion injection/ejection mode, array TWs applied in x (or -x ) direction,(f) separation mode, array TWs applied in y -direction第 3 期潘慢慢,等:行波离子迁移谱技术及应用研究进展2372.3.1 多圈循环式TW-SLIM为了在相对紧凑的空间尽可能的实现路径的延长,Hamid 等[48]将90°转弯结构应用在TW-SLIM 上,在有16个90°转弯结构的TW-SLIM 模块上,离子传输效率接近100%且分辨率没有显著损失. 在此基础上,Deng 等[49]开发出了分析通道长13 m 的蛇形路径TW-SLIM[图7(a )],并且对气压、板间距、行波和射频等参数进行了优化,单峰分辨率达到46,峰容量和峰生成率分别为246和370 s −1,实现了异构糖LNFP i 和LNFP ii 的基线分离. 目前,MOBILion Systems 公司已经将其集成到MS 系统中,完成了仪器的商品化,即MOBIE. 2021年,Wormwood Moser 等[50]结合流动注射分析,使用MOBIE 原型机分析了野生型小鼠半脑的脑提取物,仅需2 min 即可实现神经节苷脂的定量和高选择性测量,比传统的LC-MS 更加快速、高通量,且无需色谱样品制备步骤.在13 m 蛇形路径的基础上,结合动态开关结构,Smith 等人提出了多圈循环式TW-SLIM [图7(b )][9, 43]. 离子经过40次多圈飞行后,分析路径长度超过500 m ,分离能力达到1 860,并且可以实现基本无损的离子传输. 在初步应用中,9次通过后,低聚糖LNnH 新的构象特征首次被清楚地区分(如图8所示). 与cIM 相似,多圈循环式TW-SLIM 也存在离子飞行“套圈”现象并导致迁移率分析窗口受限. TW-SLIM 可以利用出口处的动态开关结构,摒弃一部分离子,避免“套圈”现象,简化分析结果.异构体的存在使得分析生物样品和其他复杂混合物具有挑战性,多圈循环式TW-SLIM 的超高分辨率在分析结构差异极小的异构体上有巨大优势[51]. Nagy 等[52]将α-环糊精用作手性主体,通过对环糊精与氨基酸分子形成的主客体非共价复合物进行高分辨的迁移率分离,实现了D -和L -对映体氨基酸混合物的快速检测. 此外,多圈循环式TW-SLIM 在聚糖、蛋白质等生物分子的异构体的分离和鉴定都得到了应用[53-54].然而,超长飞行路径不可避免的伴随着离子团Relative intensityV oltage/V16~17 ms slicefull ATD(a)(b)A r r i v a l t i m e /m s 1.01520253035400.50020406080100V oltage/V19~20 ms slice(c)20406080100V oltage/V23~24 ms slice (d)20406080100V oltage/V26~27 ms slice (e)20406080100Int1.00.5αβγδαβγδεζ图5 激活的+7 CytC 离子的(a )到达时间分布,(b )16~17 ms 、(c )19~20 ms 、(d )23~24 ms 和(e )26~27 ms 切片的CIU 指纹,α、β、γ、δ、ε和ζ表示离子种群[37]Fig. 5 (a) Arrival time distribution of activated +7 CytC ion, and CIU fingerprints for slices (b) 16~17 ms, (c) 19~20 ms,(d) 23~24 ms, (e) 26~27 ms, populations labeled as α, β, γ, δ, ε and ζ[37]RFguardguardTWTWTWTWTW1234567812345678图6 TW-SLIM 的电极结构[47]Fig. 6 Structure of electrodes in TW-SLIM[47](a)(b)TWRFguardswitch ONswitch OFFMSentranceg u a r d图7 (a )13 m 长的蛇形TW-SLIM [49],(b )循环蛇形路径TW-SLIM 和动态离子开关[9]Fig. 7 (a) 13 m serpentine path length TW-SLIM [49],(b) serpentine ultralong path with extended routing TW-SLIM and dynamic ion switch[9]238分析测试技术与仪器第 29 卷扩散导致的峰展宽、信噪比低、灵敏度降低等缺陷.