压水堆核电厂二回路热力系统

合集下载

推荐-压水堆核电厂二回路热力系统初步设计说明书 推荐

推荐-压水堆核电厂二回路热力系统初步设计说明书 推荐

哈尔滨工程大学本科生课程设计压水堆核电厂二回路热力系统初步设计说明书目录3.3 主要参数汇总表 (5)摘要该说明书介绍了一个1000MW核电厂二回路热力系统设计过程。

该设计以大亚湾900MW核电站为母型,选择了一个高压缸,三个低压缸,设有两级再热器的汽水分离器,四个低压给水加热器,一个除氧器,两个高压给水加热器。

蒸汽发生器的运行压力为 5.8MPa,高压缸排气压力为0.77MPa,一级再热器抽汽压力2.76MPa,低压缸进口过热蒸汽压力为0.74MPa,温度为259.34℃,冷凝器的运行压力为5.32kPa,给水温度为216.53℃。

高压给水加热器疏水逐级回流送入除氧器,低压给水加热器疏水逐级回流送入冷凝器。

各级回热器和再热器的蒸汽采用平均分配,抽汽流过高、低压热器后,蒸汽全部冷凝成疏水,疏水为对应压力下的饱和水。

进行热力计算时,采用热平衡求出各设备的耗汽量,再采用迭代法,根据电功率要求可求出蒸汽发生器蒸汽产量,进而求出堆芯热功率,即可得出电厂效率。

对效率不满意时可调整合理调整各设备的运行参数,直至求出电厂效率满意为止。

经过迭代计算得到整个系统电厂效率为31.77%。

1、设计内容及要求1.1设计要求➢了解、学习核电厂热力系统规划、设计的一般途径和方案论证、优选的原则;➢掌握核电厂原则性热力系统计算和核电厂热经济性指标计算的内容和方法;➢提高计算机绘图、制表、数据处理的能力;➢培养学生查阅资料、合理选择和分析数据的能力,掌握工程设计说明书撰写的基本原则。

1.2设计内容根据设计的要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下的热平衡计算。

本课程设计的主要内容包括:➢确定二回路热力系统的形式和配置方式;➢根据总体需求和热工约束条件确定热力系统的主要热工参数;➢依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性的热经济指标;➢编制课程设计说明书,绘制原则性热力系统图。

压水堆核电机组二回路热力系统计算的研究_杨豫森

压水堆核电机组二回路热力系统计算的研究_杨豫森

图1 压水堆二回路原则性热力系统图收稿日期:2003-04-07; 修订日期:2003-05-28作者简介:杨豫森(1972-),男,河南安阳人,西安交通大学硕士研究生.文章编号:1001-2060(2004)01-0025-04压水堆核电机组二回路热力系统计算的研究杨豫森1,严俊杰1,刘立成1,沈国升2(1.西安交通大学动力工程多相流国家重点实验室,陕西 西安 710049;2.深圳大亚湾核电站,广东 深圳 518124)摘 要:根据压水堆二回路机组的特点,给出了最简化压水堆二回路热力系统的概念,并通过待定蒸汽份额,编程循环迭代的方法完成了最简化系统的各级抽汽份额计算和正反热平衡计算,在此基础上,通过对核电系统附加项的详细分析,得出了在最简化系统上逐项添加附加项的精确快捷的核电机组原则性热力计算的方法。

关键词:压水堆;二回路;正反平衡;附加项中图分类号:TK 212 文献标识码:A1 前 言压水堆二回路核电机组与常规的火电机组的热力系统有着明显的不同,使得常规火电机组的热力系统计算方法在这种机组的应用中存在着诸多困难。

难点主要在两个方面:(1)系统中包含汽水分离器和采用新蒸汽和高压抽汽来加热的再热器,其疏水引入回热加热器,使得无法直接套用现行的各种原则性热力计算方法;(2)系统中包括排污扩容、管道渗漏工质、管道散热、门杆漏汽、轴封漏汽和小汽轮机等附加项,增加了热力计算的复杂性,正反平衡计算极易出错,且不容易查出错误。

