电力系统电压稳定问题分析研究

合集下载

电力系统中电压稳定性的分析

电力系统中电压稳定性的分析

电力系统中电压稳定性的分析在现代社会中,电力系统的稳定运行对于各行各业的正常运转以及人们的日常生活至关重要。

而电压稳定性作为电力系统稳定性的一个重要方面,直接影响着电能的质量和电力设备的安全可靠运行。

电压稳定性,简单来说,就是电力系统在给定的运行条件下,维持负荷节点电压在允许范围内的能力。

当系统中的电压失去稳定时,可能会导致一系列严重的问题,如设备损坏、大面积停电等,给社会经济带来巨大的损失。

电力系统是一个复杂的网络,由发电、输电、变电、配电和用电等多个环节组成。

在这个系统中,电压的稳定性受到多种因素的影响。

首先,负荷特性是影响电压稳定性的关键因素之一。

不同类型的负荷,如恒功率负荷、恒电流负荷和恒阻抗负荷,对电压变化的响应各不相同。

当负荷需求突然增加,而系统的供电能力无法及时跟上时,就容易出现电压下降的情况。

如果这种情况持续恶化,可能会引发电压崩溃。

其次,电源的分布和特性也对电压稳定性有着重要影响。

发电设备的容量、类型以及它们在电网中的位置,都会影响到电力的供应和电压的支撑能力。

例如,远离负荷中心的电源,在输电过程中可能会因为线路阻抗而导致电压损耗增大,从而影响负荷端的电压稳定性。

再者,电网的结构和参数也是不可忽视的因素。

输电线路的长度、电阻、电抗等参数,决定了电能传输过程中的电压降。

电网的拓扑结构,包括线路的连接方式和变电站的布局,也会影响电压的分布和稳定性。

此外,无功功率的平衡对于维持电压稳定至关重要。

无功功率不像有功功率那样直接用于做功,但它对维持电压水平起着关键作用。

当系统中的无功功率不足时,电压会下降;而无功功率过剩,则可能导致电压升高。

为了分析电力系统的电压稳定性,研究人员和工程师们采用了多种方法。

静态分析方法是常用的手段之一。

其中,潮流计算是基础。

通过潮流计算,可以得到系统在给定运行方式下的节点电压、功率分布等信息,从而判断系统是否处于电压稳定的状态。

还有一种常用的方法是动态分析。

电力系统中电压稳定性的研究

电力系统中电压稳定性的研究

电力系统中电压稳定性的研究在当今高度依赖电力的社会中,电力系统的稳定运行至关重要。

其中,电压稳定性是电力系统安全稳定运行的一个关键方面。

理解和研究电压稳定性对于保障电力供应的可靠性、质量以及避免电力系统故障和停电具有极其重要的意义。

首先,我们来谈谈什么是电压稳定性。

简单来说,电压稳定性指的是电力系统在给定的初始运行状态下,遭受一定的扰动后,系统中所有母线的电压能够保持在可接受的范围内,从而使得电力系统能够持续稳定运行的能力。

