最新混凝土搅拌站水泥罐基础设计资料

最新混凝土搅拌站水泥罐基础设计资料
最新混凝土搅拌站水泥罐基础设计资料

100t水泥罐基础设计计算书

一、工程概况

某大型工程混凝土搅拌站采用100t水泥罐,水泥罐直径2.7m,顶面咼度20m。水泥罐基础米用C25钢筋混凝土整体式扩大基础,基础断面尺寸为

4.2m X 0.5m+3.2m X 1.0m。

基础立面图

500 645 1909 645 500

—3 ”

5200

二、设计依据:

1、《建筑结构荷载规范(2006版)》(GB50009-2001)

2、《混凝土结构设计规范》(GB50010-2010)

3、《建筑地基基础设计规范》(GB50007-2011)

4、《钢结构设计规范》(GB50017-2003)。

三、荷载计算

1、水泥罐自重:8t;满仓时水泥重量为100t。

2、风荷载计算:

宜昌市50年一遇基本风压:?=0.3kN/川,风荷载标准值:g= B z u s u zg

其中:(3 z=1.05, u z=1.25, u s=0.8,贝心

GDk= 3 z a s a z GOO=1.O5X 0.8 x 1.25X 0.3=0.315 kN/in2

四、水泥罐基础计算

1、地基承载力验算

考虑水泥罐满仓时自重荷载和风荷载作用。

混凝土基础自重荷载:G ck=(3.2 X.2 X.0+4.2 X2 X.5) X24=407kN 风荷载:风荷载作用点高度离地面12.5m,罐身高度15m,直径2.7m

F wk=0.315 X5>2.7=12.8kN

风荷载对基底产生弯矩:M wk=12.8 X( 12.5+2) =185.6kN m

基础底面最大应力:

G ck+G k M wk 407+1080 185.6

P k,max= bh + W = 4.2 3.2 + 9.408 =130.6kPa^

2、基础配筋验算

(1)基础配筋验算

混凝土基础底部配置①16钢筋网片,钢筋间距250mm,按照简支梁

验算 混凝土基础承受弯矩:

M max =1.2 洛 >20702 1.912)=362kN

按照单筋梁验算: M max 362 XI06 sc

a = f c bh o 2 = 11.9 3200 >8502 = 0.013

E =1 1-2 as = 1- 1-2 0013 =0.013< 沪0.55

A s =fi =仇9 塔2叱.°13 850

=1403mm 2

T y 在基础顶部及底部均配筋13①16 , A s 实=13X201=2613mm 2 > A s =1403mm 2,基础配筋满足要求。

(2)基础顶部承压验算

考虑水泥罐满仓时自重荷载和风荷载作用。 迎风面立柱柱脚受力:

背风面立柱柱脚受力:

"F ? = 4008e003 =1.1MPa

满足要求。

五、空仓时整体抗倾覆稳定性计算

300 _ G k M wk _ 1080

F1k = 4 - Z = 4

1856 =270-69=276kN

G k

M wk 1080 F2k = 4 + Z = "V 1856 =270+69=339kN

背风面立柱柱脚受力最大,

F 2d =1.2 F 2k =406.8kN 基础顶部预埋件钢板尺寸

600m M 600mm ,混凝土承受压力:

考虑水泥罐空仓时自重荷载和风荷载作用

水泥罐空仓时自重荷载:G 0k =80kN

混凝土基础自重荷载:G ck =256kN

倾覆力矩作用点取背风面基础边缘,安全系数: -80X1.6+256 X .6 K = 185.6 =2.9>1.5,水泥罐抗倾覆稳定性满足要求。

六、柱脚预埋件验算

空水泥罐在风荷载作用下,迎风面柱脚受拉力:

风荷载在柱脚产生剪力: wk 12.8 V k = 4 =

4 =3.2kN M wk G ok N k = Z - 4 185.6 2.7

80 =69-20=49kN

沥青混凝土搅拌站混凝土搅拌站规划方案

沥青混凝土搅拌站混凝土搅拌站规划方案【--春节祝福语】 近年来,随着我国 __和城镇化建设的快速发展,我国商品混凝土行业如雨后春笋得到迅速发展。商品混凝土搅拌站快速的发展过程中,由于没有科学的理论作指导,许多刚建起来的商品混凝土搅拌站的布局极不合理,亟待进行调整与整合。 1、对本区域内商品混凝土搅拌站布局现状进行调查。摸清现有搅拌站名称、设计生产能力、当年实际产量、布点区域、当年实际需求量等情况。 2、对本区域内未来五年商品混凝土需求量预测和搅拌站规划布局情况进行调查,摸清未来五年:混凝土需求量预测(万立方米)、需要搅拌站数量[ 套)、实有搅拌站数量(套)、拟新建搅拌站数量(套)、搅拌站布点区域等。 方法一:某地区商品混凝土需求量(使用量)=工业与民用建筑用量+其它工业与民用建筑商品混凝土需求量(使用量)计算方法 预测未来年份工程竣工面积:将竣工面积乘以经验系数 0.33-0.35即为预拌商品混凝土需求量(或者使用量)