目前,比较成熟的常规火电机组热力系统分析计算方法有文献[1]的简捷法、文献[2]的矩阵法、文献[1]的等效热降法和文献[3]的循环函数法。

基于这4种方法,文献[6~7]针对压水堆二回路热力系统进行了详细的经济性定量分析,而文献[4~5]分别应用矩阵分析法、线性单元分析法对压水堆二回路核电机组进行了整体分析计算,但矩阵分析法和线性单元分析法概念、方程较为抽象,与常规的原则性热力系统计算差别较大。

压水堆核电厂二回路热力系统

压水堆核电厂二回路热力系统

核电厂二回路热力系统压水堆核电厂二回路热力系统是将热能转变为电能的动力转换系统。

将核蒸汽供应系统的热能转变为电能的原理与火电厂基本相同,两种情况都是建立在朗肯循环基础之上的,当然二者也有重大差别,现代典型的压水堆核电厂二回路蒸汽初压约6.5MPa,相应的饱和温度约为281℃,蒸汽干度99.75%; 而火力发电厂使用的新蒸汽初压约18MPa,温度为535℃甚至更高。

因此,压水堆核电厂的理论热效率必然低于火电厂。

火力发电厂与压水堆核电厂毛效率的参考数字分别约为39%和34%。

火力发电厂通常将在高压缸作功后的排汽送回锅炉进行火力再热; 在核电厂,用压水堆进行核再热是不现实的,只能采用新蒸汽对高压缸排汽进行中间再热。

此外,火电厂的烟气回路总是开放的。

在一个开式系统中,排入大气的工作后的载热剂温度总是高于周围环境的温度,也就是说,一些热量随载热剂排入大气而损失掉了。

而核电厂的冷却剂回路总是封闭的。

这不仅从防止放射性物质泄漏到环境是必须的,从热力学角度讲,它提高了循环的热效率。

核电厂二回路系统的功能如下:构成封闭的热力循环,将核蒸汽供应系统产生的蒸汽送往汽轮机作功,汽轮机带动发电机,将机械能变为电能。

作为蒸汽和动力转换系统,在核电厂正常运行期间,本系统工作的可靠性直接影响到核电厂技术经济指标。

从安全角度讲,二回路的另一个主要功能是将反应堆衰变热带走,为了保证反应堆的安全,二回路设置了一系列系统和设施,保障一回路热量排出,如蒸汽发生器辅助给水系统、蒸汽排放系统、主蒸汽管道上卸压阀及安全阀等就是为此设置的。

控制来自一回路泄漏的放射性水平。

二回路系统设计上,能提供有效的探测放射性漏入系统的手段和隔离泄漏的方法。

同常规发电厂的实际热力系统一样,核电厂二回路热力系统,可分为局部热力系统和全面热力系统(又称为全厂热力系统)。

局部热力系统表示某一热力设备同其它设备之间或某几个设备之间的特定联系,而全面热力系统则表示全部主要的和辅助的热力设备之间的特定联系。

压水堆核电厂二回路热力系统初步说明

压水堆核电厂二回路热力系统初步说明

压水堆核电厂二回路热力系统初步设计说明书目录目录 (1)摘要 (1)1、设计要求 (1)2、设计内容 (1)3、热力系统原则方案 (2)3.1 汽轮机组 (2)3.2 蒸汽再热系统 (2)3.3 给水回热系统 (2)4、主要热力参数选定 (3)4.1 一回路冷却剂的参数选择 (3)4.2 二回路工质的参数选择 (3)4.2.1 蒸汽初参数的选择 (3)4.2.2 蒸汽终参数的选择 (3)4.2.3 蒸汽中间再热参数的选择 (3)4.2.4 给水回热参数的选择 (3)5、热力计算方法与步骤 (4)5.1 计算步骤如下面的流程图 (4)5.2 根据流程图而写出的计算式 (5)6、你热力计算数据 (8)6.1 已知条件和给定参数 (8)6.2 主要热力参数选定 (9)6.3 热平衡计算结果表格 (13)6.4 程序及运行结果 (14)6.4.1 用MATLAB程序如下。

(14)6.4.2 运算结果如下图所示。

(17)7、热力系统图 (21)8、结果分析与结论 (22)9、参考文献 (22)摘要二回路系统是压水堆核电厂的重要组成部分,其主要功能是将反应堆一回路系统产生并传递过来的热量转化为汽轮机转动的机械能,并带动发电机组的转动,最终产生电能。

