高中人教版物理选修32知识点及公式(非常齐全)

合集下载

物理选修3 2知识点总结

物理选修3 2知识点总结

物理选修3 2知识点总结第一章电荷与电场1.1 电荷的基本性质1.1.1 电荷的定义电荷是构成物质的一种基本性质,有正负之分。

相同电荷相斥,不同电荷相吸。

1.1.2 电荷的守恒封闭系统中的总电荷守恒,即电荷不会增加或减少。

1.1.3 电荷的离散化电荷是离散的,它们只能是整数倍的基本电荷。

1.2 电场的产生1.2.1 电荷产生电场电荷周围存在电场,电场由正电荷指向负电荷,大小与电荷的大小和距离有关。

1.2.2 电场的定义电场是空间中某一点单位正电荷所受的力,大小为F=qE。

1.2.3 电场的叠加原理多个电荷产生的电场可以叠加,合成电场为各个电场矢量和。

1.2.4 电场的三种表达形式电场可以用电场线、电场强度分布图和电场力线图来表示。

1.3 电荷在电场中的运动1.3.1 电荷在电场中受力电荷在电场中受到电场力F=qE。

1.3.2 电荷在电场中的加速度电荷在电场中受到的电场力会导致电荷产生加速度a=qE/m。

1.3.3 电荷在电场中的运动轨迹电荷在电场中运动的轨迹依赖于开始的初速度和角度,可以是直线、椭圆、抛物线或者双曲线。

1.4 高中物理常见问题探究1.4.1 电场强度的方向问题1.4.2 电势能公式的导出1.4.3 电势差和电势能的关系第二章电容器2.1 电容的定义2.1.1 电容的概念电容是指某两导体之间存储电荷的能力,记为C。

2.1.2 电容的基本单位电容的基本单位是法拉(F)。

2.2 平行板电容器2.2.1 平行板电容器的构成平行板电容器由两块平行金属板组成。

2.2.2 平行板电容器的电容公式平行板电容器的电容公式为C=ε0S/d。

2.2.3 平行板电容器的等效电容连接在串联或并联平行板电容器的等效电容可以根据串联与并联的原理求出。

2.3 圆板电容器2.3.1 圆板电容器的构成圆板电容器由两块圆形金属板组成。

2.3.2 圆板电容器的电容公式圆板电容器的电容公式为C=πε0R。

2.3.3 圆板电容器的等效电容串联或并联连接的圆板电容器的等效电容可以根据串联与并联的原理求出。

(完整版)高中物理选修3-2知识点总结

(完整版)高中物理选修3-2知识点总结

高中物理选修3-2知识点总结第一章 电磁感应1.两个人物:a.法拉第:磁生电b.奥期特:电生磁2.产生条件:a.闭合电路b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b②产生感应电动势的那部分导体相当于电源。

③电源内部的电流从负极流向正极。

3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容:b.表达式:t n E ∆∆⋅=φ (2).计算感应电动势的公式 ①求平均值:t n E ∆∆⋅=φ_②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω221BL E =④闭合电路殴姆定律:)r (R I E +=感5.感应电流的计算: 平均电流:tr R r R E I ∆+∆=+=)(_φ 瞬时电流:rR BLVr R E I +=+=6.安培力计算: (1)平均值:tBLqt r )(R BL L I B F∆=∆+∆==φ__(2). 瞬时值:rR VL B BIL F +==227.通过的电荷量:rR q tI +∆=-=∆⋅φ注意:求电荷量只能用平均值,而不能用瞬时值。

8.互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。

这种现象叫互感。

9.自感现象:(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。

(2)决定因素:线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。

另外, 有铁心的线圈的自感系数比没有铁心时要大得多。

(3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微亨(μH )。

10.涡流及其应用(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。

人教版高中物理选修3-2(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

人教版高中物理选修3-2(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习电磁感应基础知识【学习目标】1.能够熟练地进行一些简单的磁通量、磁通量的变化的计算。