当电力系统中的电压失去稳定性时,可能会导致电压崩溃,进而引发大面积停电,给社会经济和人们的生活带来巨大的影响。

那么,影响电力系统电压稳定性的因素有哪些呢?负荷特性是其中一个重要因素。

不同类型的负荷对电压的变化有着不同的响应。

例如,恒功率负荷在电压降低时会吸收更多的电流,从而进一步加重电压的下降;而恒电流负荷则相对对电压变化不太敏感。

电力系统的结构和参数也起着关键作用。

电网的拓扑结构、线路的阻抗、变压器的容量和变比等都会影响电压的分布和稳定性。

另外,无功功率的平衡也是至关重要的。

无功功率不足会导致电压下降,而无功功率过剩则可能引起电压升高。

为了研究电力系统的电压稳定性,我们需要一些有效的分析方法和工具。

静态分析方法是常用的手段之一,其中包括潮流计算和灵敏度分析。

潮流计算可以帮助我们了解电力系统在给定运行条件下的电压和功率分布情况。

通过对潮流计算结果的分析,我们可以判断系统是否处于稳定状态。

灵敏度分析则用于研究系统参数变化对电压稳定性的影响,从而帮助我们找到影响电压稳定性的关键因素。

动态分析方法则更加关注系统在受到扰动后的动态过程。

例如,时域仿真可以模拟系统在各种故障情况下的电压和功率变化过程,从而直观地展示系统的稳定性。

小干扰稳定分析则用于研究系统在受到小扰动后的稳定性,通过分析系统的特征值和特征向量来判断系统是否稳定。

在实际的电力系统运行中,为了提高电压稳定性,采取了一系列的措施。

电力系统中的电压稳定性分析与改进策略

电力系统中的电压稳定性分析与改进策略

电力系统中的电压稳定性分析与改进策略电力系统的电压稳定性分析与改进是确保系统正常运行和供电质量稳定的重要环节。

本文将详细介绍电力系统电压稳定性的分析方法,以及改进策略。

一、电压稳定性分析方法(一)静态分析法静态分析法是一种简化了电力系统模型的静态平衡法,通过忽略短期动态响应和系统的非线性特性来分析电压稳定性。

静态分析法可以使用功率流分析进行电压稳定性分析,主要包括节点电压法、导纳阻抗法和调整阻抗法等,通过计算得到系统的节点电压和功率偏差,从而判断系统的电压稳定性。

(二)动态分析法动态分析法是一种考虑了电力系统的瞬态响应和非线性特性的分析方法,通过考虑负载变化、故障和控制器动态响应等因素对系统进行动态模拟和仿真,计算系统响应过程中的电压波动情况。