例如:某地某年工程竣工面积为100万平方米,取上限经验系 数0.35,那么预拌商品混凝土需求量(使用量)=1,000,000×0.35=350,000立方米=35万立方米。 方法二:某地区商品混凝土需求量(使用量)=上一年预拌商品混凝土需求量(使用量)×(1+下一年度固定资产投资额增加比率预测值) 根据某市的平均情况,搅拌站实际产量一般为设计产能的 40-60%,取中间值为50%, 那么:某地区设计产能=预拌商品混凝土需求量预测×2 例如:某地年预测商品混凝土需求量为80万立方米,那么,某地设计产能=80万立方米×2=160万立方米,偏远区县可以结合该地 区实际情况合理确定。[Page] 方案一:目前我国使用的混凝土搅拌站按照设计产量分类,主 要有60站(1方机)、120站(2方机)、180站(3方机)和240 站(4方机)、60站理论生产率为60立方米/小时,年设计产能大约15万立方米;120站理论生产率为120立方米/小时,设计产能大约

水泥罐基础计算书

水泥罐及粉煤灰罐基础计算书 1、千灯湖站地层情况 自上而下分布如下:杂填土:0~;粉细砂层:0~;粉砂岩:0~。 该地层经过了φ550@400 深约14m的深层搅拌桩加固。 2、荷载分析 静荷载:支架;水泥罐装水泥60t; 粉煤灰可装40T。 动荷载:施工不考虑; 风荷载:根据气象资料,按10级台风计算。 3、水泥罐及粉煤灰罐基础设计 承台砼为C30,承台尺寸为:8900mm×4400mm×600mm。 4、受力及变形验算 (1)基础竖向承载力验算 静荷载: V=405+1000=1405kN G =×××25= 式中 V—为水泥罐自重 水泥罐空壳及支架自重,水泥罐可装60T水泥,粉煤灰可装40T; G—为基础重量; 深层搅拌桩复合地基承载力: f——复合地基承载力特征值(kPa) spk m——面积置换率,桩的截面积除以设计要求每一根桩所承担的处理面积;

a R ——单桩竖向承载力特征值(KN ) p A ——桩的截面积(2m ) β——桩间土承载力折减系数,当桩端土未经修正的承载力特征值大于桩周土的承载力特征值的平均值时,可取~,差值大时取低值;当桩端土未经修正的承载力特征值小于或等于桩周土的承载力特征值的平均值时,可取~,差值大时或设置褥垫层时均取高值; 桩竖向承载力特征值a R 可按下列二式进行估算,由水泥强度确定的a R 宜大于地基抗力所提供的a R 。 1P n a p si i p i R u q l q A α==+∑ ① a cu P R f A η= ② 式中: p u ——桩的周长(m ); n ——桩长范围内的土层数; si q ——桩周第i 层土的侧阻力特征值,淤泥可取4~7kpa ;淤泥质土可取6~ 12kpa ;软塑状的黏性土可取10~15kpa ;对可塑状的黏性土、稍密 中粗砂可取12~18kpa ;对稍密粉土和稍密的粉细砂可取8~15kpa ; p q ——桩端地基土未经修正的承载力特征值(kpa ),可按现行广东省标准《建 筑地基基础设计规范》DBJ-15-31有关规定取值; i l ——第i 层土层的厚度(m ); α——桩端天然地基土的承载力折减系数,可取~;承载力高时取低值; η——桩身水泥土强度折减系数; cu f ——桩身水泥标准抗压强度;

混凝土搅拌站水泥罐基础设计

100t水泥罐基础设计计算书一、工程概况 某大型工程混凝土搅拌站采用100t水泥罐,水泥罐直径,顶面高度20m。水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为×+×。 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001) 2、《混凝土结构设计规范》(GB50010-2010) 3、《建筑地基基础设计规范》(GB50007-2011) 4、《钢结构设计规范》(GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t;满仓时水泥重量为100t。 2、风荷载计算: 宜昌市50年一遇基本风压:ω0=㎡, 风荷载标准值: ωk=βzμsμz ω0 其中:βz=,μz=,μs=,则: ωk=βzμsμz ω0=×××= kN/㎡ 四、水泥罐基础计算 1、地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN

混凝土基础自重荷载:G ck=(××+××)×24=407kN 风荷载:风荷载作用点高度离地面,罐身高度15m,直径。 F wk=×15×= 风荷载对基底产生弯矩:M wk=×(+2)=·m 基础底面最大应力: p k,max= G ck+G k bh+ M wk W= 错误!+ 错误!=。 2、基础配筋验算 (1) 基础配筋验算 混凝土基础底部配置Φ16钢筋网片,钢筋间距250mm,按照简支梁验算。 混凝土基础承受弯矩:M max=×(1 8×207××=362kN 按照单筋梁验算: αs= M max f c bh02= 362×106 ×3200×8502= ξ=1-1-2αs=1-错误!=<ξb= A s=f c bξh0 f y= 错误!=1403mm 2 在基础顶部及底部均配筋13Φ16,A s 实=13×201=2613mm 2 > A s=1403mm2,基础配筋满足要求。 (2) 基础顶部承压验算 考虑水泥罐满仓时自重荷载和风荷载作用。 迎风面立柱柱脚受力:

