柳铁一中组合高中数学竞赛同步讲义
数学竞赛完整课程教案高中

数学竞赛完整课程教案高中1. 学生能够掌握数学竞赛中常见的解题技巧和方法;2. 学生能够熟练运用数学知识解决竞赛中的问题;3. 学生能够提升自信心和解决问题的能力。
教学内容:1. 数论2. 代数3. 几何4. 统计教学过程:第一课:数论1. 介绍数论的基本概念和常见的解题技巧;2. 给出一些数论题目并引导学生解决;3. 分析解题思路和方法,引导学生总结经验。
第二课:代数1. 讲解代数的基本知识和解题技巧;2. 给出一些代数题目供学生练习;3. 分析解题思路和方法,帮助学生提升解题能力。
第三课:几何1. 引导学生理解几何知识和解题技巧;2. 给出一些几何题目供学生练习;3. 分析解题思路和方法,帮助学生提升几何解题能力。
第四课:统计1. 讲解统计知识和解题技巧;2. 给出一些统计题目供学生练习;3. 分析解题思路和方法,帮助学生提升统计解题能力。
第五课:综合练习1. 给出一些综合性的竞赛题目供学生练习;2. 帮助学生分析解题思路和方法;3. 鼓励学生多练习,提高解题速度和准确性。
评价方法:1. 平时的课堂练习;2. 期中和期末的考试;3. 数学竞赛的模拟比赛。
教学资源:1. 数学竞赛教材和习题集;2. 电子教学资源;3. 纸质习题和答案。
教学建议:1. 鼓励学生多练习,勤奋钻研;2. 注重引导学生理解数学知识,而不是死记硬背;3. 鼓励学生互相合作,相互学习。
以上是数学竞赛完整课程教案的高中范本,希朅能对您有所帮助。
高中数学竞赛讲义

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛〔一试〕所涉及的知识范围不超出教育部2000年【全日制普通高级中学数学教学大纲】中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试〔二试〕与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
三、高中数学竞赛根底知识第一章 集合与简易逻辑一、根底知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否那么称x 不属于A ,记作A x ∉。
高中_数学竞赛辅导讲义(1)

数学竞赛辅导讲义〔1〕(一) 抽象函数知识提要:所谓抽象函数泛指不具体的函数,然而抽象函数又以具体函数为背景,所以研究抽象函数很有应用价值.()f x 是定义在R +上的增函数,且()()x f x f f y y ⎛⎫=+ ⎪⎝⎭,假设()31f =,那么使()125f x f x ⎛⎫-≥ ⎪-⎝⎭成立的x 的取值范围是 . ()f x 是定义在R 上的函数,它的图象既关于直线5x =对称,又关于直线7x =对称,那么函数()f x 的最小正周期是 .()y f x =是在R 上有定义且在[]0,1上是单调递减的周期为2的偶函数,那么()()()1,0, 2.5f f f -由小到大的顺序为 .R 上的函数()f x ,恒有()()()f x y f x f y +=+.假设()164f =,那么()2006f 等于 . 〔二〕函数[]x 和{x }知识提要: 函数[]x 表示实数x 的整数局部〔不超过x 的最大整数〕.通常称[]y x ={}x 为实数x 的小数局部.任一实数都能写成整数局部与小数局部之和, 即[]{}x x x =+.例如:当3.71x =-时,[]3.714-=-,{3.71}0.29-=,且()()3.7140.29-=-+.[]x 表示不超过x [][]2sin x x =()0x ≥的解集〔x 以弧度为单位〕是 .[]x 表示不超过x 的最大整数,那么不等式[][]221160x x --≤的解集是 .n 能被整除,其中[]x 表示不超过x 的最大整数,那么n 的表达式为 〔用表示结果〕. 