基于云的高性能分布式内存数据库的开发技术
基于分布式计算的云存储系统设计与实现

基于分布式计算的云存储系统设计与实现随着云计算和大数据时代的到来,云存储系统作为重要的基础设施,扮演着承载和存储海量数据的重要角色。
分布式计算技术的应用使得云存储系统能够更好地应对高并发访问、数据安全性和可靠性等方面的问题。
本文将介绍基于分布式计算的云存储系统的设计与实现。
一、引言云存储系统是一种将数据存储在云端的解决方案。
传统的存储系统常常存在存储容量有限、数据访问速度慢等问题,而云存储系统通过将数据存储在远程的服务器上,从而解决了这些问题。
而基于分布式计算的云存储系统在数据处理和存储方面具有更好的性能和可扩展性。
二、系统设计基于分布式计算的云存储系统是由多个存储节点组成的分布式系统。
每个存储节点具备一定的存储容量和计算能力。
下面将介绍云存储系统的设计要点。
1. 数据分布与冗余分布式存储系统中的数据通常以对象的形式进行组织,每个对象可以包含一个或多个文件。
为了提高数据的可用性和可靠性,需要将数据进行分布和冗余存储。
一种常见的策略是使用数据分片技术将数据分为多个片段,然后将这些片段存储在不同的存储节点上。
这样即使某个节点发生故障,其他节点上的数据仍然可用。
2. 数据访问与调度分布式存储系统通常采用对象存储的方式进行数据管理。
用户可以通过对象的标识符来访问和获取数据。
数据访问可以通过两种方式进行:集中式调度和分布式调度。
在集中式调度模式下,所有的数据请求都经过中心节点进行调度。
而在分布式调度模式下,各个存储节点可以直接响应用户的数据请求,提高了系统的并发能力。
3. 数据一致性与容错由于云存储系统数据量大,节点众多,因此保持数据一致性和容错性是一个重要的挑战。
对于数据一致性,可以采用副本一致性协议来确保多个副本之间的数据保持一致。
而容错性则可以通过纠删码等冗余机制来提高系统的可靠性,即使某个节点发生故障,数据仍然可用。
三、系统实现基于分布式计算的云存储系统的实现需要考虑以下几个方面。
1. 存储节点的部署与管理存储节点是系统的核心组成部分,需要根据系统需求选择合适的硬件和操作系统,并进行部署和管理。
高性能分布式云存储系统设计与优化

高性能分布式云存储系统设计与优化随着云计算的快速发展,云存储系统已经成为现代计算环境中不可或缺的一部分。
为了满足不断增长的数据存储需求和用户对性能的要求,设计和优化高性能分布式云存储系统变得至关重要。
本文将探讨高性能分布式云存储系统的设计原则和优化方法,并提出一些有效的策略来改善系统的性能。
首先,设计一个高性能分布式云存储系统的关键在于了解系统的基本架构和组件。
一个典型的分布式云存储系统通常由多个服务器组成,这些服务器之间通过网络连接进行通信和协同工作。
在这个系统中,关键的组件包括存储节点、元数据节点和访问节点。
存储节点负责实际的数据存储和检索,元数据节点维护文件的元数据信息,而访问节点则提供给用户访问数据的接口。
为了使系统具有高性能和可伸缩性,我们可以采取一系列的优化策略。
首先,可以使用数据分片和数据冗余技术来提高系统的性能和可靠性。
数据分片技术将大文件分割为小块,并将这些小块存储在不同的存储节点上,从而可以并行地读取和写入数据。
数据冗余技术可以将相同的数据副本存储在不同的存储节点上,以提高系统的容错性和可用性。
其次,可以利用缓存机制来减少对存储节点的访问次数,从而提高系统的性能。
缓存可以分为两种类型:本地缓存和分布式缓存。
本地缓存是指将最常访问的数据存储在访问节点本地的内存中,以减少对存储节点的网络访问。
而分布式缓存是指将数据存储在多个节点的内存中,以实现更高的并发访问和数据读取速度。
此外,采用合适的负载均衡策略也是提高分布式云存储系统性能的重要手段。
负载均衡可以实现将请求均匀地分配给不同的存储节点,避免单个节点负载过重,从而提高整个系统的处理能力和响应速度。
常用的负载均衡策略包括基于轮询、基于权重以及基于动态性能监测的负载均衡算法。
另外,通过优化数据一致性和数据复制的机制,也可以提高分布式云存储系统的性能和可靠性。
数据一致性是指在多个节点之间保持数据的一致性,可以采用副本同步和写入多数机制来实现。
云计算——分布式存储

THANKS
感谢观看
云计算——分布式存储
汇报人: 2023-12-14
目录
• 分布式存储概述 • 分布式存储技术原理 • 分布式存储系统架构 • 分布式存储应用场景 • 分布式存储性能优化策略 • 分布式存储安全问题及解决方案
01
分布式存储概述
定义与特点
定义
分布式存储是一种数据存储技术,它通过将数据分散到多个独立的节点上,以 实现数据的分布式存储和访问。
云计算平台建设
01
02
03
云存储服务
分布式存储作为云计算平 台的核心组件,提供高效 、可扩展的存储服务。
云服务集成
与其他云服务(如计算、 网络、安全等)紧密集成 ,形成完整的云计算解决 方案。
自动化运维与管理
通过自动化工具实现分布 式存储系统的运维和管理 ,提高效率。
物联网数据存储与处理
实时数据采集
现状
目前,分布式存储技术已经成为了云计算领域的重要组成部 分,各大云服务提供商都提供了基于分布式存储的云存储服 务。同时,随着技术的不断发展,分布式存储的性能和稳定 性也在不断提高。
优势与挑战
优势