100t水泥罐基础设计计算

3.8m*3.8m*120k n/m 2 =1732.8kn J01 地面标高3.5m ① 素填土 0.88m J02 地面标高3.5m ① 素填土 0.44m J03 地面标高3.5m ① 素填土 0.41m ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 -5.79m 粉土 loot 水泥罐基础设计计算 1、 水泥罐自重 G1: 200kn (20t)估 2、 水泥自重 G2: 1000kn (100t) 3、 基础承台自重 G3: 3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2 (分项系数)=1981.2kn 、受力分析 1、承台地基承载力:按12t/m 2估算,承台地基承载力为 2、桩承载力需达到 1981.2k n-1732.8k n=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 -1.72m -4.76m ④ 粉土 粉土 根据上述柱状图,打入桩范围内平均层厚:素填土 2.92m 、淤泥质粉质粘土 4.67m 、 荷载

粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范围内(9m) 土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30) /9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*( U* a *H* T)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U ----- 桩周长, a——震动沉桩影响系数,锤击沉桩取1.0 H——桩入土深度,9.0m T -----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径 273钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T) =1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61 根,取3 根, 布置如图: 3.8m ②如采用直径 630钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T)

混凝土搅拌站毕业设计

1.1混凝土的用途 混凝土是当代最主要的土木工程材料之一。它是由胶凝材料、集料、骨料和水按一定比例配制,经搅拌振捣成型,在一定条件下养护而成的人造石材。价格低廉,生产工艺简单的特点,因而使其用量越来越大。同时混凝土还具有抗压强度高、耐久性好、强度等级范围宽等特点。这些特点使其使用范围十分广泛,不仅在各种土木工程中使用,就是造船业、机械工业、海洋的开发、地热工程等,混凝土也是重要的材料。 1.2混凝土的历史 1900年,万国博览会上展示了钢筋混凝土在很多方面的使用,在建材领域引起了一场革命。法国工程师艾纳比克1867年在巴黎博览会上看到莫尼卡用铁丝网和混凝土制作的花盆、浴盆和水箱后,受到启发,于是设法把这种材料应用于房屋建筑上。1879年,他开始制造钢筋混凝土楼板,以后发展为整套建筑使用由钢筋箍和纵向杆加固的混凝土结构梁。仅几年后,他在巴黎建造公寓大楼时,采用了经过改善迄今仍普遍的钢筋混凝土主柱、横梁和楼板。1884年德国建筑公司购买了莫尼卡的专利,进行了第一批钢筋混凝土的科学实验,研究了钢筋混凝土的强度、耐火能力、钢筋与混凝土的粘结力。1887年德国工程师科伦首先发表了钢筋混凝土的计算方法;英国人威尔森申请了钢筋混凝土板专利;美国人海厄特对混凝土横梁进行了实验。1895年——1900年,法国用钢筋混凝土建成了第一批桥梁和人行道。1918年艾布拉姆发表了著名的计算混凝土强度的水灰比理论。钢筋混凝土开始成为改变这个世界景观的重要材料。混凝土可以追溯到古老的年代,其所用的胶凝材料为粘土、石灰、石膏、火山灰等。自19世纪20年代出现了波特兰水泥后,由于用它配制成的混凝土具有工程所需的强度和耐久性,而且原料易得,造价较低,特别是能耗较低,因而用途极为广泛。20世纪初,有人发表了水灰比等学说,初步奠定令混凝土强度的理论基础。以后,相继出现了轻集料混凝土、加气混凝土及其它混凝土,各种混凝土添加剂也开始使用。60年代以来,广泛应用减水剂,并出现了高效减水剂和相应的流态混凝土;高分子材料进入混凝土材料领域,出现了聚合物混凝土;多种纤维被用于分散配筋的纤维混凝土。现代测试技术也越来越多地应用于混凝土。 1.3混凝土的发展前景 混凝土作为土木工程中用途最广、用量最大的一种建筑材料。按预定性能设计和制作混凝土,研制轻质,高强度,多功能的混凝土新品种。利用现代新技术,

水泥罐基础验算

水泥罐基础验算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

集料拌和站基础及立柱设计计算书 汉十铁路客运专线HSSG-6标段一工区砼拌和站设置两台HZS-180型拌合机,每台拌合机配备6个罐,共4个水泥罐,每个拌和站的两个水泥罐基础联体设置。 一、设计资料 (1)每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径。水泥罐基础采用C25钢筋砼条形承台基础满足两个水泥罐同时安装。6个罐放置在圆环形基础上,圆环内径7米,外径米,基础高,外露。基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 (2)水泥罐总高米,罐高米,罐径米,柱高5m,柱子为4根正方形布置,柱子间距为米,柱子材料为厚度8mm的钢管柱。 施工前先对地基进行处理,处理后现场检测,测得地基承载力超过350kpa。 二、水泥罐基础计算书 1、计算基本参数 水泥罐自重8t,装满水泥共重108t。 水泥罐总高米,罐高米,柱高5m。 2、地基承载力计算 水泥罐基础要求的承载力