8.1x y -<是[][]x y =成立的 条件.〔选填“充分不必要〞、“必要不充分〞、“充分且必要〞、“既不充分也不必要〞四者之一〕〔三〕函数迭代和函数方程设f 是D D →的函数,对任意,x D ∈记()()0,fx x =定义()()()()1*,,n n f x f f x n N +=∈那么称函数()n f x 为()f x 的n 次迭代. ()n f x 的一般求法是先猜后证:先迭代几次,观察有何规律,由此猜想出()n f x 的表达式,然后证明.()f x 对其定义域内自变量的一切取值均满足所给的函数方程,那么称()f x 为该方程的解.证明函数方程无解或寻求其解的过程就是解函数方程.一般用以下方法:〔1〕代换法:将方程中的自变量适当地以别的自变量代换〔代换时应注意使函数的定义域不发生变化〕,得到一个或几个新的函数方程,然后设法求得未知函数.〔2〕赋值法:根据所给条件,适当地对自变量赋予某些特殊值,从而简化函数方程,逐步靠近未知结果,最终解决问题.〔3〕待定系数法:当函数方程中的未知函数是多项式时,可用此法比拟系数而求解. 〔4〕递推法:即通过初始条件和递推关系求解,例如通过数列的递推关系求通项公式等.k 的各位数字和的平方记为()1,f k 且()()()11,n n f k f f k -⎡⎤=⎣⎦那么()11n f 的值域为〔A 〕*N ; 〔B 〕 {2,4,7} ;〔C 〕{4,16,49,169,256} ; 〔D 〕{2,4,7,13,16}()12,1f x x =+而()()*11,.n n f x f f x n N +=∈⎡⎤⎣⎦记()()21,22n n n f a f -=+那么99a 等于。
高中数学竞赛教案讲义

高中数学竞赛教案讲义主题:高中数学竞赛备考一、课程目标:1. 提高学生数学逻辑思维能力和解题能力;2. 增强学生对数学知识的理解和应用能力;3. 培养学生团队合作意识和竞赛意识;4. 培养学生学习数学的兴趣和信心。
二、教学内容:1. 数论知识与解题方法;2. 代数知识与解题方法;3. 几何知识与解题方法;4. 概率与统计知识与解题方法。
三、教学重点:1. 突出数学问题解题的逻辑思维;2. 突出数学知识运用的方法;3. 突出解题过程中的技巧与技法。
四、课堂教学安排:第一节课:数论知识与解题方法1. 介绍数论基础知识;2. 讲解数论解题方法;3. 练习数论题目。
第二节课:代数知识与解题方法1. 复习代数基础知识;2. 讲解代数解题方法;3. 练习代数题目。
第三节课:几何知识与解题方法1. 复习几何基础知识;2. 讲解几何解题方法;3. 练习几何题目。
第四节课:概率与统计知识与解题方法1. 介绍概率与统计基础知识;2. 讲解概率与统计解题方法;3. 练习概率与统计题目。
五、课后作业:1. 每节课的课后习题;2. 复习本节课的知识点;3. 复习前几节课的知识点;4. 组织小组讨论解题方法。
六、教学评估:1. 每节课的课堂练习成绩;2. 期中考试成绩;3. 期末考试成绩;4. 学生综合表现与进步情况。
七、教学心得与总结:数学竞赛备考是一个长期的过程,需要坚持不懈和不断努力。
教师要引导学生找到解题的方法,培养学生的数学思维和解题能力。
同时,学生也要积极主动,多加练习,不断提高自己的数学水平。
希望通过我们的共同努力,可以在数学竞赛中获得好的成绩。
高一数学最新课件-广西柳州铁路第一中学高一数学第二

4) y | x 2 | | x 1 |
(画图法)
5、关于映射:
例:已知(x,y)在映射f下的象是(2x,x+y)
求:1)(1,3)在 f 下的象
2)(1,3)在 f 下的原象
二、函数的表示法: 1、图象法 2、列表法 3、解析式法
1)函数 f ( x) 与 f ( x) 的图象
质
单调性: 在R上是增函数
y 8 7 6 5 4 3 2 1
y =a x
y bx
.