2.经历探究过程,理解电磁感应现象的产生条件。

3.重视了解电磁感应相关知识对社会、人类产生的巨大作用。

【要点梳理】要点一、电流的磁效应1820年,丹麦物理学家奥斯特发现载流导线能使小磁针偏转,这种作用称为电流的磁效应。

要点诠释:(1)为了避免地磁场影响实验结果,实验时通电直导线应南北放置。

(2)电流磁效应的发现证实了电和磁存在必然的联系,受其影响,法国物理学家安培提出了著名的右手螺旋定则和“分子电流”假说,英国物理学家法拉第在“磁生电”思想的指导下,经过十年坚持不懈的努力终于找到了“磁生电”的条件。

要点二、电磁感应现象1831年,英国物理学家法拉第发现了电磁感应现象,即“磁生电”的条件,产生的电流叫感应电流。

要点诠释:(1)法拉第将引起感应电流的原因概括为五类:①变化的电流;②变化的磁场;③运动的恒定电流;④运动的磁场;⑤在磁场中运动的导体。

(2)电流的磁效应是由电生磁,是通过电流获得磁场的现象;电磁感应现象是磁生电现象,两个过程是相反的。

要点三、产生感应电流的条件感应电流的产生条件是穿过闭合电路的磁通量发生变化。

也就是:一是电路必须闭合,二是穿过闭合电路的磁通量发生变化。

即一闭合二变磁。

要点诠释:判断有无感应电流产生,关键是抓住两个条件:(1)电路是闭合电路;(2)穿过电路本身的磁通量发生变化。

其主要内涵体现在“变化”二字上,电路中有没有磁通量不是产生感应电流的条件,如果穿过电路的磁通量很大但不变化,那么无论有多大,也不会产生感应电流。

只有“变磁”才会产生感应电动势,如果电路再闭合,就会产生感应电流。

要点四、电流的磁效应与电磁感应现象的区别与联系1.区别:“动电生磁”和“动磁生电”是两个不同的过程,要抓住过程的本质,动电生磁是指运动电荷周围产生磁场;动磁生电是指线圈内的磁通量发生变化而在闭合线圈内产生了感应电流。

完整版)高中物理选修3-2知识点总结

完整版)高中物理选修3-2知识点总结

完整版)高中物理选修3-2知识点总结高中物理选修3-2知识点总结第一章电磁感应1.两个人物:XXX和XXX,分别研究磁生电和电生磁。

2.产生感应电动势的条件是闭合电路和磁通量发生变化。

注意,只具备磁通量发生变化的条件就可以产生感应电动势,而产生感应电动势的那部分导体相当于电源。

电源内部的电流从负极流向正极。

3.感应电流方向的确定可以用右手定则或楞次定律。

楞次律包含四种阻碍,分别是阻碍原磁通量的变化、阻碍导体间的相对运动、阻碍原电流的变化以及面积有扩大与缩小的趋势。

4.感应电动势大小的计算可以用法拉第电磁感应定律,公式为E=n*(ΔΦ/Δt)。

还有其他计算公式,如求平均值的公式E=n*(ΔΦ/Δt)和求瞬时值的公式E=BLV(导线切割类),以及法拉第电机和闭合电路欧姆定律。

5.感应电流的计算可以用平均电流公式I=E/(R+r)=ΔΦ/(R+r)Δt和瞬时电流公式I=BLV/(R+r)。

6.安培力的计算可以用平均值公式F=BLΔΦ/(R+r)Δt和瞬时值公式F=BIL=B2L2VR/(R+r)。

7.通过的电荷量的计算只能用平均值公式,不能用瞬时值公式。

8.互感是指由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B中激发了感应电动势的现象。

9.自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。

自感系数的大小取决于线圈的长度、单位长度上的匝数、截面积以及是否有铁心。

自感系数的单位是XXX、毫亨和微亨。

10.涡流是指变压器在工作时,在原、副线圈产生感应电动势的同时,变化的磁通量也会在铁芯中产生感应电流的现象。

涡流的应用包括新型炉灶和金属探测器。

第二章交变电流1.正弦交变电流有两个特殊的位置。

电电流,可以减小能量损失,提高输电效率。

2.高压输电的方式:目前主要采用的是交流输电,直流输电则主要用于海底电缆等特殊情况。

3.输电线路的构成:输电线路主要由导线、绝缘子、杆塔等组成。

其中导线又分为裸导线和绝缘导线。

物理选修3-2知识总结(公式)