二回路系统的组成以郎肯循环为基础,由蒸汽发生器二次侧、汽轮机、冷凝器、凝水泵、给水泵、给水加热器等主要设备以及连接这些设备的汽水管道构成的热力循环,实现能量的传递和转换。

反应堆内核燃料裂变产生的热量由流经堆芯的冷却剂带出,在蒸汽发生器中传递给二回路工质,二回路工质吸热后产生一定温度和压力的蒸汽,通过蒸汽系统输送到汽轮机高压缸做功或耗热设备的使用,汽轮机高压缸做功后的乏汽经汽水分离再热器再热后送入低压缸继续做功,低压缸做功后的废气排入冷凝器中,由循环冷却水冷凝成水,经低压给水加热器预热,除氧后用高压给水加热器进一步加热,后经过给水泵增压送入蒸汽发生器,开始下一次循环。

第七章 压水堆核电站的二回路系统及设备

第七章 压水堆核电站的二回路系统及设备
(1)主蒸汽隔离阀 主蒸汽隔离阀为对称楔形双闸板闸阀。正常运行时全开,但在收到主蒸汽管线隔离信号 后能在 5 秒内关闭。 隔离阀的执行机构是一个与氮气罐相连的液压缸。氮气进入液压缸活塞的上部,其名义
压力为 198 bar .a 。氮气的膨胀力使隔离阀关闭。为开启阀门,设有一套汽动油压泵液压系 统,产生名义压力为 329 bar .a 液压油进入液压油缸活塞的下部,克服氮气的压力和开启阻
①在汽水分离再热器后、低压缸前的进汽管道上装设快速截止阀; ②提高分压缸压力,减少管道尺寸,将汽水分离器和蒸汽再热器做成一体;
131
③完善汽轮机和管道的疏水系统,减少水膜厚度和积水。
7.2.2 大亚湾核电站的汽轮机
大亚湾核电站的汽轮机是由英国 GEC 公司制造的双分流、中间再热、四缸六排汽、冲
图 7.6 大亚湾核电站汽轮机热力系统图 动纯凝式汽轮机,共有四十个压力级和七级非调整抽汽,其热力系统如图 7.6所示。四个转 子各自的轴承支承,相互通过刚性联轴器连为一体,并且#3 低压转子有刚性联轴器与发电 机转子相连,组成汽轮机发电机组轴系。高压转子的前端接有一短轴,其上装有主油泵和超 速危急保安器(或称危急遮断器)。推力轴承位于高压缸与#1 低压缸间的轴承座内。电动盘车 装置位于机组轴系尾部的励磁机后。
力使阀门开启,见图 7.2。快速关阀是由快速排泄液压油缸活塞下部的油液实现的。 控制分配器用于关闭主蒸汽隔离阀。它们由电磁阀操纵。当电磁阀通电时,分配器开启,
将液压油缸活塞下部的液体通过常开隔离阀排出,主蒸汽隔离阀在氮气压力作用下迅速关 闭。两条排油管线是冗余的,单独一条管线就足以使阀门在 5 秒内关闭。
横向阻尼器。主蒸汽隔离阀上游的管道上装有 7 只安全阀,一个大气排放系统接头和一个向 辅助给水泵汽轮机供汽的接头。大气排放系统接头和辅助给水泵汽轮机供汽接头之所以要接 在主隔离阀的上游,是考虑到当二回路故障蒸汽隔离阀关闭时大气排放系统和辅助给水系统 还能工作。