为了解决这一问题,Garimella 等[55]提出了一种时空操纵气相离子群的方法,即压缩比离子迁移率程序(compression ratio ion mobility programming ,CRIMP ),利用断续前进的行波,将迁移率分离中的离子分布折叠成更紧密的离子包. 与使用离子漏斗进行富集相比,CRIMP 显著提高了肽的检测限,灵敏度提高了100倍以上[56]. 具有高灵敏度、高分离能力的多通道蛇形TW-SLIM 与MS 的耦合,对于解决蛋白质组学、代谢组学等长期存在的低丰度、异构混合物的挑战具有重大意义[57].2.3.2 并行分析TW-SLIM长迁移率分离时间(秒级)与有限的离子积累时间(毫秒级)的结合导致长路径TW-SLIM 存在占空比低、离子利用率低的缺点. 为了提高离子利用率,增加离子捕获区域的大小、in-SLIM 离子积累、多路复用策略等方法被相继提出,然而这些方法受到空间电荷容量、检测器的饱和点等限制[58-59]. 2022年,Deng 等[60]开发出一种新的并行分析TW-SLIM ,占空比达100%,分辨率达到150,并和三重四极质谱仪(QQQ )联用,用于靶向定量分析.并行分析TW-SLIM 由入口、开关板载积累区域(SOBA )、两条平行离子路径和出口部分组成,每条离子路径包括一个30 cm 的预过滤区域、离子开关、离子检测器、板载积累区域(OBA )和一条集成了多个迁移率过滤门的4.8 m 的蛇形路径SLIM (如图9所示). SOBA 处积累的离子可以进入任一路径的预过滤区域,经过低分辨的迁移率分离后通过离子开关将无需检测的离子传输到离子检测器,目标离子进入OBA 区域进行富集,再通过离子门注入到后面的长蛇形路径中进行迁移率分离.通过将SOBA 积累的离子多次注入到同一路径以及在两条路径分别同时进行离子积累和迁移率分离,并行分析TW-SLIM 的占空比大大提高,8次注入后利血平离子的占空比达100%,多种标准分析物的实际离子利用效率约为80%. 预过滤对目标离子靶向富集,增加了OBA 区域的目标离子容量,提高灵敏度,结合蛇形路径中的多个过滤门进一步去除干扰离子,大大提高了信噪比. 在过滤模式下,SLIM-QQQ 比QQQ 对醛固酮和可的松的灵Drift time/s0.12900.1320.1350.1380.1410.1441LNnH(a)LNHLNHβ-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-[β-D-Gal-(1→4)-β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-D-Glcβ-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-[β-D-Gal-(1→4)-β-D-GlcNAc-(1→6)]-β-D-Gal-(1→4)-D-GlcOH OH OH OHOHOHOHOHOHOHOH OHNHAcOH AcHNHOHOHOHOHOO O OOOO O O OO O OH OH OH OHOHOHOHOHOH OHOHOHNHAcOH AcHNHOHOHOHOHOO O OOOO OO OO ODrift time/s1.120 1.14 1.161.18 1.20 1.22 1.241LNnHLNnH(b)LNH图8 (a )1次和(b )9次通过后获得的乳-N -六糖和乳-N -新六糖的迁移率分离结果[9]Fig. 8 IM-MS separation of sugar isomers lacto-N -hexaose and lacto-N -neohexaose obtained at (a) 1 pass and (b) 9 passes[9]第 3 期潘慢慢,等:行波离子迁移谱技术及应用研究进展239。
气相-离子迁移质谱在植物油种类识别中的应用