y cx
x
-3 -2 -1 0 1 2 3
a b 1 c 0
基本题型:
1、比较大小:同底直接比较,不同底化同底 0 和 1 做中介,指数相同画图 例:比较下列各组数的大小:
2.5 3 1 . 7 与 1 . 7 1)
第二章 函数
————复习
一、函数: 1、定义: 2、函数的三要素: 1)定义域 A
2)值域 B
3)对应法则 f 3、映射: 4、基本题型:
1、函数定义:设A、B是两个非空的数集 ,如果 按照某个 确定的对应关系f ,使对于集合A中的 任意一个数x ,在B中 都有唯一确定的数 f (x) 与
1 2 1 2
3 2
1 4
1 4
1 3
1 2
y )
3 2
Hale Waihona Puke 2 3x x 2 3 ,求 2 2 x x 3
3、若 x2 6x 9 3 x ,求x的范围
六、指数函数:
1、定义: 形如:y = a x (a>0,a≠1) 的函数叫做指数函数,其中x是自变量。
2、指数函数图象和性质
高中数学竞赛讲义_免费_

4
C1 A I C1 B = C1 ( A U B).
证明
3 , 余 读者自 完成
则 x ∈ A, 且 x ∈ B 或 x ∈C , 所 1 若 x ∈ A I (B U C ) ,
x ∈ ( A I B) 或 x ∈ ( A I C ) ,
x ∈ ( A I B) U ( A I C )
之,x ∈ ( A I B ) U ( A I C ) , 则 x ∈ ( A I B) 或 x ∈ ( A I C ) ,
k 个子集中
,否则,若 在 k 个子
A,并设 A I A1 = ∅ ,则 A1 ⊆ C1 A , 而可
集中再添加 C1 A ,
知矛盾,所
k ≥ 2 n −1
综 , k = 2 n −1
6.竞赛常用方法 例 题 定理 4 容斥原理 用 A 表示集合 A 的元素个数,则 A U B = A + B − A I B ,
的一元一次方程 一元 次方程的解法 含 母系数的一元一次 等式的解法,一元 次 等式的解法 含绝对值的一元一次 等式 简单的多元方程组 简单的 定方程 组 4 函数 次函数在给定 间 的最值,简单 函数的最值 含 母系数的 次函数 5 几何 角形中的边角之间的 等关系 面 等 换 角形中的边角之间的 等关系 面 等 换 角形的心 内心 外心 垂心 心 性质 相似形的概念和性质 圆,四点共圆,圆幂定理 四种命题 关系 6 逻 推理 题 抽屉原理 简单 用 简单的组合 题简单的逻 推理 题, 证法 极端原理的简 单 用 枚举法 简单 用
A U B = A, A I C = C ,求 a, m.
解 依题设, A = {1,2} ,再 因 因
x 2 − ax + a − 1 = 0 解得 x = a − 1 或 x = 1 ,
高中数学竞赛讲义(十八)组合

高中数学竞赛讲义(十八)──组合一、方法与例题1.抽屉原理。
例1 设整数n≥4,a1,a2,…,an是区间(0,2n)内n个不同的整数,证明:存在集合{a1,a2,…,an}的一个子集,它的所有元素之和能被2n整除。
[证明] (1)若n{a1,a2,…,an},则n个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。
由抽屉原理知其中必存在两个数ai ,aj(i≠j)属于同一集合,从而ai +aj=2n被2n整除;(2)若n∈{a1,a2,…,an},不妨设a n=n,从a1,a2,…,a n-1(n-1≥3)中任意取3个数a i, a j, a k(a i,<a j< a k),则a j-a i与a k-a i中至少有一个不被n整除,否则a k-a i=(a k-a j)+(a j-a i)≥2n,这与a k∈(0,2n)矛盾,故a1,a2,…,a n-1中必有两个数之差不被n整除;不妨设a1与a2之差(a2-a1>0)不被n整除,考虑n个数a 1,a2,a1+a2,a1+a2+a3,…,a1+a2+…+an-1。
ⅰ)若这n个数中有一个被n整除,设此数等于kn,若k为偶数,则结论成立;若k为奇数,则加上an=n知结论成立。