1)砼基础面积:S=; 砼体积:V=×=; 底座自重:Gd=×2500×=(砼自重按2500kg/m3); 2)装满水泥的水泥罐自重:Gsz=6×108×=; 3)总自重为:Gz=Gd+Gsz=+=; 4)基底承载力:P=Gz/S==102kpa; 5) 基底经处理后检测的承载力P’≥140kpa; 6) P≤P’ 经验算,地基承载力满足要求。 水泥罐基础满足地基承载力要求,则主机也同时满足承载力要求。 3、抗倾覆计算 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 由于水泥搅拌机属于受风敏感且筒体高度较大,为确保筒体和施工人员的安全,根据《高耸结构设计规范》(GBJ135-2006以下简称高规),应考虑风荷载对结构的影响。 1)风荷载强度计算:跟全国风压表,枣阳地区最大风荷载取值为㎡。 2)风力计算: 平均作用高度为:H=2+5=; 单根水泥罐的风力大小为F=A×W=××=; 1个水泥罐的叠加倾覆力矩

150吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 水泥罐平面位置示意图

二、水泥罐基础计算书 1、计算基本参数 水泥罐自重约20t,水泥满装150t,共重170t。 水泥罐支腿高3m,罐身高18m,共高21m。 单支基础4m×4m×0.8m钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm×200mm,通过受力计算,其地基承载力为: δ2= 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 风荷载(500N/m2) 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: ?M 水泥罐空罐自重20t,则基础及水泥罐总重为:

抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

混凝土搅拌站建筑设计说明

厦门百城建材有限公司内厝混凝土生产基地 方案设计说明 第一部分建筑设计 一、工程概况: 本工程为厦门百城建材有限公司内厝混凝土生产基地,工程位于厦门市翔安区内厝镇上塘村莲塘湾,北临324国道(民安大道),基地地理位置优越、交通便利、周围基础设施较为完善。 二、设计依据: 1、用地红线图。 2、国家及地方的有关法律、法规、条例和其他规定。 3、建设方设计要求 4、国家现行的有关设计规范。 三、总平面规划结构: 1、建筑退距: 基地南临厦门百城建材有限公司地块,建筑退让红线6米,东临众翔厂房,建筑退让红线6米,西侧北侧临绿地,则建筑退让红线大于7米,满足相邻建筑间距要求,同时亦满足消防、安全等的间距要求。 2、布置原则 基地出入口:民安大道是基地临近的唯一城市主干道,而与基地南边相邻的厦门百城建材有限公司地块,因此基地沿民安大道分别设置办公出入口与货运出入口,作为进入基地内部道路网的枢纽,两个出入口各施其职,避免办公车辆与货运车辆混流,使基地内交通流线清晰明了、不拥堵。(注:厂区内路网与厦门百城建材有限公司地块共用) 3、建筑布局 本设计总体布局在合理分析当地气候条件及周围环境的基础上,建筑采用“围合式”的布局方式,同时通过建筑间的错落及退让,形成较大的内部广场空间,减少了相互间的干扰,使建筑物拥有良好的园区景观视线和广场空间。 4、管线综合充分利用市政道路和市政设施。 5、总经济技术指标:

四、建筑设计: 1#:物料棚 建筑层数为一层,层高为19.0m,满足各种不同使用功能的空间高度要求。室内外地坪高差为0.1米,建筑物高度为19.1m。主体采用框架结构,轻钢屋面,外墙包封采用实墙包封,提高抗风性。 2#:搅拌楼 建筑高度为34.00米,室内高差0.1米,建筑层数为四层,低层为运输层,层高6.6米,二层为设备控制室,层高3.8米,三层为设备层,层高4.4米,四层为搅拌筒,层高17米,外围包封主体采用混凝土框架结构支撑搅拌设备,提高抗风性。 3#:综合楼 建筑层数为八层。1~4层为厂房,一层层高为6米,二层层高4.5米,三层4.5米,四层层高4.2米,五至八层为办公,层高3.6米,室内外高差0.45米,建筑物高度34.65米。 五、造型设计 设计构思立足于面向未来,充分反映时代精神,采用现代简约主义设计风格,创造出一个清新明快、高雅尊贵、并富有文化内涵特质的建筑形象。 建筑色彩同整个厂区统一协调、淡雅,造型通过建筑体型的凹凸变化,建筑色彩的合理搭配,建筑的虚实对比等的合理搭配,层次丰富,虚实对比协调,总体上轻盈漏透,简洁大方。 建筑外型风格统一,前后高低呼应,整个基地建筑形象和谐简约而不失丰富,极富时代气息。 六、景观设计: 建筑周围空地布置绿化,种植草皮及乔灌木,美化了环境也提高了建筑品质,同时还丰富了城市景观。 第二部分结构设计 一、设计依据 1、有关部门审批文件 2、规范及规程: (1)《建筑工程抗震设防分类标准》 GB50223-2008 (2)、建筑结构荷载规范 GB50009-2012 (3)、建筑地基基础设计规范 GB50007-2011 (4)、混凝土结构设计规范 GB50010-2010(2015版) (5)、建筑桩基技术规范 JGJ94-2008 (6)、建筑抗震设计规范 GB50011-2010(2016版) 二、设计荷载 1、风荷载:厦门地区50年一遇的基本风压为0.80KN/m2. 地震条件:抗震设防烈度为7度,设计基本地震加速度为0.15g ,设计地震分组为第三组。 2、楼面主要活荷载标准值取值如下:(KN/M2) 厂房 8.0 办公室 2.0 宿舍 2.0

吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 1 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1=21700+0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超 20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: 水泥罐平面位置示意图

δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为: 抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

混凝土搅拌站组织计划

混凝土搅拌站实施方案

目录 第一章编制依据及说明 (1) 第二章公司简介 (1) 第三章场地选择 (4) 第四章项目现场集中搅拌站规模 (4) 第五章商品混凝土生产供应保证方案 (5) 第六章商品混凝土质量保证方案 (9) 第七章商品混凝土验收方案及质量技术指标 (17) 第八章质保资料的交接及售后服务方案 (18)

第九章商品混凝土生产和质量控制的应急处理方案 (21) 第十章后勤保障方案 (21) 第十一章文明施工及安全注意事项 (21) 第十二章环境保护 (22) 第十三章对施工的建议 (23)

第一章编制依据及说明 1.1 编制依据 1.1.1 本公司的企业状况和从业以来的经验与技术能力。 1.1.2 国家、行业及地方有关政策、法令、法律、法规。 1.1.3 国家强制性技术质量标准、施工质量验收规范、规程。 1.1.4 工艺标准及操作规范。 1.1.5 本公司ISO9001:2000标准质量管理体系程序文件及管理规章制度。 1.1.6 我司拥有的设备、技术及管理水平。 1.2 编制说明 针对工程实际情况要求,在整个公司的组织和管理体系中,我们把质量控制作为工程施工的核心,预拌混凝土生产供应保证方案,预拌混凝土原材料质量控制及质量保证方案,预拌混凝土验收方案及质量技术指标,生产和质量控制可能出现的应急处理方案,售后服务方案等作重点描述,以体现本实施方案的全面性、可行性、科学性和针对性。 第二章公司介绍 2.1 公司简介 公司成立于2010年6月1日。投资总额3500万元人民币,主要从事现场

预拌混凝土的生产、销售、运输和泵送。公司各现场年设计生产能力100万立方米,可生产C10~C60各种强度等级的通用品混凝土和特制品混凝土。 公司针对各施工现场,按实际混凝土需求情况配备自动化生产线,混凝土运输车,混凝土输送泵,轮式装载机及相关配套设施。 公司“以质量求信誉,以质量求发展”,视混凝土质量为企业生命,配有完整齐全的试验检测仪器及先进的检测手段,整个混凝土生产从投料—计量—拌合的所有生产工序由计算机全程监控;公司还与重庆市建筑科学研究院进行技术合作,从而确保生产的商品混凝土质量全部优良可靠。 公司建有完善的质量管理体系和行之有效的管理制度,能独立承担各种通用品及特制品商品混凝土的生产、运输、泵送一条龙服务。 “人才至上,客户至尊”的价值观,使公司拥有一批年轻化、专业化、高素质化的技术管理人员,其中高、中、初级专业技术职称的员工占公司员工总人数的33.7%。管理人员中本科以上学历的管理干部占85%。公司的每一位员工都将秉承“融合创造力量”的信条,迅速形成公司的凝聚力,为公司的可持续健康发展奠定坚实基础。 “诚信”是当今市场经济的基石,是公司铸就知名品牌的立足之本,是本公司对社会及广大用户最郑重、最庄严的承诺。公司将以此赢得客户和合作伙伴的真正信任和更长远的合作,发挥品牌效应,充分体现经济效益和社会效益的统一。 竭诚为广大客户服务是公司的经营方针和服务宗旨,公司在服务过程中始终贯彻“做一个工程、交一方朋友、树一座丰碑、赢一方信誉”的经营理念。 用服务编织未来是公司经济战略的具体体现和参与未来市场竞争的基本手段,提供优质的服务是公司经营战略的出发点和落脚点,用户的满意是对公司的最高评价。

混凝土搅拌站水泥罐基础设计

1 0 0 t 水泥罐基础设、r 、 计计、工程概况 某大型工程混凝土搅拌站采用100t 水泥罐,水泥罐直径,顶面高度20m水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺 寸为X +X。 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-200D 2、《混凝土结构设计规范》 ( GB50010-2010) 3、《建筑地基基础设计规范》 ( GB50007-2011) 4、《钢结构设计规范》( GB50017-2003)。 三、荷载计算 1 、水泥罐自重:8t ;满仓时水泥重量为100t 。 2、风荷载计算: 宜昌市50年一遇基本风压:3 0=^, 风荷载标准值:3k=p z a s a z 3 0 其中:P z二,a z二,a s=,贝y: 3 k=3 z a s a z 3 0=xxx = kN/ m' 四、水泥罐基础计算 1 、地基承载力验算考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN 混凝土基础自重荷载:G ck=(XX +XX)X24=407kN