分布式存储具有高性能、高可用性、安全性、容错性和可维护性等优势,它可以 提供更加高效、灵活和可靠的数据存储服务,同时还可以提供更加灵活的扩展能 力,以满足不断增长的数据存储需求。
支持物联网设备实时采集 数据,并存储在分布式存 储系统中。
数据处理与分析
对物联网数据进行处理和 分析,提取有价值的信息 。
智能决策与控制
基于物联网数据分析结果 ,实现智能决策和控制, 提高生产效率。
05
分布式存储性能优化策略
数据压缩与解压缩技术
云计算实现高效数据存储与处理的解决方案

云计算实现高效数据存储与处理的解决方案随着信息时代的到来,大数据的处理已成为各个行业的重要需求。
云计算作为一种灵活高效的计算模式,为企业提供了实现高效数据存储与处理的解决方案。
本文将介绍云计算的概念以及云计算在实现高效数据存储与处理方面的应用。
一、云计算概述云计算是基于互联网的一种计算模式,通过网络提供可扩展的、虚拟化的计算资源和服务。
它将计算能力、存储空间和应用程序提供给用户,使用户能够在需要的时候随时获得资源。
云计算具有高度的灵活性、可伸缩性和易管理性的特点。
二、云计算实现高效数据存储的解决方案1. 弹性存储云计算通过提供弹性的存储解决方案,使得企业可以根据实际需求扩展或缩小存储空间。
用户可以根据数据增长的需要,动态调整存储容量,避免了传统硬件存储空间的浪费或不足的问题。
2. 分布式存储云计算利用分布式存储技术将数据分散存储在多个节点中,避免了单点故障和数据丢失的风险。
同时,分布式存储还可以提供高容量和高性能的存储服务,确保数据的安全性和访问速度。
3. 数据备份与恢复云计算通过自动化的备份机制,确保数据的安全性和可靠性。
用户的数据会被存储在多个地理位置的不同节点上,当某一节点发生故障时,系统会自动切换到其他节点,实现数据的高可用性和灾难恢复。
三、云计算实现高效数据处理的解决方案1. 分布式计算云计算利用分布式计算技术,将计算任务分发到多个节点上进行并行处理。
这种并行化的计算能够大大提高数据处理的速度和效率。
2. 弹性计算云计算提供弹性的计算资源,使用户能够根据实际需求动态调整计算能力。
当需求量增加时,可以自动增加计算资源,以保证系统的高效运行。
3. 数据预处理与转换云计算提供丰富的数据处理工具和算法,可以对原始数据进行预处理和转换,以便更好地挖掘数据的内在价值。
通过数据预处理和转换,可以提高数据处理的效率和准确性。
四、云计算实际应用案例1. 电子商务云计算为电子商务领域提供了强大的数据存储和处理能力,可以实现海量商品数据的管理和分析,帮助企业更精确地进行市场营销和销售策略的制定。
基于云计算平台的数据库管理技术研究

基于云计算平台的数据库管理技术研究在当前互联网时代,数据的规模与复杂性不断增长,数据库管理成为企业信息化建设的关键环节之一。
随着云计算技术的发展与普及,基于云计算平台的数据库管理技术呼之欲出。
本文将在不涉及政治的前提下,对基于云计算平台的数据库管理技术进行研究。
一、云计算平台的概念与特点云计算平台是指基于互联网构建的一种分布式系统,能够提供灵活的资源管理和弹性的计算模式。
与传统计算技术相比,云计算平台具有以下几个特点:1. 资源共享和弹性伸缩:云计算平台通过虚拟化技术,将多个物理资源集中管理,并按需分配给用户使用。
同时,用户可以根据实际需求进行弹性伸缩,提高资源利用率和灵活性。
2. 高可靠性和可用性:云计算平台拥有分布式的数据备份和冗余机制,确保数据的持久性和可靠性。
同时,平台具备负载均衡和容错机制,能够在部分节点失效时自动转移任务,保证服务的连续性和可用性。
3. 高性能和扩展性:云计算平台采用并行计算和分布式存储技术,具备高并发处理能力和横向扩展的能力。
通过水平扩展,可以按需增加节点,提高系统的性能和吞吐量。
二、基于云计算平台的数据库管理技术基于云计算平台的数据库管理技术是指将传统的数据库管理系统(DBMS)部署在云计算平台上,并借助平台的特点来优化数据库的管理和性能。
主要包括以下几个方面的技术:虚拟化技术、分布式存储与计算、自动化管理、数据隔离与安全等。
1. 虚拟化技术:云计算平台的核心特点是资源的虚拟化,而虚拟化技术也是基于云的数据库管理的重要技术基础。
通过虚拟化技术,数据库系统可以获得更高的灵活性和可容纳性。
比如,根据实际需求,可以按需选择虚拟机的资源(CPU、内存、存储等),以及虚拟机的规模和数量。
2. 分布式存储与计算:云计算平台通常采用分布式存储系统(Distributed Storage System)和分布式计算框架(Distributed Computing Framework)来支持大规模数据的存取和处理。
数据中心中的高性能计算与分布式计算技术

数据中心中的高性能计算与分布式计算技术在当今信息技术迅速发展的时代,数据中心成为了企业和组织管理和存储大规模数据的重要基础设施。
数据中心不仅需要具备高性能计算的能力,还需要利用分布式计算技术来实现数据的快速处理和存储。
本文将重点介绍数据中心中的高性能计算与分布式计算技术,并探讨它们在如今大数据时代的重要性以及应用前景。
一、高性能计算技术在数据中心中的应用高性能计算(High Performance Computing,HPC)是指通过利用并行计算和超级计算机等技术手段,提供超过传统计算机性能限制的计算能力。