常用的动态分析方法有振荡等效法、自衔接法、以及时域和频域模拟方法等。

动态分析法能够全面考虑系统的非线性特性和瞬态响应,对电压稳定性的评估更准确。

二、电压稳定性的改进策略(一)发电侧的控制策略1.发电机调整控制:通过调整发电机励磁系统使得电压保持稳定。

2.AVR和无功补偿:采用自动电压调节器(AVR)和无功补偿装置来调节系统电压,并通过改变电源电压变化率减小电压波动。

3.机组统一调度:通过合理的机组出力分配和协调运行,减少机组负荷波动,提高系统的电压稳定性。

(二)负荷侧的控制策略1.合理负荷预测和管理:对负荷进行准确预测,并采取合理的负荷管理措施,控制负荷波动范围,减小对系统电压的影响。

2.负荷调度和优化:通过负荷调度和优化方法,将考虑削峰填谷,均衡负荷和降低电压尖峰,提高系统的电压稳定性。

3.过载保护和限流:对负载过载和瞬态故障采取保护措施,如及时切除过载负荷,限制故障电流对电压的影响。

(三)系统拓扑优化和规划策略1.线路规划和交叉调度:通过合理规划系统线路布局和交叉调度,减小线路阻抗和负载不平衡,提高系统电压稳定性。

2.变电站布置和优化:根据负荷分布和功率流向情况,合理布置变电站和选择变电站参数,以降低系统的电压损耗和提高系统电压稳定性。

电力系统电压稳定性控制方法研究

电力系统电压稳定性控制方法研究

电力系统电压稳定性控制方法研究随着电力需求的不断增长,电力系统的稳定运行成为了一个重要的问题。

电力系统的一个重要指标就是电压的稳定性。

电压稳定性不仅关系到供电的可靠性,还与系统的经济运行和电力设备的寿命等因素密切相关。

因此,研究电力系统的电压稳定性控制方法具有重要的理论和实际意义。

一、电压稳定性的概念和现状电力系统的电压稳定性是指系统在外部扰动或内部负荷的变化下,能够维持合理范围内的电压水平,保证供电的稳定性。

电力系统的输电线路、变电站等电力设备,以及负荷需求的变化,都会对电压稳定性产生影响。

当前,全球范围内电力系统的电压稳定性问题已经引起了广泛的关注和研究。

二、传统的电压稳定性控制方法传统的电力系统电压稳定性控制方法主要包括牵引力系统、电容补偿、无功功率补偿和调压变压器等技术手段。

牵引力系统是指通过汇流变压器和开关设备将额外的牵引负荷接入电力系统,以提供额外的无功补偿,从而维持系统电压稳定。

这种方法的优点是成本较低,但需要考虑到牵引设备的负荷特性。

电容补偿技术是利用电容器将无线电有源电压调节器(SVC)或静止补偿设备(STATCOM)接入电力系统,以提供额外的无功补偿。

这种方法的优点是响应速度快,但容量较小,只能对系统电压进行短期调整。

无功功率补偿技术是通过控制并接入在输电线路上的无功补偿装置,如无功发生器(SVC)和无功发生器(STATCOM)来调节无功功率的流动方向和量级,从而维持系统电压稳定。