压水堆核电机组二回路热力系统汽水流量分配计算的研究

压水堆核电机组二回路热力系统汽水流量分配计算的研究

( 15) 其中 : [ f ] 与 [ w ] 中矩阵元素分别 表示进 ( 出 ) 系统 的辅助 汽 流和水流 ; [ Aw ] 和 [ Af ] 均为上三角矩阵 , 矩阵元素分别 为第 j 级利用辅助水流和汽流所带入的 能量 ; [ bf ] 中矩阵 元素表 示 各级加热器所利用再热 器冷段 前进 ( 出 ) 汽轮 机侧的 辅助 汽 流 fhl 的能量 ; fhl 表示再热器冷段前进 ( 出 ) 汽 轮机侧的辅 助 汽流的代数和。 根据 ( 3) 式 和 ( 15) 式 , 辅 助汽 水工 质和 热量 带入 系统 必 将引起相应的 X 0 的变化 , 经推导可得 : ∀ X 0 = [ [ Aw ] [ - [
m
上式中各项基本对应关系如文献 [ 2] 所示。但压 水堆核电 机 组二回路热力系统和常规火电机组热力 系统有着 明显不同 , 主要 在于其汽水分离器 的存 在以 及高压 回热 抽汽与 高压 再 热抽汽的相互耦合。因此 , 只有掌握 了压水堆 核电机组二 回 路热 力系统汽水分离器 的特 点以 及高压 回热 抽汽与 高压 再 热抽汽的耦合特性 , 才能将等效热降 的概念与 方法应用于 压 水堆核电机组二回路热力系统汽水流量分配计算。
第 46 卷 第 2 期 2004 年 4 月
汽 轮 机 技 术 TURBINE TECHNOLOGY
V ol. 46 No. 2 Apr. 2004
压水堆核电机组二回路热力系统 汽水流量分配计算的研究
李建刚, 李丽萍, 杨小琨
( 郑州电力高等专科学校, 河南 郑州 450004)
摘要 : 以常规热平衡方法为基础 , 将等效热降法应用于压水堆核电机组二回路热力 系统汽水流 量的分配 计算 , 计 算 结果与常规热平衡法完全相同 , 并可简捷快速地 计算出热力系统连接方式以及局部参数变 化对汽水 流量分配的 影 响 , 为压水堆核电机组二回路热力系统应用热力 学第二定律进行定量分析奠定了基础。 关键词 : 压水堆核电机组 ; 二回路 ; 等效热降 ; 汽水流量 ; 计算 分类号 :TK262 文 献标识码 : A 文章编号 : 1001 5884( 2004 ) 02 0094 03

压水堆核电厂二回路系统管道热效率的影响因素分析

压水堆核电厂二回路系统管道热效率的影响因素分析

压水堆核电厂二回路系统管道热效率的影响因素分析发布时间:2022-05-06T06:39:39.549Z 来源:《中国科技信息》2022年第1月第2期作者:吴良鹏[导读] 文章针对核电厂二回路系统管道热效率问题吴良鹏福建福清核电有限公司福建福清 350318摘要:文章针对核电厂二回路系统管道热效率问题,从二回路热力系统结构、热效率的计算方法入手,分析了主蒸汽管道疏水门泄露、厂用蒸汽、给水管道散热、主蒸汽管道散热和蒸汽发生器排污对热效率的影响。

结果表明:以上因素均会影响二回路系统管道的热效率,不同因素的影响机理和程度存在差异。

关键词:核电厂;二回路系统;热效率;影响因素在压水堆核电厂中,因蒸汽管道散热、疏水门不严密等原因,蒸汽发生器传输的热量不能完全进入动力系统做功。

管道热效率,是评价蒸汽动力转换系统利用程度高低的指标[1]。

分析管道热效率的影响因素,采取针对性的解决对策,有助于进一步提高核电厂的运行水平,达到降本增效的目标。

1.压水堆核电厂二回路热力系统1.1 系统结构以990MW压水堆核电厂二回路热力系统为例,系统结构见图1。

图1:二回路热力系统组成结构示意图1.2 热效率概念压水堆核电机组中,热功率经过多个环节转换,经发电机输出电功率,能量传递的计算方式是:式中,代表反应堆传递给一回路冷却剂的热量,代表一回路冷却剂在蒸汽发生器内释放的热量,代表二回路工质在蒸汽发生器内吸收的热量,代表工质带入蒸汽动力转换系统的热量,代表汽轮机的实际内功率,代表汽轮机的轴端功率,单位均为kW。

代表反应堆热效率,代表一回路管道热效率,代表蒸汽发生器热效率,代表二回路管道热效率,代表循环热效率,代表汽轮机机械效率,代表发电机效率,单位均为%。

那么,核电厂全厂热效率是:.对比式1、式2,可以得到二回路管道热效率,即工质带入蒸汽动力转换系统的热量、二回路工质在蒸汽发生器吸收的热量两者比值:分析式3可知:二回路工质在蒸汽发生器吸收的热量一定时,工质带入蒸汽动力转换系统的热量越大,那么管道热效率就越高。