气相-离子迁移质谱在植物油种类识别中的应用陈鑫郁;陈通;陆道礼;陈斌【摘要】在3因素3水平的正交试验设计优化气相-离子迁移谱(gas chromatography-ion mobility spectroscopy,GC-IMS)检测系统参数的基础上,通过采用顶空萃取的方式,使用GC-IMS联用分析技术获取了5种植物油和芝麻油不同加工工艺的特征挥发性有机物(volatile organic compound,VOCs)的GC-IMS指纹离子迁移谱,分析了气相(gas chromatography,GC)保留时间-离子迁移谱(ion mobility spectroscopy,IMS)漂移时间的三维信息,得出了通过GC-IMS三维信息上的出峰时间、数量和峰强度等信息的差异,可以实现植物油的种类的准确识别以及加工工艺改变与VOCs变化的规律的结论,结果证明,GC-IMS分析技术在植物油的品种识别、加工工艺识别、原产地识别和纯度检测等方面有着广阔的应用前景.【期刊名称】《食品与发酵工业》【年(卷),期】2018(044)012【总页数】5页(P245-249)【关键词】气相-离子迁移质谱;三维信息;植物油;种类识别【作者】陈鑫郁;陈通;陆道礼;陈斌【作者单位】江苏大学食品与生物工程学院,江苏镇江,212013;江苏大学食品与生物工程学院,江苏镇江,212013;江苏大学食品与生物工程学院,江苏镇江,212013;江苏大学食品与生物工程学院,江苏镇江,212013【正文语种】中文气相色谱-离子迁移质谱(gas chromatography-ion mobility spectroscopy,GC-IMS)技术气相分离与离子迁移质谱相组成的联用分析技术,是目前国际上比较先进的挥发性有机化合物(volatile organic compound,VOCs)分析技术之一,该仪器具有体积小、便携、分析范围广、灵敏度高和快速等优点,非常适合挥发性有机气体成分的快速检测[1]。
离子淌度质谱

离子淌度质谱离子淌度质谱是离子淌度分离与质谱联用的一种新型二维质谱分析技术,离子淌度分离原理是基于离子在飘移管中与缓冲气体碰撞时的碰撞截面不同,离子可按大小和形状进行分离。
经过30多年的发展,离子淌度质谱已配有多种最新的离子源及质量分析器,理论研究也日渐成熟,并在蛋白质、多肽及复杂化合物异构体分析方面越发显示出独特的优势,正在发展成为一种新型的重要分析工具。
20世纪80年代后,由于各种软电离技术相继问世,质谱(mass spectrometry,MS)的应用拓展到对高极性、难挥发和热不稳定的生物大分子的分析研究,发展成为生物质谱,并迅速成为现代分析化学最前沿的领域之一。
离子淌度质谱(ion mobility mass spectrometry,IMMS)是离子淌度光谱(ion mobility spectrometry,IMS)技术与质谱的联用。
是一种新型的二维分离质谱技术。
IMS技术出现于20世纪70年代,由于其具有多样性的分析能力、良好的检测限及实时的检测能力,在当时受到人们广泛关注,但由于IMS分辨率较低且不能给出离子质量信息,加之当时人们对离子组成的重要性缺乏理解,因此在1976年以后,有关离子淌度的研究逐渐减少。
直到20世纪80年代末,特别是以MALDI和ESI 为代表的各种软电离方法应用以来,IMS在化合物异构体分离方面具有的独到优势才又引起了人们的关注,相继推出了配备各种新型离子源的IMS—MS联用技术,精确的离子几何形状和淌度计算方法得到飞速发展,IMMS技术有了实质性进展。
目前,IMMS已经用来检测化学战剂、爆炸物、环境污染、麻醉剂、半导体及生物大分子(如肽和蛋白质类),并显示出其强大的分析能力。
1 原理与仪器组成1.1 IMMS基本原理离子淌度(ion mobility,IM),又称离子迁移率,是指在电场强度为1 V/m或电场力为1N时正离子或负离子的运动速度,单位为m /V。
imc质谱流式

imc质谱流式IMC(离子迁移质谱)是一种常用于生物医学研究领域的分析技术,其通过测量离子在电场中的迁移速度来推算其质量-电荷比,从而实现对复杂混合物中元素的快速分离和定量分析。
其中,质谱流式(Mass Spectrometry Flow)是一种将流式细胞术(Flow Cytometry)与质谱技术相结合的方法,能够实现对细胞或其他颗粒的快速、高分辨率的质谱分析。
IMC质谱流式的特点1.高分辨率:IMC质谱流式可以同时分析多个颗粒,并且每个颗粒都可以获得其独特的质谱图,从而实现对颗粒的高分辨率分离。
2.快速分析:IMC质谱流式的分析速度非常快,可以在短时间内处理大量的颗粒,使得其成为大规模数据分析的理想工具。