数据中心中的高性能计算技术可以极大地提升数据处理和分析的效率,促进科研、工程设计和商业决策等方面取得突破性的进展。
在数据中心中,高性能计算广泛应用于各种领域,如天气预报、气候模拟、基因测序、药物研发等。
这些应用场景对于大规模数据的计算和分析需求巨大,传统的计算机无法满足其高性能计算的要求。
而高性能计算技术通过并行计算、分布式存储和高速网络等手段,可以将这些任务并行化处理,从而提高计算速度和效率。
在高性能计算技术中,超级计算机是不可或缺的关键技术之一。
超级计算机以其强大的计算能力和巨大的存储空间,成为了数据中心中高性能计算的核心设备。
超级计算机采用了大规模并行计算的架构,其计算节点之间通过高速互连网络进行通信,能够同时处理多个任务,提升数据处理速度。
此外,高性能计算技术还支持分布式计算模型,利用多台计算机协同工作,共同完成大规模计算任务。
分布式计算技术有利于将数据分解成多个部分,并在多台计算机上同时运行,从而提高计算效率。
分布式计算还具备高可靠性和容错性,即使某个计算节点出现故障,也不会导致整个计算任务中断。
二、分布式计算技术在数据中心中的应用分布式计算(Distributed Computing)是指将一个计算任务划分为多个子任务,在不同的计算节点上并行运行,并最终合并各个子任务的结果。
分布式计算技术通过充分利用计算机集群的资源,可以实现大规模数据的快速处理和存储。
云计算环境下的大数据存储与处理技术

云计算环境下的大数据存储与处理技术随着信息技术的发展和云计算的兴起,大数据存储与处理技术成为了企业和个人不可或缺的重要组成部分。
本文将从云计算环境下的大数据存储和处理两个方面进行探讨,旨在全面了解当前技术的发展和应用。
一、大数据存储技术在云计算环境下,大数据存储技术起到了至关重要的作用。
下面将介绍几种常见的大数据存储技术。
1.分布式文件系统分布式文件系统是一种将数据分布在多个服务器上的存储系统。
它通过将数据切分为小块,并分布在不同的服务器上,以实现高效的数据存储和访问。
分布式文件系统具有良好的扩展性和高可用性,可以满足大规模数据存储的需求。
2.NoSQL数据库NoSQL数据库是指非关系型数据库,与传统的关系型数据库相比,它具有更好的可扩展性和灵活性。
NoSQL数据库适用于半结构化和非结构化数据的存储和管理,可以高效地进行大规模数据的写入和查询操作。
3.对象存储对象存储是一种将数据以对象的形式进行存储的技术。
对象存储将数据作为对象进行组织,同时保存了数据的元数据信息,可以实现高效的数据检索。
对象存储适用于大规模数据的存储和管理,如图像、视频等多媒体数据。
以上介绍的几种大数据存储技术都在云计算环境下得到了广泛的应用,它们可以根据不同的场景和需求进行选择和组合使用。
二、大数据处理技术大数据处理技术是指对大规模的数据集进行处理和分析的技术手段。
下面将介绍几种常见的大数据处理技术。
1.分布式计算框架分布式计算框架是一种将数据分布在多个计算节点上,通过并行计算和任务调度来实现高效的数据处理。
目前最为流行的分布式计算框架包括Hadoop和Spark等,它们具有良好的扩展性和容错性,可以应对海量数据的处理需求。
2.流式计算流式计算是一种对数据流实时进行处理和分析的技术。
与传统的批量处理不同,流式计算可以在数据产生的同时进行处理,并输出实时的结果。
流式计算适用于对时效性要求较高的应用场景,如实时监控、网络安全等。
基于云计算的大数据存储系统的设计与实现

基于云计算的大数据存储系统的设计与实现大数据存储系统是云计算的核心组成部分之一。
随着数据规模的不断增长和多种数据类型的出现,传统的存储系统已经无法满足对大数据的高效存储与管理需求。
基于云计算的大数据存储系统应当具备高可靠性、高可扩展性和高性能等特点,能够满足大数据的存储和处理需求。
本文将从系统设计和实现的角度对基于云计算的大数据存储系统进行讨论。
一、系统设计1. 存储架构设计基于云计算的大数据存储系统的存储架构应当采用分布式的方式,将数据划分为多个块,并存储在多个物理节点上,以提高系统的可靠性和可扩展性。
此外,应当采用冗余数据存储机制,如数据备份和纠删码等,以应对硬件故障和数据丢失的情况。
2. 数据一致性管理大数据存储系统面临着数据一致性管理的挑战。
在分布式环境下,多个节点可能同时对同一份数据进行修改,因此需要采用合适的一致性协议来确保数据的一致性。
常见的一致性协议有两阶段提交和Paxos等。
3. 元数据管理元数据是大数据存储系统中对数据进行描述和标识的信息。
基于云计算的大数据存储系统应当设计合理的元数据管理机制,以支持数据的检索、访问和管理。
元数据应当包括数据的存储位置、数据的访问权限等信息。
二、系统实现1. 存储引擎实现大数据存储系统的核心是存储引擎,主要负责数据的读写操作。
存储引擎应当支持高并发的数据访问、高效的数据写入和读取操作,同时还应当具备数据压缩和索引等功能,以提升系统的性能。
2. 数据分片和负载均衡大数据存储系统会面临大量数据的存储和处理,并且数据量和访问请求可能呈现不均衡的分布。
因此,系统需要设计合理的数据分片策略和负载均衡机制,以确保数据在各个节点之间的均衡。
3. 数据备份和恢复为了保障数据的可靠性,大数据存储系统应当具备数据备份和恢复机制。
数据应当在多个节点上进行备份,以防止数据的丢失。
同时,系统还应当具备数据恢复功能,以在节点故障或数据损坏的情况下快速恢复数据。