风荷载:风荷载作用点高度离地面,罐身高度 15m 直径。 |=wk =x 15x = 风荷载对基底产生弯矩:M Wk =X( +2) = ?m 基础底面最大应力: 2、基础配筋验算 (1)基础配筋验算 按照单筋梁验算: M Lax 362 X 106 fy 2 2 f c bh 。 X3200X 850 E =1-寸 1- 2 as =1-错误!二<E b = A=fcb ?h =错误!=1403mm 在基础顶部及底部均配筋13①16, A 实=13x 201=2613mn> A^=1403mrg 基础配筋满足要求。 (2)基础顶部承压验算 考虑水泥罐满仓时自重荷载和风荷载作用。 迎风面立柱柱脚受力: F 1k = G - y = 号0 - 错误! =270-69=276kN 4 Z 4 P k , ma. 晋+ W 错误!+错误!=。 bh W 混凝土基础底部配置① 16钢筋网片,钢筋间距250mm 按照简支梁验 算。 混凝土基础承受弯矩: ML=x(8 x 207XX = 362kN

混凝土搅拌站管理规定(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 混凝土搅拌站管理规定(标准 版) Safety management is an important part of production management. Safety and production are in the implementation process

混凝土搅拌站管理规定(标准版) 1.0目的 为加强混凝土搅拌站的管理,提高预拌混凝土产品质量,根据《建设工程质量管理条例》和混凝土标准,参照GB/T19000—2000族标准,制定本规程确保施工质量,特制定本规定。 2.0适用范围 本规定只适用于XXXXXXXX项目。执行部门为混凝土搅拌站承包方。 3.0定义 无。 4.0引用的标准和规范 《预拌混凝土生产技术规程》(BJ08-227) 《普通混凝土配合比设计规程》(JGJ55) 《混凝土强度检验评定标准》(GBJ107)

《混凝土搅拌机技术条件》(GB9142) 《混凝土搅拌站(楼)技术条件》(GB10172) 《混凝土质量控制标准》(GB50164) 《普通混凝土拌合物性能试验方法标准》GB/T50080 《普通混凝土力学性能试验方法标准》GB/T50081 《混凝土结构工程施工质量验收规范》GB50204 5.0规定内容 5.1混凝土原材料管理办法 5.1.1项目应根据质量控制要求选择具有相应资格的合格供方,不得采购无准用证的原材料。建立并保存合格供方的档案;采购合同应经审批,以保证所采购的原材料符合规定要求;供应部门应严格按照原材料质量标准均衡组织进货 5.1.2原材料质量必须符合现行标准、规范和规定要求。项目必须按批验收质量证明材料,拒收质量证明材料不全的原材料。原材料进场后必须按照《预拌混凝土生产技术规程》(DBJ08—227)按批取样、检验,坚持“先检验,后使用”的原则,不得使用不合格原

100t水泥罐基础设计计算

100t水泥罐基础设计计算 一、荷载 1、水泥罐自重G1:200kn(20t)估 2、水泥自重G2:1000kn(100t) 3、基础承台自重G3:3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2(分项系数)=1981.2kn 二、受力分析 1、承台地基承载力:按12t/m2估算,承台地基承载力为3.8m*3.8m*120kn/m2=1732.8kn 2、桩承载力需达到1981.2kn-1732.8kn=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 J01 J02 J03地面标高3.5m 地面标高3.5m 地面标高3.5m ①素填土①素填土①素填土 0.44m 0.41m 0.88m ③淤泥质粉质粘土③淤泥质粉质粘土③淤泥质粉质粘土 -1.72m -4.76m ④粉土-5.79m ④粉土④粉土 根据上述柱状图,打入桩范围内平均层厚:素填土2.92m、淤泥质粉质粘土4.67m、粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范

围内(9m)土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30)/9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U--------桩周长, а-----震动沉桩影响系数,锤击沉桩取1.0 H------桩入土深度,9.0m τ-----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径273钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61根,取3根,布置如图: 3.8m 0.650m 2.5m 0.650m 3.8m ②如采用直径630钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.63*3.14*1.0*9*18.45=218.99kn,需打入的根数为248.4kn/218.99kn=1.1根,取2根。

(完整版)混凝土搅拌站毕业设计论文

题目 类型:设计 (设计、论文、报告) 桂林工学院GUILIN UNIVERSITY OF TECHNOLOGY 本科毕业设计(论文)

题目:基于PLC的混凝土搅拌机 控制及监控程序设计系 ( 院 ):电子与计算机系 专业(方向):自动化(控制) 班级:自动化04-2班 学生: 指导教师: 2008年5月10日