调压变压器是通过改变变压器的绕组比例,实现对系统电压的调节。

这种方法的优点是实时性好,但容错能力较差,且造价较高。

三、新型电压稳定性控制方法的研究进展随着电力系统的发展和技术的进步,新型的电压稳定性控制方法也得到了广泛的研究。

例如,基于人工智能的电力系统电压稳定性控制方法,通过利用神经网络、遗传算法等技术手段,实现对系统电压的智能调控。

另外,基于数据挖掘的电压稳定性控制方法也得到了研究者的关注。

通过对大量历史数据进行分析和挖掘,建立电力系统的模型,并运用数据挖掘算法,预测系统电压的变化趋势,从而实现对电压的稳定控制。

基于深度学习的电力系统电压稳定性分析与控制研究

基于深度学习的电力系统电压稳定性分析与控制研究

基于深度学习的电力系统电压稳定性分析与控制研究深度学习在电力系统电压稳定性分析与控制方面的研究摘要:电力系统电压稳定性对于保障电力系统的可靠运行具有重要意义。

过去的研究主要采用传统的方法和模型进行电压稳定性分析与控制,但这些方法往往存在着计算复杂度高、建模困难等问题。

近年来,深度学习作为一种有效的人工智能技术,已经在众多领域取得了重要的进展。

本论文主要研究了基于深度学习的电力系统电压稳定性分析与控制方法,并对其应用进行了讨论和分析。

通过实验验证,结果表明深度学习在电力系统电压稳定性分析与控制方面具有较好的性能和应用前景。

1. 引言电力系统是一个复杂的动态系统,其电压稳定性问题一直是电力系统研究的重点之一。

电压稳定性的破坏可能导致电力系统的崩溃,因此电力系统电压稳定性的分析与控制具有重要意义。

过去的研究主要采用传统的方法和模型,如状况特征指标、等价发电机模型等进行电压稳定性分析与控制。

然而,这些方法在实际应用中存在着计算复杂度高、建模困难等问题。

2. 深度学习在电力系统电压稳定性分析与控制中的应用深度学习作为一种新兴的人工智能技术,已经在图像识别、语音识别等领域取得了重要的进展。

近年来,研究者开始将深度学习应用于电力系统领域。

本节主要介绍深度学习在电力系统电压稳定性分析与控制中的应用。

2.1 深度学习模型的构建深度学习模型一般由多个神经网络层组成,包括输入层、隐藏层和输出层。

在电力系统电压稳定性分析与控制中,可以构造不同类型的深度学习模型。

例如,可以采用多层感知机模型、循环神经网络模型等。

2.2 数据集的构建与预处理深度学习需要大量的数据进行训练。

在电力系统电压稳定性分析与控制中,可以利用历史数据构建数据集。

同时,在训练之前还需要对数据进行预处理,包括数据清洗、特征提取等。

2.3 电压稳定性分析与控制方法深度学习在电压稳定性分析方面的方法主要包括电压稳定性预测和状态估计。

电压稳定性预测旨在预测电力系统电压是否稳定,状态估计则是对电力系统状态进行估计。

电力系统中的电压稳定控制技术研究

电力系统中的电压稳定控制技术研究

电力系统中的电压稳定控制技术研究电力系统是现代社会不可或缺的基础设施之一,其稳定运行对于维持社会经济正常运转至关重要。

其中,电压稳定控制技术是电力系统运行中的关键环节,它的研究和应用对系统的稳定性和可靠性具有重要影响。

本文将对电力系统中的电压稳定控制技术进行深入研究和讨论。

一、电力系统中电压的稳定性问题电压稳定性是指电力系统的供电电压在运行过程中能够维持在合理范围内,不受外界干扰和内部因素的影响,确保稳定可靠地供电。

电力系统中电压稳定性受到很多因素的影响,比如负荷变化、电力负荷的不平衡、发电机失速、电源故障等。

如果电压稳定性不能得到有效的控制和管理,将会引发各种问题,如电力设备损坏、供电中断、电力质量不合格等。

二、电压稳定控制技术的分类为了提高电力系统中的电压稳定性,研究人员和工程师们提出了多种电压稳定控制技术。

根据控制策略的不同,可以将电压稳定控制技术分为传统控制技术和先进控制技术。

1. 传统控制技术传统控制技术主要包括发电机励磁控制、变压器无功补偿、发电机自动电压调节器和电力系统的无功补偿等。

这些技术主要通过调节设备参数或者引入无功功率来控制电压。

传统控制技术在电力系统中得到广泛应用,并且经过多年的实践验证,在一定程度上为电压稳定性提供了较好的控制效果。

2. 先进控制技术随着电力系统的规模和复杂程度不断增长,传统控制技术已经不能完全满足电压稳定性的要求。

因此,研究人员开始着重研究先进控制技术,如模糊控制、神经网络控制、遗传算法等。

这些技术利用先进的数学建模方法和智能算法,能够对电力系统中的电压进行更准确、更高效的控制。

三、电压稳定控制技术的研究进展随着电力系统设备的不断升级和电力市场的变革,电压稳定控制技术也在持续发展和创新。

以下是一些电压稳定控制技术的研究进展:1. 基于智能算法的电压控制智能算法在电力系统的电压稳定控制中得到了广泛应用。

例如,基于遗传算法和模糊控制的电压控制方法能够对电力系统中的电压进行优化控制,提高系统的稳定性和可靠性。