ⅱ)若这n个数中没有一个被n整除,则它们除以n的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n的余数相同,它们之差被n整除,而a2-a1不被n整除,故这个差必为a i, a j, a k-1中若干个数之和,同ⅰ)可知结论成立。
2.极端原理。
例2 在n×n的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n。
证明:表中所有数之和不小于。
[证明] 计算各行的和、各列的和,这2n个和中必有最小的,不妨设第m行的和最小,记和为k,则该行中至少有n-k个0,这n-k个0所在的各列的和都不小于n-k,从而这n-k列的数的总和不小于(n-k)2,其余各列的数的总和不小于k2,从而表中所有数的总和不小于(n-k)2+k2≥3.不变量原理。
高中数学竞赛教材讲义第十二章立体几何讲义

高中数学竞赛教材讲义第十二章立体几何讲义(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第十二章立体几何一、基础知识公理1 一条直线。
上如果有两个不同的点在平面。
内.则这条直线在这个平面内,记作:a⊂a.公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。
公理3 过不在同一条直线上的三个点有且只有一个平面。
即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛同步讲义——组合数学基础一、基础知识梳理1、集合覆盖、分类、拆分2、分类原理3、容斥原理4、加法原理5、极端原理6、抽屉原理7、平均量重叠原则8、面积的重叠原理一、基础题型例析1、抽屉原理在数学问题中有一类与“存在性”有关的问题,例如:(1)13个人中至少有两个人出生在相同月份;(2)某校400名学生中,一定存在两名学生,他们在同一天过生日;(3)2003个人任意分成200个小组,一定存在一组,其成员数不少于11;(4)把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数. 这类存在性问题中,“存在”的含义是“至少有一个”。
在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。
这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也称“鸽巢原理”(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。
例1.(1978年广东省数学竞赛题)已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。
证明:至少有两个点之间的距离不大于1/2.例2 (第14届1M0试题)一个集合含有10个互不相同的两位数,试证明:这两个集合必有两个无公共元素的子集合,此两子集的各元素之和相等.例3.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。
例4.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。
例4说明:(2)如果我们按照(1)中的递推方法依次造“抽屉”,则第7个抽屉为{26,27,28,29,30,31,32,33,34,35,36,37,38,39};第8个抽屉为:{40,41,42,…,60};第9个抽屉为:{61,62,63,…,90,91};……那么我们可以将例3改造为如下一系列题目:(1)从前16个自然数中任取6个自然数;……(2)从前39个自然数中任取8个自然数;……(3)从前60个自然数中任取9个自然数;……(4)从前91个自然数中任取10个自然数;……上述第(4)个命题,就是前苏联基辅第49届数学竞赛试题。
例5:在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点.例5说明:我们可以把整点的概念推广:如果(x1,x2,…xn)是n维(元)有序数组,且x1,x2,…xn 中的每一个数都是整数,则称(x1,x2,…xn)是一个n 维整点(整点又称格点)。