基于PLC的混凝土搅拌站控制及监控程序设计 摘要:混凝土搅拌站是随着水泥的诞生而产生和发展的。它是建筑、桥梁、道路、大坝等工程施工中的必备设备,它由贮料、配料、搅拌、放料等结构部件组成,是一个受多环节制约的复杂系统。而随着我国经济建设的高速发展,综合国力不断增强,国家对基础设施建设的投资力度加大,拉动了城市商品混凝土的高速发展,同时,使混凝土搅拌站有了较大的发展空间,最初搅拌站仅以单机的形式出现,混凝土自拌自用,随着基础设施建设大规模的开展,产生了很大的商品混凝土市场,搅拌站的需求越来越大,计量要求越来越高,于是出现了各种不同形式带有计量装置的搅拌站,从而产生了现代的混凝土搅拌站。 常见的混凝土搅拌站控制方式有继电器直接控制、PLC和计算机结合以及PLC和配料控制器结合3种控制方式。采用PLC和配料控制器结合控制的搅拌站性能可靠、性价比高,可以保证混凝土的质量,提高混凝土生产效率。作为混凝土搅拌站的核心,控制及监控程序在计量精确、控制可靠、管理方便等方面的要求也日益提高。 本文针对PLC和配料控制器结合控制的搅拌站来设计其控制及监

控程序设计中主要要完成的任务有系统构造、PLC的IO分配、工作流程图及PLC程序的编写。 关键词:混凝土搅拌站;IO分配;可编程控制器(PLC);自动控制

水泥罐混凝土桩基础设计计算书-30m

水泥罐桩基础计算书 1.水泥罐基础设计 拌合站投入8个200t 型水泥罐,水泥罐直径4.8m ,支腿临边间距3.395m ,每4个为一组,见图附1。根据以往砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用8根C30混凝土灌注桩桩基础,钢筋笼见附图4。桩直径1.2m ,桩长30m ,平面布置见附图1。基础承台厚0.8m ,采用C30混凝土浇筑。承台采用Φ14200mm ×200mm 上下两层钢筋网片。架立筋采用2000mm ×2000mm φ14钢筋双排双向布置,平面图见附图2,立面图见附图3。基础顶预埋地脚钢板与水泥罐支腿满焊。 承台及单桩工程量见附图5。 2.计算基本参数 单个水泥罐自重约20t ,水泥满装200t ,共重220t 。 桩直径1.2m ,桩长30m 。 水泥罐罐身高18.6m ,总高21m 。 基础承台0.8m (高)。 3.单桩轴向受压承载力容许值计算 单桩轴向受压承载力容许值为: q A l q r p i n 1i ik μ21R + =∑=a 上式中q r 为桩端处土的承载力容许值 [] []kPa 5.478)330(195.118072.07.0)(=-??+??=-+=3h λγK f m q 2 2a0 r u ---桩身周长(m ); A p ---桩端截面积(m 2); n ---土的层数 l i ---承台底面以下各土层的厚度(m ); q ik ---与l i 层对应的各土层与桩侧的侧摩阻力标准值(kPa ); q r ---桩端处土的承载力容许值; [f a0] ---桩端处土的承载力基本容许值(kPa ); h ---桩端的埋置深度(m ),h>40时按40计算;

水泥罐基础设计方案范文

水泥罐基础设计方 案

目录 一、编制依据.......................................................................... 错误!未定义书签。 二、工程概况.......................................................................... 错误!未定义书签。 三、地基处理及施工方法 ...................................................... 错误!未定义书签。 四、水泥罐基础设计 .............................................................. 错误!未定义书签。 1、参数信息 .................................................................... 错误!未定义书签。 2、基础最小尺寸计算..................................................... 错误!未定义书签。 3、基础承载力计算......................................................... 错误!未定义书签。 4、垫层宽度验算............................................................. 错误!未定义书签。 5、垫层厚度验算............................................................. 错误!未定义书签。 6、地基基础承载力验算 ................................................. 错误!未定义书签。 7、受冲切承载力验算..................................................... 错误!未定义书签。 8、抗倾覆力矩计算:..................................................... 错误!未定义书签。 9、承台配筋计算............................................................. 错误!未定义书签。 五、水泥罐基础配平面位置及配筋图详见附后图 ............... 错误!未定义书签。 六、水泥罐基础施工技术要求 .............................................. 错误!未定义书签。 1、水泥罐基础持力层的验收方法 ................................. 错误!未定义书签。 2、材料要求 .................................................................... 错误!未定义书签。 3、基础验收要求............................................................. 错误!未定义书签。

混凝土搅拌站设计

目录: 1.混凝土搅拌站设计说明 (3) 2.搅拌站管理说明 (8) 3.计量管理制度 (10) 4.现场实验室管理制度 (12) 5.防台风、防暴雨、防雷电紧急预案 (20) 6.冬、雨季施工措施 (31) 7.搅拌站现场管理体系 (39) 混凝土集中搅拌站方案 ********有限公司 *********公司混凝土搅拌站 目录: 1.混凝土搅拌站设计说明 (3) 2.搅拌站管理说明 (8) 3.计量管理制度 (10) 4.现场实验室管理制度 (12) 5.防台风、防暴雨、防雷电紧急预案 (20) 6.冬、雨季施工措施 (31) 7.搅拌站现场管理体系 (39) 混凝土搅拌站设计说明 1. 目的 为确保砼工程的质量,满足施工计划的砼浇筑强度,保证华电可门火电厂二期工程的生产秩序及减小环境污染,实现文明施工。本工程施工设置二个总生产能力为120m3/h,同时可生产二个砼品种的大型自动化砼集中搅拌站,来满足整个工程的砼供应。 2. 砼集中搅拌站的厂址选择 由于本工程是二期扩建工程,为确保原一期工程的生产正常进行并避免同其它施工活动互相干扰,其厂址