电力系统电压稳定性优化与控制研究

电力系统电压稳定性优化与控制研究

电力系统电压稳定性优化与控制研究摘要:电力系统的电压稳定性是保持系统运行可靠性的重要因素之一。

本文旨在研究电力系统中电压稳定性的优化与控制策略,并分析现有的研究成果和方法。

通过对电力系统中电压稳定性问题的分析,本文提出一种基于传统控制方法和智能优化算法相结合的电压稳定性优化与控制方法,以提高电力系统的稳定性和可靠性。

1. 引言电力系统是现代社会不可或缺的基础设施,其稳定运行对能源供应和社会经济发展至关重要。

而电压稳定性是电力系统可靠运行的基石之一。

电力系统的电压稳定性主要指系统各节点的电压值在合理范围内保持稳定,防止出现过高或过低的电压,从而保证供电质量和设备的正常运行。

因此,电力系统电压稳定性的优化与控制成为了当前研究的热点和难点问题。

2. 电力系统电压稳定性问题及分析电力系统的电压稳定性问题常常由于负荷变化、电源故障、输电线路阻抗等原因引起。

这些因素可能导致系统电压失稳、过大或过小,进而对电力设备的安全运行产生不利影响。

因此,对电力系统电压稳定性进行综合分析和研究,是解决这一问题的前提。

3. 电力系统电压稳定性优化与控制方法研究3.1 传统控制方法传统控制方法是对电力系统电压稳定性优化与控制的一种常用方法。

其中,PID控制器具有简单、易实现的特点,并在电力系统中得到广泛应用。

PID控制器通过调整系统中的比例、积分和微分参数,使系统的电压保持在稳定范围内。

另外,频率响应法、根数法等传统控制方法也常被用于电压稳定性的优化与控制。

3.2 智能优化算法随着人工智能技术的发展,智能优化算法在电力系统电压稳定性优化与控制中得到了广泛应用。

例如,遗传算法、模拟退火算法、粒子群优化算法等,能够通过搜索和优化电力系统参数,提高电压的稳定性和可靠性。

同时,人工神经网络、模糊控制等智能技术也可以用于电压稳定性的优化与控制,通过建立系统间的关联关系和规则,实现电压优化控制。

4. 电力系统电压稳定性优化与控制方法综合应用为了提高电力系统的电压稳定性和可靠性,可以将传统控制方法和智能优化算法相结合,形成综合的优化与控制策略。

电力系统电压暂态与稳态稳定性分析研究

电力系统电压暂态与稳态稳定性分析研究

电力系统电压暂态与稳态稳定性分析研究随着电力系统规模的不断扩大和负荷需求的增加,电力系统的稳态和暂态稳定性分析变得越来越重要。

在电力系统中,电压暂态指的是在负荷突变或故障发生时,电力系统的电压出现瞬时变化的现象;而稳态稳定性则是指电力系统在负荷变化或外部干扰下的长期稳定性。

电力系统的电压暂态分析主要用于评估电力系统的电压响应能力和安全性。

当系统中存在负荷突变或故障时,会产生过电压或欠电压的现象,从而对电力设备的运行和电力系统的稳定性产生不利影响。

通过电压暂态分析,我们可以确定系统中的电压波形,评估电力设备的耐受能力,并采取必要的措施来保障电力系统的安全运行。

电力系统的稳态稳定性分析主要用于评估电力系统的长期稳定性。

电力系统中存在着多种因素影响稳态稳定性,如发电机的无功功率抛控制、负荷变化、传输线路的电阻、电抗等。

稳态稳定性分析通过考虑各种因素的相互作用,预测系统的稳态行为,并提供指导和建议来保持系统的稳定运行。

稳态稳定性分析结果还用于决定电力系统的运行安全范围,确定系统的稳定边界,并制定相应的保护措施。

电力系统的电压暂态和稳态稳定性分析可以采用不同的方法和技术来进行。

其中最常用的方法之一是利用计算机模拟和数学建模技术,通过建立电力系统的数学模型,模拟系统的电压响应和稳态行为。

这种方法能够准确地评估系统的暂态和稳态稳定性,提供重要的决策依据。

此外,电力系统的电压暂态和稳态稳定性分析还可以利用实时监测和数据分析技术。

通过在电力系统中布置监测装置,实时收集各种电流、电压和功率参数的数据,并进行实时分析,可以快速识别系统中的暂态和稳态稳定性问题,并采取相应的措施进行调整和改进。

电力系统的电压暂态和稳态稳定性分析的研究对于保障电力系统的安全稳定运行具有重要意义。

通过准确评估系统的暂态和稳态稳定性,我们可以预测潜在的风险和问题,并采取适当的措施来保证系统的安全性和可靠性。

此外,电压暂态和稳态稳定性分析的研究还可以为电力系统的规划和优化提供理论和技术支持,提高电力系统的经济性和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统电压稳定问题分析研究
发表时间:2018-11-11T12:30:30.640Z 来源:《电力设备》2018年第20期作者:王有军
[导读] 摘要:在改革开放的新时期,随着社会经济的不断发展、电力需求的不断增长和电力网络系统的连接,受到各种因素的影响,电力系统的运行已经接近极限状态,电压的稳定问题日益凸显。