物理选修3-2知识总结(公式)

高中物理(选修3-2)公式1、磁通量:θsin BS Φ=,θ是磁场方向与导体面的夹角。

2、磁通量的变化量:12ΦΦΦ-=∆,取绝对值计算。

3、磁通量的变化率(感应电动势):t ΦE ∆∆=4、)()(磁场不变,面积变面积不变,磁场变tS nB t B nS t n E ∆∆=∆∆=∆∆Φ=(n 指匝数),适宜求平均感应电动势5、θsin BLv E =,θ是磁场与运动方向的夹角,适宜求瞬时感应电动势6、直导体绕一端转动切割磁感线:ω221BL E =7、感应电量:RΦn t t R Φn t R E t I q ∆=∆⋅∆∆=∆⋅=∆= 6、自感电动势:t I L E ∆∆=,L 为线圈的自感系数 7、交变电流的电动势峰值:ωnBS E m =8、正余弦交变电流的瞬时电动势:t E e t E e m m ωωcos sin ==或9、周期与频率:fT 12==ωπ10、理想变压器的变压、变流规律和功率关系⑴变压规律:2121n n u u =; ⑵变流规律:1221n n I I =; ⑶功率:出入P P =11、变压器有二个副线圈的情况⑴变压规律:tn u n u n u ∆∆===φ332211; ⑵变流规律:332211n I n I n I +=;⑶功率:出入P P =12、理想变压器各种物理量的决定关系。

⑴输入电压决定输出电压;⑵输出电流决定输入电流;⑶输出功率决定输入功率13、远距离输电各物理量关系 ⑴发电机的输出功率为:2211I U I U P ==; ⑵输电线路上的电压损失为:322U U R I U -==损 ⑶输电线上功率损失为:R I P 22=损 ⑷用户得到的功率为:损用P P P -=。

word完整版高中物理选修32知识点详细汇总,推荐文档

word完整版高中物理选修32知识点详细汇总,推荐文档

电磁感觉现象愣次定律一、电磁感觉1.电磁感觉现象只需穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感觉。

产生的电流叫做感觉电流.2.产生感觉电流的条件:闭合回路中磁通量发生变化3.磁通量变化的常有状况( Φ改变的方式) :S①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动致使Φ变化; 其本质也是 B 不变而增大或减小② 线圈在磁场中转动致使Φ变化。

线圈面积与磁感觉强度两者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③磁感觉强度随时间( 或地点 ) 变化 , 磁感觉强度是时间的函数;或闭合回路变化致使Φ变化( Φ改变的结果) : 磁通量改变的最直接的结果是产生感觉电动势, 若线圈或线框是闭合的. 则在线圈或线框中产生感觉电流,所以产生感觉电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感觉电动势的条件 :不论回路能否闭合 , 只需穿过线圈的磁通量发生变化 , 线圈中就有感觉电动势产生 , 产生感觉电动势的那部分导体相当于电源 .电磁感觉现象的本质是产生感觉电动势 , 假如回路闭合 , 则有感觉电流 , 假如回路不闭合,则只好出现感觉电动势,而不会形成连续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化二、感觉电流方向的判断1.右手定章 : 张开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指导游线运动的方向,四指所指的方向即为感觉电流方向( 电源 ).用右手定章时应注意:① 主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感觉电动势与感觉电流的方向判断,②右手定章仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感觉电流方向三者相互垂直.③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.④若形成闭合回路,四指指向感觉电流方向;若未形成闭合回路,四指指向高电势.⑤“因电而动”用左手定章.“因动而电”用右手定章.⑥应用时要特别注意:四指指向是电源内部电流的方向 ( 负→正 ) .因此也是电势高升的方向;即:四指指向正极。