选择应考虑以下条件: 1) 搅拌站离爆破作业点的安全距离不小于300米。 2) 厂址应便于搅拌站接受各种材料和运出砼。为减少运输途中砼分离和坍落度损失以及温度变化,搅拌站应尽量靠近施工现场,运距应按砼出机到入仓的时间不超过20min考虑。 3) 厂区应便于给水、排水、供电。 3. 砼搅拌的设备选型 根据施工进度计划的要求,砼搅拌站的小时生产能力为:120m3/h,并同时具有生产二个品种砼的能力,据此我们选择四台1 m3的砼搅拌机,采用两台搅拌机组成一条生产线,两条生产线组成砼集中搅拌站。 4. 水泥储运设施 本搅拌站使用散装水泥,共设有4个100T散装水泥储罐。水泥的运输主要考虑水泥生产厂家供应运输,另自备两台30吨散装水泥罐车,作为应急辅助运输。 5. 砂、石,外加剂的储运设施 集中搅拌站设有2000m2的砂、石堆料储料场。配有两台ZL-50装载机进行堆料及向搅拌机骨料仓装料。外加剂等材料建立专属材料库,以便存放和管理。 6. 砼的输送 搅拌站距施工浇筑现场大约500米,采用砼搅拌车运送至浇筑现场的砼输送泵仓。由砼泵泵送至各浇筑点。 本站配备两台HBT80砼输送泵,5台8m3砼搅拌输送车作为砼的主要输送设备,可确保工程砼的输送。 7. 集中搅拌站不间断生产保证措施 本站配备1台315kw柴油发电机组,作为搅拌站的自备电源。 8. 砼质量保证措施 1)集中砼搅拌站应按ISO9002标准及我公司质量体系要求建立建全集中搅拌站的质量保证体系,组织机构。并制定相应的质量管理规章制度。 2)砼原材料的质量控制 砼的原材料质量控制是保证砼质量的关键,砼原材必须由材料,实验专管人员及站长多重把关,不合格大材料必须退场。 3)砼的生产过程及成品的质量控制

水泥罐基础设计计算书

水稳拌合站投入两个100t 型水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m 。根据以往水稳拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×1.5m (高),基础埋深1.2m ,外漏0.3m ,承台基础采用Φ16@250mm ×250mm 上下两层钢筋网片,架立筋采用750mm ×750mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 架立筋-1号 11 1-1剖面1号 3号 50700 50 基础配筋图 2号8000 4000 35 450 2050 ?320罐支脚 8000 4000 22 00 60 600 ?3300 3700 水泥罐平面位置示意图

1、计算基本参数 水泥罐自重约20t ,水泥满装150t ,共重170t 。 水泥罐支腿高3m ,罐身高18m ,共高21m 。 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 21700 +0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: δ2= ( )1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =??? ÷(18)?M 水泥罐空罐自重 20t ,则基础及水泥罐总重为: 风荷载(500N/m2)

混凝土搅拌站水泥罐基础设计知识交流

100t水泥罐基础设计计算书 一、工程概况 某大型工程混凝土搅拌站采用100t水泥罐,水泥罐直径2.7m,顶面高度20m。水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为4.2m×0.5m+3.2m×1.0m。 基础立面图 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001) 2、《混凝土结构设计规范》(GB50010-2010) 3、《建筑地基基础设计规范》(GB50007-2011) 4、《钢结构设计规范》(GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t;满仓时水泥重量为100t。 2、风荷载计算: 宜昌市50年一遇基本风压:ω0=0.3kN/㎡, 风荷载标准值: ωk=βzμsμz ω0 其中:βz=1.05,μz=1.25,μs=0.8,则:

ωk=βzμsμz ω0=1.05×0.8×1.25×0.3=0.315 kN/㎡ 四、水泥罐基础计算 1、地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN 混凝土基础自重荷载:G ck=(3.2×3.2×1.0+4.2×3.2×0.5)×24=407kN 风荷载:风荷载作用点高度离地面12.5m,罐身高度15m,直径2.7m。 F wk=0.315×15×2.7=12.8kN 风荷载对基底产生弯矩:M wk=12.8×(12.5+2)=185.6kN·m 基础底面最大应力: p k,max= G ck+G k bh+ M wk W= 407+1080 4.2×3.2+ 185.6 9.408=130.6kPa。 2、基础配筋验算 (1) 基础配筋验算 混凝土基础底部配置Φ16钢筋网片,钢筋间距250mm,按照简支梁

相关文档
最新文档