(国网滁州供电公司安徽滁州 239000)
摘要:在改革开放的新时期,随着社会经济的不断发展、电力需求的不断增长和电力网络系统的连接,受到各种因素的影响,电力系统的运行已经接近极限状态,电压的稳定问题日益凸显。

电压的稳定一般是在静态和动态的情况下发生。

本文将从电力系统电压稳定方面进行分析,针对具体的运行情况提出相应的措施。

关键词:电力系统;电压稳定;措施
引言
电力系统属于复杂的庞大非线性多变量动态系统,其中稳定与安全是电力系统运行的基本条件与必备条件。

伴随着电网规模的不断扩大,以及电力市场化的深入改革,远距离的重负荷输电状况将会更加突出,这就使得电力系统运行将会愈来愈接近网络的极限输送能力。

所以,鉴于国外出现的恶性电压崩溃事件与我国部分区域出现的电压失稳现象,强化电力系统的电压稳定及控制研究具有重要的现实意义与理论价值。

1电压稳定性
电压稳定性时整个电力系统正常运作的保障,它是電力系统在额定的运行条件下和遭受外部干扰后系统中所有的母线都能持续地保持可接受的电压的能力。

当有外部干扰或改变系统条件下,从而造成了渐进的、不可控制的电压降落,那么电压就处于不稳定状态了。

电压不稳定通常情况下是局部现象,但这容易导致连锁反应,从而导致整个电力系统的电压崩溃。

在功角稳定性中,同步发电机的转矩平衡而决定其稳定性;在电压稳定性中,所有母线都持续保持可接受的电压时,功角失稳并不能影响电压的稳定性,但持续能力的消退会引起功角失稳,从而导致电压的不稳定。

2电力系统的电压稳定分析方法
2.1静态分析法
静态电压稳定分析主要以平衡点间的稳定性研究为主,其要求电力系统受到的干扰幅度尽可能小,或者电力系统的演化过程尽可能的缓慢,以至于可以忽略电力系统模型的动态化过程,这时的电力系统运行轨迹主要由稳定的平衡点所构成。

一旦电力系统的实际功率难以平衡,即不存在所谓的稳定平衡点,则可以确定电力系统存在电压失稳的隐患,这一失稳机理能够通过Q-V曲线或者P-V曲线得到科学合理的解释。

从本质上讲,静态分析法就是将网络传输极限功率时的实际运行状态,当作成静态电压稳定的最高极限状态。

静态电压分析法重点从静态观点对电压崩溃机理进行揭示,用代数方程对系统微分方程进行代替,用静态模型对负荷进行描述。

其能够显示出电压稳定的裕度指标,且能通过灵敏度分析法显示出电力系统的弱区域以及其他信息。

静态分析法因方便快捷而得到了广泛的应用与发展,是当前电力系统的电压稳定研究中成效最为显著的一项,且相关研究成果已被应用到了电力领域之中。

2.2动态电压稳定分析方法
当系统受到小扰动时,可以利用动态电压稳定分析方法进行电压稳定性分析,该种分析方法主要是研究与有关元件的动态性分析,对于影响电压稳定性的因素,考虑到发电机、无功无常设备以及负荷存在的状态,其中还有OLTC技术对网络输送功率的影响,通过提高网络的最大输送功率,来保证电压的稳定性。

电压稳定是一个动态问题,系统中的发电机和负荷的动态特性都对电压的稳定有一定的影响,小扰动分析方法的研究,建立动态化的分析模型,方便各元件的有效使用。

3电力系统电压稳定的有效控制
3.1变压器分接头的紧急控制
OLTC的应用主要是对母线中存在的电压负荷进行调节,保证系统的正常运行,能够将运行控制在一定的范围内,一般电力系统中存在的接头地方,不利于电压的稳定。

如果电力系统发生紧急状态,OLTC就会起到一定的作用,防止电压系统的崩溃,电力系统中的分接头动作有利于增强电压的稳定性,当负荷处于一种恒定状态时,电压的变动会降低网络中功率的损耗。