3.灵敏度高:IMC质谱流式具有很高的灵敏度,可以检测到低浓度的颗粒,并且对颗粒的表面分子进行分析,从而实现对生物样品的深入分析。
4.无需标记:IMC质谱流式不需要对颗粒进行标记,因此不会对颗粒的天然状态造成影响,从而获得更加真实的结果。
IMC质谱流式的应用1.细胞分类和鉴定:IMC质谱流式可以对细胞进行高分辨率的分类和鉴定,从而帮助研究人员更好地理解细胞的性质和功能。
2.疾病诊断:IMC质谱流式可以用于疾病诊断,通过对患者样本中细胞的质谱分析,实现对疾病的早期发现和准确诊断。
3.药物发现:IMC质谱流式可以用于药物发现,通过对药物对细胞的影响进行分析,筛选出潜在的药物候选物。
4.免疫分析:IMC质谱流式可以用于免疫分析,通过对免疫细胞的功能和活性进行分析,揭示免疫系统的变化和功能。
5.环境监测:IMC质谱流式可以用于环境监测,通过对空气、水、土壤等环境样品中的颗粒进行分析,评估环境的质量和安全性。
总之,IMC质谱流式是一种具有高分辨率、快速分析、灵敏度高、无需标记等特点的分析技术,可以广泛应用于生物医学研究领域。
随着技术的不断发展和完善,相信IMC质谱流式将会在更多的领域得到应用,为人类的生产和生活带来更多的便利和效益。
ims 离子迁移谱

ims 离子迁移谱IMS离子迁移谱IMS(Ion Mobility Spectrometry)离子迁移谱是一种常见的质谱分析技术,用于检测和鉴定化合物中的离子。
它基于离子在气体中的迁移速度差异,通过测量离子在电场中的运动时间以及相应的电流信号,来推测离子的结构和质量。
IMS离子迁移谱具有高灵敏度、快速分析以及无需样品前处理等优点,因此在许多领域得到广泛应用。
IMS离子迁移谱的原理IMS离子迁移谱的基本原理可以分为四个步骤:离子产生、离子迁移、离子检测和信号处理。
首先,离子产生是指将待测样品中的分子转化为带电的离子。
常见的离子产生方法包括化学电离、放射性电离以及进样电喷雾等。
这些方法将样品中的分子转化为带电离子,并将其注入到离子迁移区。
接着,离子迁移阶段是IMS分析的关键步骤。
在电场的作用下,带电离子在气体中迁移,并与气体分子发生碰撞。
不同的离子由于其结构和质量的差异,会在相同电场下拥有不同的迁移速度。
较小的离子迁移速度较快,而较大的离子则迁移速度较慢。
通过测量离子的迁移时间,可以推测其结构和质量。
然后,在离子迁移区的末端,离子会进入离子检测器。
离子检测器可以是电离检测器、热电离检测器或者半导体探测器等。
当离子进入检测器后,会与电极发生相互作用,产生电流信号。
信号的强度与离子的数量成正比。
最后,离子信号被传输到信号处理单元,进行数据的采集、分析和展示。
根据离子迁移时间和离子信号的特征,可以推测出待测物质的结构和组成。
IMS离子迁移谱的应用IMS离子迁移谱在许多领域都得到了广泛的应用。
首先,它在爆炸物探测领域具有重要的作用。
由于IMS技术可以迅速且准确地检测到微量的爆炸物质,因此在机场、车站等场所的安检中被广泛使用。
其次,IMS离子迁移谱在药物分析领域也有广泛的应用。
它可以用于药物及其代谢产物的分析和检测。
通过IMS技术,可以快速获得药物的分子结构和药物代谢产物的信息,从而提高药物研发和药物治疗的效率。
离子迁移谱原理安全操作及保养规程

离子迁移谱原理安全操作及保养规程离子迁移谱(IMS)是一种常用的分析方法,能够对分子进行高效、灵敏且高分辨率的分析。
IMS技术可以应用于许多领域,例如毒理学、食品安全、病理学和犯罪学等。
因此,正确的操作离子迁移谱是非常重要的。
本文将介绍离子迁移谱的原理、安全操作及保养规程。
原理离子迁移谱的原理基于分子在电场中的迁移和分离性质。
当带电分子通过离子迁移谱时,它们首先会被引导到离子分离器中。
该分离器包含一系列电极和分隔层,通过不同的电场、温度和压力环境,它可以分离出具有不同电荷、质量和分子结构的离子化合物。
分离以后,离子会进入检测器中,产生电流信号。
根据离子到达检测器的时间和它被分离出来的时间,可以确定每个离子的结构和质量。
安全操作离子迁移谱包含多个部分,需要进行正确的操作才能确保安全和准确性。
准备工作在使用离子迁移谱之前,需要先进行准备工作,包括检查所有的仪器和部件状态。
如果出现任何损坏或问题,请通知维护人员进行检修。
此外,还需要清洗离子迁移谱的样品环境。
应该用纯净溶剂或气体对环境进行清洁,避免杂质的污染。