4. 安全和权限管理大数据存储系统中的数据通常包含敏感信息,因此安全性是系统设计的重要考虑因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于云的高性能分布式 内存数据库开发技术Copyright © Versant Corp. All rights reserved.0001By Tiger Lau,CTO of Versant China数据库发展简史模型层次化,结构化 网络化 关系型 对象型优点性能 性能 灵活性, 支持查询 性能,灵活性缺点灵活性, 对查询的支持 灵活性, 对查询的支持 性能 随机性较强, 支持既成的查询数据简单 简单 简单 复杂这两点是现有很多系统的核心问题所在Versant数据库系统架构Versant Versant C C Interface Interface Versant Versant C++ C++ Interface Interface Versant Versant Java Java Interfaces Interfaces Other Other Interfaces, Interfaces, Tools, Tools, etc. etc.Versant Object ManagerVersant VersantNetwork NetworkLayer Layer Versant VersantNetwork NetworkLayer LayerVersant ServerVirtual VirtualSystem SystemLayer LayerRaw Raw Devices, Devices, File File Systems, Systems, RAID, SAN, NAS RAID, SAN, NASVersant数据库的双缓存架构User Interface User User Interface Interface Application Application Application Logic Logic Versant Versant Versant Object Object Manager ObjectManager Manager FE FE Profile Profile Object CacheVersant ClientPage Cache Versant Versant Storage Storage Manager Manager RollRollforward forward log log Logical Logical Log Log File File Physical Physical Log Log File File BE BE Profile Profile Database Database Volume(s) Volume(s)Versant Server架构对比:RDBMS vs VERSANTACID Transactions Indexing SMP Support Event Notification Fault Tolerant Server Replication Scale to TerabytesClient Cache Transactional Control QueryQuerySQL ODBC JDBCSQL C Relational Server Query Engine TablesC++ Java .NETSQL ODBC JDBC Query Engine Server cacheLogicalServer cacheObjectsPhysicalLogicalPhysicalDual LoggingDual LoggingVersant数据库可以实现灵活的多线程架构Client Client Thread Thread Client Client Thread Thread Client Client Thread Thread Client Client Thread Thread Session Object / Object Cache Client Process Server Server Thread Thread Session Object / Object Cache Server Process Page CacheLock TableServer Server Thread ThreadServer Server Thread Threadasync I/O of non-commit buffer writesClient Process Client Client Thread Thread Client Client Thread Thread Session Object / Object CacheLog Log Buffer Buffer Thread ThreadBackground Background Page Page Flusher Flusherwrites modified pages to disk传统关系型数据库在OR-Mapping领域面临困难In-MemoryRDBMSSELECT FROM table1 ...; SELECT FROM table1 ...; SELECT