CNP1500压水堆核电站热力计算及二回路热力系统初步设计

CNP1500压水堆核电站热力计算及二回路热力系统初步设计

目录摘要 ................................................................................................................................. I Abstract ........................................................................................................................... III 第1章绪论 .. (1)1.1 研究背景及意义 (1)1.2 国内外研究现状及发展趋势 (2)1.3二回路热力系统简介 (3)1.4 主要研究工作 (4)第2章计算方法及工况的选取 (5)2.1 计算方法的选取 (5)2.2 工况选定 (6)2.2.1 汽轮机机组各工况简介 (6)2.2.2本设计的工况选定 (6)第3章CNP1500压水堆核电站热力计算 (7)3.1 计算目的及主要内容 (7)3.2 计算所需原始资料 (7)3.2.1 电厂原始参数 (7)3.2.2 其他数据 (8)3.2.3 简化条件 (9)3.3 热平衡法分析计算 (9)3.3.1 汽轮机进汽参数计算 (9)3.3.2 凝汽器参数计算 (9)3.3.3 制作回热系统汽水参数表 (9)3.3.4 制作系统汽态线 (11)3.3.5 定功率法原则性热力计算 (12)第4章二回路热力系统初步设计 (23)4.1 主蒸汽系统(一次蒸汽系统) (23)4.1.1 设计概述 (23)4.1.2 系统功能 (23)4.1.3 系统设计分析 (24)4.2 再热蒸汽系统 (24)4.2.1 设计概述 (24)4.2.2 系统功能 (25)4.2.3 主要系统设备 (25)4.2.4 正常运行工况 (26)4.2.5 低负荷工况 (27)4.3 给水回热系统 (27)4.3.1 设计概述 (27)4.3.2 系统功能 (28)4.3.3 系统设计分析 (29)4.4 旁路系统 (31)4.4.1 设计概述 (31)4.4.2 CNP1500的旁路系统 (31)4.4.3 系统功能 (32)4.4.4 系统的控制模式 (32)4.5 加热器疏水系统 (33)4.5.1 设计概述 (33)4.5.2 疏水方式 (33)4.5.3 危机疏水 (33)4.5.4 排汽系统设计 (34)4.6 蒸汽发生器排污利用系统 (34)4.6.1 设计概述 (34)4.6.2 系统功能 (34)4.6.3 系统示意图 (35)4.6.4 控制阀、隔离阀及放射性监测点 (35)4.6.5 系统运行 (36)4.7 辅助蒸汽系统 (36)4.7.1 设计概述 (36)4.7.2 系统功能 (36)4.8 凝结水系统 (37)4.8.1 设计概述 (37)4.8.2 系统组成及阀门的布置 (37)第5章各蒸汽管道的管径计算及选型 (38)5.1 管径的选取 (38)5.1.1 相关计算公式 (38)5.2 具体管道管径计算 (38)5.2.1 主蒸汽相应管道 (38)5.2.2高压加热器H1相关抽汽管道计算 (40)5.2.3 除氧器H2抽汽管道相关抽汽管道计算 (41)5.2.4 低压加热器H3相关抽汽管道计算 (41)5.2.5 低压加热器H4相关抽汽管道计算 (42)5.2.6 低压加热器H5相关抽汽管道计算 (42)5.2.7 低压加热器H6相关抽汽管道计算 (43)5.2.8 各蒸汽管道和抽汽管道管径 (43)5.3 管材选取 (44)5.3.1 管材选取特点 (44)5.3.2 管材选取原则 (45)5.3.3 各管道材料的选择 (45)第6章总结与展望 (47)参考文献 (49)致谢 (50)附录 (51)CNP1500压水堆核电站热力计算及二回路热力系统初步设计摘要本设计分为三个部分,分别进行了CNP1500压水堆核电站热力计算及二回路热力系统初步设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨工程大学本科生课程设计(二)压水堆核电厂二回路热力系统初步设计说明书2013 年6 月目录摘要 (2)1 设计内容及要求 (2)2 热力系统原则方案确定 (3)2.1 热力系统原则方案 (3)2.2 主要热力参数选择 (4)3 热力系统热平衡计算 (5)3.1 热平衡计算方法 (5)3.2 热平衡计算流程 (6)3.3 计算结果及分析 (8)4 结论 (8)附录 (8)附表1 已知条件和给定参数 (8)附表2 选定的主要热力参数汇总表 (9)附表3 热平衡计算结果汇总表 (13)附图1 原则性热力系统图 (15)摘要二回路系统是压水堆核电厂的重要组成部分,其主要功能是将反应堆一回路系统产生并传递过来的热量转化为汽轮机转动的机械能,并带动发电机组的转动,最终产生电能。