如果对所有的n 维整点按每一个xi 的奇偶性来分类,由于每一个位置上有奇、偶两种可能性,因此共可分为2×2×…×2=2n个类。
这是对n 维整点的一种分类方法。
当n=3时,23=8,此时可以构造命题:“任意给定空间中九个整点,求证它们之中必有两点存在,使连接这两点的直线段的内部含有整点”。
这就是1971年的美国普特南数学竞赛题。
(二)抽屉原理的其它形式:定理2、把m 个元素分成n 个集合(m>n)(1)当n能整除m 时,至少有一个集合含有m/n 个元素;(2)当n不能整除m 时,则至少有一个集合含有至少[m/n]+1个元素,([m/n]表示不超过的最大整数)说明:定理2有时候也可叙述成:把m×n+1个元素放进n 个集合,则必有一个集合中至少放有m+1个元素。
例6.(1963年北京市数学竞赛题)在边长为1的正方形内任意放入九个点,求证:存在三个点,以这三个点为顶点的三角形的面积不超过1/8。
例6.说明:以下两个题目可以看作是本例的平凡拓广:(1)在边长为2的正方形内,随意放置9个点,证明:必有3个点,以它们为顶点的三角形的面积不超过1/2。
(2)在边长为1的正方形内任意给出13个点。
求证:必有4个点,以它们为顶点的四边形的面积不超过1/4。
例7.(北京市高中一年级数学竞赛1990年复赛试题)910瓶红、蓝墨水,排成130行,每行7瓶。
证明:不论怎样排列,红、蓝墨水瓶的颜色次序必定出现下述两种情况之一种:1.至少三行完全相同;2.至少有两组(四行),每组的两行完全相同。
(三)抽屉原理的无限形式定理3.如果把无穷多个元素分成n个集合,那么不管怎么分,都至少存在一个集合,其中有无穷多个元素。
例8.在坐标平面上给出无限多个矩形,它们的顶点的直角坐标都具有如下形式:(0,0),(0,m),(n,0),(n,m)。
其中m,n是正整数,并且m>3,n<6,求证:在这些矩形中一定存在无限多个矩形,其中任意两个矩形必有一个被包含在另一个之中。
(四)抽屉原理的多次应用例9.有苹果、梨、桔子若干个,任意分成9堆,求证一定可以找到两堆,其苹果数、梨数、桔子数分别求和都是偶数。
例10.(根据1995年全国高中数学联赛试题改编)将平面上每个点以红蓝两色之一着色,证明:存在这样的两个相似三角形,它们的相似比为2009,并且每一个三角形的三个顶点同色。
例10.说明:(1)这里连续用了两次抽屉原理(以染色作抽屉)。
也可以一开始就取位似比为2009的9个位似点组(Ai,Bi)i=1,2,3,…,9),对4个抽屉(红,红),(红,蓝),(蓝,红),(蓝,蓝)应用抽屉原理,得出必有3个位似点属于同一抽屉,(2)从题目的证明过程中可以看出,位似比2009可以改换成另外一个任意的正整数、正实数。
(3)一般地可以证明,在这个二染色的平面上存在无数个内角为30°,60°,90°的直角三角形三顶点同色。
(4)进一步还可得到:对任何a∈R+,可得到两个相似比为a的顶点同色的相似三角形。
对于多染色的情形,还可以得出多个相似三角形的结论:用红、黄、蓝三种颜色对平面上的点染色,对任意的a,b∈R+,必存在三个三角形,它们彼此相似,相似比为1∶a∶b,且每个三角形的三顶点同色。
(五)抽屉原理的拓广形式面积重叠定理:设平面上给定r个面积分别为S1,S2,…Sr 的图形,S1+S2+…+Sr=m.将这r个图形以任意方式移植到一个已知面积为n的平面图形F的内部,则至少有(m/n)个图形在F中有公共点((x)表示不小于x的最小整数)。
例11、半径为19的圆C内有650个点,证明:存在内半径为2,外半径为3的圆环,它至少盖住其中的10个点平均值重叠原理1(1)若n个实数x1,x2,…xn满足x1+x2+…+xn≥A(或≤A),则至少有一个xi≥A/n (或≤A/n)。
(2)若n个实数x1,x2,…xn满足x1+x2+…+xn=A,则至少有xi、xj,满足xi≥A/n≥xj。
平均值重叠原理2(1)若n个正数x1,x2,…xn,满足x1x2…xn≥An(或≤An),则至少有一个xi≥A(或≤A)。
(2)若n个正数x1,x2,…xn,满足x1x2…xn=An,则至少有xi、xj,满足xi≥A ≥xj。