FROM table2 ...; SELECT FROM table2 ...; convert_tables_to_memory(); convert_tables_to_memory(); Order order == new Order() Order order new Order() for(i=0; i<100; i++) {{ for(i=0; i<100; i++) OrderLine pp == new OrderLine(); OrderLine new OrderLine(); … … order.addLine(p) order.addLine(p) }} convert_memory_to_tables(); convert_memory_to_tables(); INSERT INTO table1 ...; INSERT INTO table1 ...; UPDATE table2 ...; UPDATE table2 ...;Tables内存模型与存储模型不一致 从存储模型映射成内存模型时有巨大的性能消耗 更多的转换代码 编程语言和数据操作语言不一致,存在“失配”问题Versant数据库能够更好支持复杂数据VERSANTIn-MemoryOrder order == new Order() Order order new Order() for(i=0; i<100; i++) { for(i=0; i<100; i++) { OrderLine p = new OrderLine(); OrderLine p = new OrderLine(); … … order.addLine(p) order.addLine(p) }}内存模型与存储模型相一致 高性能的大数据量对象操作(排序等) 没有额外的转换代码 强化的程序生产力 程序开发语言即DML与DDL例:关系数据库在解决继承对象存储时的困境soc_no emp_name birth_date dept_name soc_no hour_rate over_rate max_over soc_no month_rate bonus_pctcreate table Employee_Table (emp_id number primary key soc_no number uniqe emp_name varchar Birth_date date dept_id number foreign key) create table Hourly_Emp_Table (emp_id number primary key foreign key hour_rate decimal over_rate decimal max_over decimal) create table Salaried_Emp_Table (emp_id number primary key foreign key month_rate deciaml bonus_pct decimal) create table Department_Table (......) create sequence ......Employee soc_no emp_name birth_date dept_nameCompany comp_name employees departmentsHourlyEmp hour_rate over_rate max_overSalariedEmp month_rate bonus_pctEmployee emp = new HourlyEmployee(“Meier”); mit().由于继承对象需要拆分之后才能存储到关系数据库中, 需要额外的编码,维护难度加大,性能大幅降低$$例:Versant数据库解决继承对象存储轻而易举soc_no emp_name birth_date dept_name soc_no hour_rate over_rate max_over soc_no month_rate bonus_pct Employee soc_no emp_name birth_date dept_name Company comp_name employees departmentsEXEC SQL INSERT INTO Employee_Table (soc_no, emp_name, birth_date, dept_name) VALUES (:emp->soc_no, :emp->name, :emp->birth_date, :emp->dept_name); if (emp->type == 1) EXEC SQL INSERT INTO Hourly_emp_Table (soc_no, hour_rate, over_rate, max_over) VALUE (:emp->soc_no, :emp->hour_rate, :emp->over_rate, :emp->max_over); else if (emp->type == 2) EXEC SQL INSERT INTO Salaried_emp_Table (soc_no, month_rate, bonus_pct) VALUES (:emp->soc_no, :emp->month_rate, :emp->bonus_pct) EXEC SQL COMMIT WORK RELEASE;HourlyEmp hour_rate over_rate max_overSalariedEmp month_rate bonus_pctEmployee emp = new HourlyEmployee(“Meier”); mit().