样品准备在进行离子迁移谱之前,需要进行样品准备。
样品必须符合离子迁移谱的标准。
例如,在使用气相色谱质谱法(GC-MS)分析样品时,需要进行样品处理以将挥发性化合物转移到气相中。
在进行样品准备时,应该遵循正确的操作步骤,并使用适当的防护设备。
操作离子迁移谱在进行离子迁移谱时,需要遵循正确的操作步骤,并使用适当的个人防护设备。
在操作离子迁移谱时,应注意以下几点:•避免物品堆积在离子迁移谱上面。
•保持离子迁移谱干燥和清洁。
•小心更换气瓶和损坏的仪器部件。
•避免操作不当。
例如,在进行分析时应避免高压和高温环境。
•在处理样品、内标和校准曲线时,应遵循正确的测量程序。
关闭离子迁移谱在操作结束后,需要正确关闭离子迁移谱,并进行必要的清洁工作。
在关闭离子迁移谱时,应注意以下几点:•停止气瓶和仪器部件中液体的流动,等待它们完全停止运行。
离子迁移谱-质谱

离子迁移谱-质谱
离子迁移谱(IMS)是一项普遍用于分析液体/气相/微观粒子/表面活性物质等样品成分的高灵敏技术。
与其他检测技术相比,IMS具有准确性高、灵敏度高、测量数据准确可靠、操作简便、操作成本低的特点,深受分析领域的热捧。
IMS 最常见的应用场景之一就是质谱分析,即利用IMS技术测定样品中的微量分子和热力学数据,并运用它们来鉴定有机分子的结构。
此外,IMS还可应用在DNA鉴定和蛋白质组学研究中。
研究者还可将IMS技术与其他检测技术相结合,用于细胞极性分析、药物与癌症标记物解析等研究中。
结合生活,IMS科技可应用在宠物分析,如研究宠物幼体的遗传特征、调查宠物的营养状况等;也可应用于日常厨房检测,如分析环境中㗎定物质和化学物质,或检测饮料中各成分等。
此外,在工厂环境下,也可反映不同样品污染情况,便于更全面准确地判断安全状况。
作为质谱仪中岔路分析中技术最先进、灵敏度最高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子迁移质谱
离子迁移质谱(Ion Mobility Mass Spectrometry,IM-MS)是一种先进的质谱技术,能够提供关于样品离子的化学和物理性质的信息。
这种技术结合了分离技术和质谱技术,提供了一个深入了解离子化样品中各组分的途径。
以下是关于离子迁移质谱的八个主要方面的详细介绍:
1. 样品制备
在离子迁移质谱中,样品制备是第一步。
这一步的目标是确保样品中的目标化合物以离子的形式存在,以便于后续的离子迁移分离和质谱检测。
样品制备通常包括将样品转化为气相、离子化以及可能的溶剂脱洗等步骤。
2. 离子化
离子化的目的是将样品中的化合物转化为离子,以便于进行离子迁移分离和质谱检测。
离子化的方法有很多种,包括电子轰击(EI)、化学电离(CI)、场电离(FI)、解吸化学电离(DECI)等。
选择哪种离子化方法取决于样品的性质和目标分析物。
3. 离子迁移分离
离子迁移分离是离子迁移质谱的核心部分。
在这一步中,不同质量的离子在电场的作用下以不同的速度移动,从而实现离子的分离。
离子的移动速度取决于离子的质量、电荷以及
其他物理化学性质。
4. 质谱检测
在离子迁移质谱中,质谱检测通常在分离室中进行。
在这里,不同质量的离子被聚焦并引入到质量分析器中,然后根据其质量进行分离和检测。
质谱检测能够提供每个离子的质量信息。
5. 数据解析
数据解析是将得到的质谱数据转化为可理解的信息的过程。
这包括确定每个离子的质量、电荷状态以及其他可能的物理化学性质。
此外,数据解析还可以包括将得到的质谱数据与已知的化合物数据库进行比较,以确定可能的化合物或化合物类别。
6. 应用领域
离子迁移质谱在许多领域都有广泛的应用,包括环境科学、生物医学、化学、材料科学等。
例如,它可以用于检测环境中的有害物质、分析生物样品中的代谢物、研究材料表面的化学反应等。
7. 仪器发展
随着技术的不断发展,离子迁移质谱的仪器也在不断改进和优化。
新型的离子迁移质谱仪器具有更高的灵敏度、更快的分析速度以及更好的分辨率。
此外,还有一些研究正在探索将离子迁移质谱与其他技术(如色谱、光谱等)联用,以实
现更复杂样品的分析。
8. 未来趋势
随着技术的不断进步和应用需求的增长,离子迁移质谱的未来发展将具有以下几个趋势:更高的灵敏度和分辨率、更快的分析速度、更广泛的应用领域、更智能化和自动化的数据分析方法等。
同时,随着大数据和人工智能等技术的发展,离子迁移质谱的数据解析也将得到进一步的提升和发展。