完整版)高中物理选修3-2知识点详细汇总

完整版)高中物理选修3-2知识点详细汇总

完整版)高中物理选修3-2知识点详细汇总电磁感应现象和法拉第-楞次定律电磁感应是指当磁通量穿过闭合回路发生变化时,会在回路中产生电流的现象。

这个产生的电流被称为感应电流。

产生感应电流的条件是闭合回路中的磁通量发生变化。

磁通量变化的常见情况包括线圈所围面积发生变化,线圈在磁场中转动导致Φ变化,以及磁感应强度随时间或位置变化。

磁通量改变的最直接结果是产生感应电动势。

如果线圈或线框是闭合的,那么就会在其中产生感应电流。

产生感应电动势的条件是穿过线圈的磁通量发生变化。

感应电流的方向可以通过右手定则来判定。

这个定则要求伸开右手,让磁感线垂直穿过手心,然后让大拇指指向导线运动的方向。

四指所指的方向即为感应电流方向。

需要注意的是,右手定则仅适用于导体切割磁感线时,而且应用时要注意磁场方向、运动方向和感应电流方向三者互相垂直。

总之,电磁感应现象的实质是产生感应电动势,如果回路闭合,就会有感应电流,否则只会出现感应电动势。

通过右手定则可以判定感应电流的方向。

导体在磁场中切割磁感线会引起感应电流,这是磁通量发生变化引起感应电流的特例。

因此,判定电流方向的右手定则也是楞次定律的一个特例。

虽然可以用右手定则判断导体在磁场中切割磁感线而产生感应电流的方向,但使用楞次定律判定更为方便。

楞次定律是用来判断感应电流方向的,其规定感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

这里的“阻碍”并不是指完全阻止,而是指阻止磁通量变化的速率。

当磁通量增加时,感应电流的磁场和原磁场方向相反,起到抵消作用;当磁通量减少时,感应电流的磁场和原磁场方向一致,起到补偿作用,简称“增反减同”。

因此,楞次定律也可以表述为感应电流的效果总是要阻碍或反抗产生感应电流的原因。

楞次定律还可以从能量守恒的角度表述,即感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

此外,楞次定律还有一个特例,即右手定则,用于判定感应电流的磁场总是阻碍原磁场的变化。

楞次定律的应用包括两种情况:一是磁场不变,导体回路相对磁场运动;二是导体回路不动,磁场发生变化。

人教版 物理选修3-2知识点总结【完美笔记打印】

人教版 物理选修3-2知识点总结【完美笔记打印】

⼈教版物理选修3-2知识点总结第四章电磁感应划时代的发现奥斯特梦圆“电⽣磁”法拉笫⼼系“磁⽣电”法拉第线圈电磁感应:磁⽣电感应电流:由磁场产⽣的电流变化的电流变化的磁场运动的恒定电流运动的磁铁在磁场中运动的导体探究电磁感应产⽣电条件实验探究实验⼀:闭合电路的⼀部分导体做切割磁感线的运动过程结论实验⼆:把磁铁插⼊螺线管或从螺线管拔出过程结论实验三:双螺线管实验过程结论总结实验⼀实质:改变了闭合电路在磁场中的⾯积实验⼆实质:改变了闭合电路中磁场的强弱实验三实质:改变了闭合电路中磁场的强弱结论:只要穿过闭合电路的磁通量发⽣变化,闭合电路中就有电流产⽣楞次定律实验:探究感应电流的⽅向有哪些特点实验装置实验过程结论结论1:当线圈内原磁通量增加时,感应电流的磁场B′的⽅向与原磁场B的⽅向相反感应电流的磁场阻碍磁通量的变化结论2:当线圈内原磁通量减少时,感应电流的磁场B′的⽅向与原磁场B的⽅向相同感应电流的磁场阻碍磁通量的变化楞次定律内容:感应电流具有这样的⽅向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化细化增反减同来拒去留增缩减扩增离减靠楞次定律使⽤⽅法(1)先确定原磁场⽅向。