该说明书介绍了一个1000MWe核电厂二回路热力系统设计及其设计过程。

该设计以大亚湾900MWe核电站为母型,选择了一个高压缸,三个低压缸,设有两级再热器的汽水分离器,四个低压给水加热器,一个除氧器,两个高压给水加热器。

蒸汽发生器的运行压力为6.5MPa,高压缸排气压力为0.78MPa,一级再热器抽汽压力 2.8MPa,低压缸进口过热蒸汽压力为0.7045MPa,温度为265.9℃,冷凝器的运行压力为 5.9kPa,给水温度为224.69℃。

高压给水加热器疏水逐级回流送入除氧器,低压给水加热器疏水逐级回流送入冷凝器。

排污水经净化后排进冷凝器。

各级回热器和再热器的蒸汽分配合理,经过加热器后,蒸汽全部冷凝成疏水,整个系统电厂效率为30.04%。

1、设计内容及要求本课程设计的主要任务,是根据设计的要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下的热平衡计算。

本课程设计的主要内容包括:(1)确定二回路热力系统的形式和配置方式;(2)根据总体需求和热工约束条件确定热力系统的主要热工参数;(3)依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、供热量及全厂性的热经济指标;(4)编制课程设计说明书,绘制原则性热力系统图。

通过课程设计应达到以下要求:(1)了解、学习核电厂热力系统规划、设计的一般途径和方案论证、优选的原则;(2)掌握核电厂原则性热力系统计算和核电厂热经济性指标计算的内容和方法;(3)提高计算机绘图、制表、数据处理的能力;(4)培养学生查阅资料、合理选择和分析数据的能力,掌握工程设计说明书撰写的基本原则。

2、热力系统原则方案确定该设计设有一个高压缸,三个低压缸,两级再热,七级回热,汽动给水泵。

蒸汽发生器的运行压力为6.5MPa,冷凝器的运行压力为5.9kPa。

2.1热力系统原则方案1、汽轮机组压水堆核电厂汽轮机一般使用低参数的饱和蒸汽,汽轮机由一个高压缸、3个低压缸组成,高压缸、低压缸之间设置外置式汽水分离器。

最佳分缸压力(即高压缸排汽压力)约为高压缸进汽压力的12%。

2、蒸汽再热系统压水堆核电厂通常在主汽轮机的高、低压缸之间设置汽水分离-再热器,对高压缸排汽进行除湿和加热,使得进入低压缸的蒸汽达到过热状态,从而提高低压汽轮机运行的安全性和经济性。

汽水分离-再热器由一级分离器、两级再热器组成,第一级再热器使用高压缸抽汽加热,第二级再热器使用蒸汽发生器的新蒸汽加热。

中间分离器的疏水排放到除氧器,第一级、第二级再热器的疏水分别排放到不同的高压给水加热器。

3、给水回热系统给水回热系统由回热加热器、回热抽汽管道、凝给水管道、疏水管道等组成。

回热加热器按照汽水介质传热方式不同分为混合式加热器和表面式加热器,在本设计中高压、低压给水加热器采用表面式换热器,除氧器采用混合式加热器。

高压给水加热器采用主汽轮机高压缸的抽汽进行加热,除氧器采用高压缸的排汽进行加热,低压给水加热器采用主汽轮机低压缸的抽汽进行加热。

高压给水加热器的疏水采用逐级回流的方式,最终送入除氧器;低压给水加热器的疏水全部采用逐级回流的方式,最终送入冷凝器。

在选择给水回热级数时,均衡了每增加一级加热器所增加设备投资费用和热效率的提高程度,所以最终选择回热级数为7级(其中除氧器也算一级回热级数)。

为了很好地适应机组变负荷运行,给水泵采取汽动方式,可以利用蒸汽发生器的新蒸汽驱动给水泵汽轮机,因而具有较好的经济性。

给水泵汽轮机排出的废汽被送到冷凝器中。

本设计中使用热力除氧器对给水进行除氧,从其运行原理来看,除氧器就是一混合式加热器。

来自低压给水加热器的给水以及高压给水加热器的疏水在除氧器中被来自汽轮机高压缸排汽加热到除氧器运行压力下的饱和温度,其中高压缸排汽的压力高于除氧器的运行压力,所以高压缸排汽在排入冷凝器之前需经过减压装置进行减压。