2、容斥原理容斥原理的基本形式定义:所谓容斥,是指我们计算某类物的数目时,要排斥那些不应包含在这个计数中的数目,但同时要包容那些被错误地排斥了的数目,以此补偿。
这种原理称为容斥原理(The Principle of Inclusion-exclusion),又称为包含排斥原理。
(1)加法原理加法原理:设M为非空有限集,A1,A2 ,…,An是M的两两不交的子集,且A1 ∪A2 ∪…∪An=M,那么|M|=|A1|+|A2|+…+|An|.注:i) |M|即card(M),表示集合M中元素的个数,简称为集合M的阶。
ii) 加法原理是组合数学中的一个基本的计数原理,在实际运用中可根据问题的不同背景赋予有限集M的元素不同的含义。
(2)容斥原理的基本形式定理1:|A∪B|=|A|+|B|-|A∩B|.例1、对24名科技人员进行掌握外语情况的调查,其统计资料如下:会英、日、德、法语的人数分别为13、5、10和9。
其中同时会英语、日语的人数为2;同时会英语和德语、同时会英语和法语、同时会德语和法语两种语言的人数均为4;会日语的人既不会法语也不会德语。
试求只会一种语言的人数各为多少?又同时会英、德、法语的人数为多少?例2、求1,2,3,…,100中不能被2,3,5整除的数的个数.(3)容斥原理的一般形式定理3:设A1,A2,…,An是任意有限集合,有定理4:例3、(匈牙利数学竞赛试题)由数字1、2和3组成n位数,要求n位数中1、2和3的每一个至少出现一次,求所有这种n位数的个数.例4、计算不超过120的合数和素数的个数。
例5、将与105互质的所有正整数从小到大排列,求这个数列的第1000项. 思路分析:先研究较简单情况:在(0,105]中有多少个数与105互质;而105=3×5×7……例6、如果记小于正整数n且与n互质的数的个数为φ(n),则在数论上叫函数φ(n)为欧拉函数.试求φ(n).例7、(1960-1961波兰数学竞赛试题)某人给6个不同的收信人写了6封信,并且准备了6个写有收信人地址的信封,有多少种投放信笺的方法,使每份信笺于信封上的收信人不相符?例8、(贝努力-欧拉错装信封问题)某人写了n封信及n个相应收信人地址的信封,现把所有的信一一装进信封,求所有的信全都装错信封的装法总数.例9、已知集合A、B、C满足:(1)|A|+|B|+|C|=|A∪B∪C|,(2)|A|=|B|=100.求|A∩B∩C|的最小值.3、极端原理例1、(鸡兔同笼问题)鸡兔同笼不知数,三十六头笼中露,看足却有一百整,不知多少鸡和兔?例2、(智力游戏)一张圆桌,两人轮流往上方大小相等的硬币,只许平放,不许重叠,谁在桌上放下最后一枚硬币,谁就是最后的胜利者,你选择先下还是后下,为什么?集合理论重要性的一个侧面是它的方法论意义.我们知道,有些数学问题所涉及的各个元素的地位是不平衡的,其中的某个极端元素往往具有优于其它元素的特殊性质,能为解题提供方便,而利用这种极端性的依据之一就是下面所要介绍的有关集合的一条简单性质.最小数原理1:设M是正整数集的一个有非空子集,则M中必有最小数.最小数原理2:设M是实数集的一个有限的非空子集,则M中必有最小数.推论:设M是实数集的一个有限的非空子集,则M中必有最大数.例3、设S为整数的非空集,满足:①如果x,y∈S,那么x-y ∈S ;②如果x∈S ,那么kx ∈S,k ∈Z. 求证:在S中存在一个整数d,使得S由d的所有倍数组成.例4、若干人聚会,其中某些人彼此认识.已知:若某两人在聚会者中有相同数目的熟人,则他俩便没有共同的熟人,证明:若聚会者中有人至少有20 个熟人,则必然也有人恰好有20 个熟人.例5、在平面上任给2n个点,其中任意三点不共线,并把其中n个点染成红色,n个点染成蓝色.求证:可以一红一蓝地把它们连成n条线段,使这些线段互不相交.例6、一次10名选手参加的循环赛中无平局,胜者得1 分,负者得O分.证明:各选手得分的平方和不超过285 .例7、某地区网球俱乐部有20 名成员,举行14 场单打比赛,每人至少上场一次.求证:必有 6 场比赛,其12 个参赛者各不相同.例8、(第24届莫斯科数学奥林匹克)在平面上有100个点,其中任何两点的距离都不超过1,并且任何3点为顶点都构成钝角三角形。