分接头紧急控制措施包括分接头调节闭锁和分接头的逆调节,在发生紧急的情况下,通过暂时停止或者是延缓电压的方式防止电压的崩溃。

3.2无功电源对电压稳定的控制
静止的无功发生器具有连续输出从额定感性无功到额定容性无功的能力,且具有输出无功电流谐波小、输出无功动态响应速度快的特点;装置具有完善的分级保护,在系统和装置自身故障时能够正确动作,对装置自身起到保护作用。

静止的无功发生器是通过从电力网中吸收或者是向电力网中输送可连续条件的无功功率来达到维持电压平衡的。

通常情况下,静止无功发生器吸收电网中的无功功率,当电力系统发生扰动时,静止无功发生器的功能发生转变,由吸收无功功率转变为输出无功功率。

静止无功发生器的响应速度也高于其他电压调节装置,响应时间一般在0.1S-0.5S左右。

3.3电压安全监控系统
伴随着计算机技术发展的深入,其已经渗透到社会生活的方方面面,不无例外的也可以应用到保证电力系统的电压稳定性中去。

我们可以通过建立电压安全监控系统,更加便捷和合理的调度电力需求,使得电力的输送更加符合实际的电力需求。

还可以通过开发出功能更加强大电压安全监控软件,从而使得电压系统的安全监测更加的全面和有效,这样将会对电力系统的稳定运行起到积极地推动作用。

使得电力系统更加及时发现导致电压失稳的原因,以便及时的将其排除,从而最大化电力企业的经济效益。

3.4科学规划设计
要提升电力系统的电压稳定及控制成效,就必须对电力系统进行科学合理的规划与设计。

其中,对电压、负荷以及传输网络的规划,应尽可能的提升网络传输能力,强化负荷中线电源调控电压的能力。

同时,电网结构还应确保运行过程中的灵活性,最大程度做好电网结构的无功功率规划工作等。

3.5切除负荷
当电力系统的电压出现失稳的情况时,可以通过切除负荷的方法制止电压发生崩溃,能够保证电力系统的安全运行。

在电力系统中需
要安装阻止电压崩溃的自动装置,低电压自动减载装置能够针对专门的电压稳定问题,通过估计动态负荷模型参数,研究负荷最小切除量的计算,利用切除负荷和电容补偿等的方式控制电压的稳定性。

3.6做好充分预案准备
由于负荷特性的多样性和不确定性,我们必须时刻关注系统电压的实际变化,通过合理的电力调配和维护保证电压的稳定性运营。

在实际的运营过程中,我们可以通过对实际系统的负荷特性进行详细的分析和规划,对各类可能发生的电压失稳情况进行充分的预案准备,建立比较仿真的负荷数据模型,使得电力企业能够更加有效的提高电压稳定性 .
结语
综上所述,对于电压稳定性的研究,一直是电力系统安全运行过程中的研究重点,有关的电压的稳定性主要是从电压稳定的静态和动态方面进行分析,其中负荷的特性是电压稳定性研究中的重点。

对于电压失稳的情况需要从电力系统失稳的各种场景方面进行分析,采用相应的控制措施,保证电力系统的安全有序运行,根据电力系统稳定方面存在的问题,采取相对应的方式。

参考文献:
[1]刘光晔,杨以涵.电力系统电压稳定与功角稳定的统一分析原理[J].中国电机工程学报,2013(13):135-149.
[2]赵晋泉,孙晓明,龚成明,等.含FACTS元件的电力系统电压稳定评估[J].电力系统自动化,2011(16):21-26.
[3]汤涌,仲悟之,孙华东,等.电力系统电压稳定机理研究[J].电网技术,2010(4):24-29.
[4] 钟浩.电力系统静态电压稳定性快速评估及其预防控制[D].湖南大学,2011.
[5] 胡爽,王海东,陈刚.提高电力系统稳定性的措施[J].黑龙江科技信息,2010(01).。

相关文档
最新文档