除过氧的饱和水再由给水泵输送到高压给水加热器,被加热到规定的给水温度后再送入蒸汽发生器。

2.2 主要热力参数选择1、一回路冷却剂的参数选择设计时压水堆核电厂主回路系统的工作压力为15.2MPa,对应的饱和温度为343.26℃。

为了确保压水堆的安全,反应堆在运行过程中必须满足热工安全准则,其中之一是堆芯不能发生水力不稳定性,所以反应堆出口冷却剂的欠饱和度选为18℃。

2、二回路工质的参数选择二回路系统的参数包括蒸汽发生器出口蒸汽的温度与压力(蒸汽初参数)、冷凝器运行压力(蒸汽终参数)、蒸汽再热温度、给水温度和焓升分配等。

3、蒸汽初参数的选择压水堆核电厂的二回路系统一般采用饱和蒸汽,蒸汽初温与蒸汽初压为一一对应关系。

根据朗肯循环的基本原理,在其它条件相同的情况下,提高蒸汽初温可以提高循环热效率,为了提高核电厂经济性,二回路蒸汽参数选为6.5MPa。

4、蒸汽终参数的选择在热力循环及蒸汽初参数确定的情况下,降低汽轮机组排汽压力有利于提、循环冷却水温高循环热效率。

但是,降低蒸汽终参数受到循环冷却水温度Tsw,1以及冷凝器端差δt 的限制。

升ΔTsw凝结水的温度选为36℃,忽略了凝结水的过冷度,则冷凝器的运行压力等于凝结水温度对应的饱和压力。

5、蒸汽中间再热参数的选择蒸汽再热器使用高压缸抽汽和蒸汽发生器新蒸汽加热,所以汽水分离再热器出口的热再热蒸汽(过热蒸汽)要比用于加热的新蒸汽温度要低15℃,既265.9℃,这样保证具有适当的传热温差。

计算中取再热蒸汽在第一、二级再热器中的焓升、流动压降相等。

6、给水回热参数的选择当除氧器的工作压力选定以后,再分别对高压给水加热器和低压给水加热器进行第二次焓升分配。

对于高压给水加热器,每一级的给水焓升129.365kJ/kg 对于低压给水加热器(包括除氧器),每一级的给水焓升为109.346kJ/kg。

具体参数看附表23、热力系统热平衡计算3.1、热平衡计算方法3.2、热平衡计算流程一、核蒸汽供应系统热功率计算:已知核电厂输出功率为Ne ,Ne=1000MW=1000000kW,假设电厂效率为ηe,NPP,则反应堆热功率为:Qr =Ne/ηe,NPP。

蒸汽发生器的蒸汽产量为:Ds =Qrη1/【(hfh-hs,)+(1+ξd)(hs,-hfw)】其中:η1为一回路能量利用系数,给定为0.995;hfh为蒸汽发生器出口新蒸汽比焓,利用其出口温度280.9℃(饱和蒸汽),干度99.75%,算得该值为2774.19kJ/kg;hs,为蒸汽发生器运行压力(6.5MPa)下的饱和水焓,1240.7kJ/kg;hfw为蒸汽发生器给水比焓(6.5MPa,224.69℃),966.37kJ/kg;ξd为蒸汽发生器排污率,取为1.05%另外,Gfw =Ds×(1+1.05%)。