由于继承对象需要拆分之后才能存储到关系数据库中, 需要额外的编码,维护难度加大,性能大幅降低$$JAVA程序—主程序import com.versant.trans.*;public class Sample { static public main ( String args ) { TransSession session = new TransSession(args[0]); Department d1 = new Department(“技术部”); Department d2 = new Department(“客服部”); Employee Employee p1 = new HourlyEmployee (“001”,“Joe”, new Date(1980,1,1),d1,...); p2 = new SalariedEmployee(“101”,”man”,new Date(1960,9,1),d1,...);p1.setDepartment(d2); session.makePersistent(p1); mit(); } }例: Versant数据库解决继承对象存储轻而易举config.jvi配置文件c c c c a n Employee HourlyEmployee SalariedEmployee Department Sample **Employee Employee .java .javajavac javacEmployee Employee .class .classEclipse插件Employee Employee .class .class Enhancer EnhancerConfig Config File Filejava java Employee Employee mydb mydbVersant数据库能帮助开发者降低开发难度降低开发成本 – 代码更少 – 构想更多 – 运行更快Java .NET C++ classes Database DesignAnalyse DesignDatabase mapping layerApplication testDatabase testVersant数据库能通过减少源代码降低开发工作量2000Create 0 37Store 32 137List 15 54Query 28 59Versant Java JDBCVersant数据库能提高复杂应用的性能,降低硬件投入Ericsson Network Management Worldcom Fraud Management50xBritish Airways Yield Managementex l p m Co 复 杂ING Barings Risk Management30xPerformance Improvement 性能提高比例10xe pl m Si 单 简um i ed 等 M 中CIBC Global Markets Front Office Trading5xIBM Benchmark3xSimple Queries Complex transactions 简单数据库查询请求 复杂数据库事务 Complexity level of Data Model for transactions数据库事务中使用的复杂数据模型与RDBMS + OR-MAPPING的性能比较70,000PolePosition提供的性 能比较 相对关系型数据库比有 10 – 50x 性能提高 相对JPA 和Hibernate 比有10 – 50x性能提高60,00050,00040,00030,00020,00010,0000 Melbourne Sepang Bahrain Imola Barcelona Montreal NurburgringJDO/Versant/VOD-8.0JDO/DataNucleus/MySQL-5.1Versant数据库能更好利用系统资源,降低硬件要求Versant数据库测试样例CPU占用率图测试内容 数据库中没有工单 (时间单位:毫秒) Versant 单条提交,向工单表中插入10万条工单 每2000条工单提交一次,向工单表中插 入10万条工单 25152 6248 40322 9079 Oracle 69749 12999 107939 31772同比关系数据库测试样例CPU占用率图数据库中有1000万条工单 (时间单位:毫秒) Versant 26112 6226 46367 10467 Oracle 89383 18573 117654 32198每次select 1000条,单条修改状 态,先改为1,然后改为3 每次select 1000条,每次提交 1000条,先改为1,然后改为 3Versant数据库能更好适应新的开发方法和开发手段快速创建新业务模型——最适合开发人员使用的数据库敏捷开发等快速开发方法正在日渐成为主流。