二、二回路系统各设备耗汽量计算:(1)、给水回热系统热平衡计算,确定汽轮机各级抽汽点的抽汽量及冷凝器出口凝给水流量G cd:首先,假定凝给水量G cd;其次,计算低压加热器抽气量:G les,4=Gcd*Δhfw,l/[(hles,4-hlew,4)*ηh];G les,3=[Gcd*Δhfw,l-Gles,4*(hlew,4-hlew,3)*ηh]/[(hles,3-hlew,3)*ηh];G les,2=[Gcd*Δhfw,l-(Gles,3+Gles,4)*(hlew,3-hlew,2)*ηh]/[(hles,2-hlew,2)*ηh];G les,2=[Gcd*Δhfw,l-(Gles,2+Gles,3+Gles,4)*(hlew,2-hlew,1)*ηh]/[(hles,1-hlew,1)*ηh]; 其中:h les,j ,hlew,j-------第j级给水加热器加热蒸汽、疏水的比焓,kJ/kg;Ηh------给水加热器的热效率;Δhfw,l-------除氧器及低加给水焓升;(2)给水泵计算,确定给水泵汽轮机的耗汽量;给水泵汽轮机进汽为新蒸汽,排汽参数等于高压缸排汽:给水泵有效输出功率:Nfwp =Gfw×1000×Hfwp/ρ kW耗汽量Gs,fwp =Nfwp/(ηfwp,pηfwp,tiηfwp,tmηfwp,tgHa);其中:ηfwp,p汽轮给水泵组的泵效率;ηfwp,ti ,ηfwp,tm,ηfwp,tg分别给水泵组汽轮机的内效率、机械效率和减速器效率;Ha为高压缸进出口焓降,kJ/kg;Hfwp为给水泵的压升,MPa。

(3)、汽轮发电机组耗汽量计算,确定计算工况下汽轮机高压缸、低压缸以及汽水分离再热器以及除氧器的耗汽量:Ⅰ、低压缸耗汽量Gs,lp,根据质量平衡,有:Gs,lp=G cd-G s,fwp-ξd×D s;低压缸的功率Nl:Nl = Gs,lp×(hl,i-hl,z)-Gles,4×(hles,4-hl,z)-Gles,3×(hles,3-hl,z)- Gles,2×(hles,2-hl,z)- Gles,1×(hles,1-hl,z);其中:hl,i 、hl,z低压缸进、出口蒸汽焓值,kJ/kg;Ⅱ、汽水分离再热器:第二级再热器用新蒸汽加热,其耗汽量:Gs,rh2=Gs,lp×(hrh2, z-hrh2,i)/(hzes,2-hzew,2);第一级再热器用高压缸抽汽加热,其耗汽量为:G s,rh1=G s,lp×(h rh1, z-h rh1,i)/(h zes,1-h zew,1);其中:hrhj, z ,hrhj,i第J级再热器出、进口蒸汽焓值,kJ/kg;hzes,j ,hzew,j第J级再热器抽汽、疏水焓值,kJ/kg;Ⅲ、高压加热器抽气量:Ghes,2=[Gfw*Δhfw,h- Gs,rh2*(hzew,2-hhew,2)*ηh]/[(hhes,2-hhew,2)*ηh];Ghes,1=[Gfw*Δhfw,h- Gs,rh1*(hzew,1-hhew,1)*ηh-Ghes,2*(hhew,2-hhew,1)*ηh ]/[(hhes,1-hhew,1)*ηh];其中:Δhfw,h高压加热器给水焓升,kJ/kg;hhes,j,hhew,j第J级高压加热器抽气、疏水焓值,kJ/kg;Ⅳ、高压缸耗汽量Gs,hp,根据能量平衡,有:Nh =Ne/ηmηge-Nl;Gs,hp =[Nh+Ghes,2×(hhes,2-hh,z)+Gs,rh1×(hzes,1-hh,z)+Ghes,1×(hhes,1-hh,z)]/(hh,i-hh,z);分离器疏水:G0=Gs,lp×(1-Xsp,i)/Xsp,i;其中:ηm、ηge汽轮机组机械效率和发电机效率;hh,i ,hh,z高压缸进出口焓值,kJ/kg;Xsp,i汽水分离器进口蒸汽干度Ⅴ、除氧器:利用高压缸排汽进行加热,其耗汽量:Gs,dea =[Gfw×hdea,z-(Ghes,2+Ghes,1+Gs,rh1+Gs,rh2)×hhew,1-Gcd×hdea,i-G×h]/hh,z;其中:hdea,z ,hdea,i除氧器进出口的焓值,kJ/kg;h汽水分离器疏水焓值,kJ/kg;(4)确定对应的新蒸汽耗量Gs ,进一步求出对应的给水量Gfw,由Gfw和各级加热器的疏水量,求出Gcd2,Gcd2=Gfw-(Gs,dea+G+Ghes,6)(5)比较Gcd 与Gcd2,若相对误差大于1%,返回步骤(1)进行迭代计算,直到满足精度要求为止。

相关文档
最新文档