(2)确定磁通量的变化趋势。

(增⼤或减⼩)(3)确定感应电流产⽣的磁场⽅向。

(增反减同)(4)⽤安培定则判定感应电流的⽅向。

法拉第电磁感应定律电磁感应规律的应⽤互感和⾃感涡流电磁阻尼和电磁驱动第五章交变电流交变电流交流与直流交变电流(AC):⼤⼩和时间都随时间周期性变化直流(DC):电流的⼤⼩和时间都不随时间变化交变电流的产⽣中性⾯电流⽅向的变化分析交变电流的变化规律公式推导顺势电动势:e=nBSω·sinωt峰值:Em=nBSωu=Um·sinωti=Im·sinωt变化规律电流、电动势:每次经过中性⾯,⽅向变化⼀次中性⾯磁通量最⼤、电流最⼩垂直于中性⾯位置磁通量最⼩、电流最⼤描述交变电流的物理量周期和频率周期符号:T单位:秒s定义:交变电流完成⼀次周期性变化所需的时间频率符号:f单位:赫兹Hz定义:交变电流在1s内完成周期性变化的次数联系:T=1/f峰值和有效值有效值:让交流与恒定电流分别通过⼤⼩相同的电阻,如果在交流的⼀个周期内它们产⽣的热量相等,⽽这个恒定电流是I、电压是U,我们就把I、U叫做这个交流的有效值峰值与有效值关系:I=Im/√2;U=Um/√2注意:电表示数均为有效值平均值:E=nΔФ/Δt;I=E/R电感和电容对交变电流的影响电感对交变电流的阻碍作⽤感抗:电感对交变电流阻碍作⽤的⼤⼩影响因素线圈的⾃感系数交流的频率应⽤:扼流圈低频扼流圈匝数:⼏千到⼀万⾃感系数:⼏⼗亨,较⼤特点:感抗⼤,“通直流,阻交流”⾼频扼流圈匝数:⼏百或⼏⼗⾃感系数:⼏毫亨,较⼩特点:对⾼频交流电有较⼤阻碍作⽤,对低频交流电阻碍较⼩,对直流阻碍更⼩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理选修3-2知识点总结一、电磁感应现象只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

二、感应电流的产生条件1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。

▲三、法拉第电磁感应定律公式一: εφ=n t ∆∆/。

注意: 1)该式普遍适用于求平均感应电动势。

2)ε只与穿过电路的磁通量的变化率∆∆φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。

公式εφ=nt∆∆中涉及到磁通量的变化量∆φ的计算, 对∆φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由∆∆φ=BS , 此时ε=nBtS ∆∆, 此式中的∆∆B t 叫磁感应强度的变化率, 若∆∆Bt是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。

2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则∆∆φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。

严格区别磁通量φ, 磁通量的变化量∆φB 磁通量的变化率∆∆φt, 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量∆φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率∆∆φt表示磁通量变化的快慢,公式二: εθ=Blv sin 。

要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。

2)θ为v 与B 的夹角。

l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。

公式ε=Blv 一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势?如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等,v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成正比, 所以AC 切割的速度可用其平均切割速vv v v l A C C =+==222ω, 故εω=122B l 。

εω=122BL ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为ε。

公式三:εωm n B S =···——面积为S 的纸圈,共n 匝,在匀强磁场B 中,以角速度ω匀速转坳,其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势εm 。

如图所示,设线框长为L ,宽为d ,以ω转到图示位置时,ab 边垂直磁场方向向纸外运动,切割磁感线,速度为v d=ω·2(圆运动半径为宽边d 的一半)产生感应电动势εωω===BL v BL d BS (21)2,a 端电势高于b 端电势。

cd 边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势εω=12BS 。

c 端电势高于e 端电势。

bc 边,ae 边不切割,不产生感应电动势,b .c 两端等电势,则输出端M .N 电动势为εωm BS =。

如果线圈n 匝,则εωm n B S =···,M 端电势高,N 端电势低。

参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值εm ,如从图示位置转过一个角度θ,则圆运动线速度v ,在垂直磁场方向的分量应为v cos θ,则此时线圈的产生感应电动势的瞬时值即作最大值εεθ=m .cos .即作最大值方向的投影,εωθ=n B S ···cos (θ是线圈平面与磁场方向的夹角)。

当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。

●总结:计算感应电动势公式:εεε=BLvv v 如是即时速度,则为即时感应电动势。

如是平均速度,则为平均感应电动势。

εφε=→nt t t o ∆∆∆∆是一段时间,为这段时间内的平均感应电动势。

,为即时感应电动势。

εω=122BLεωθ=n B S ···cos (θ是线圈平面与磁场方向的夹角)。

()()⎩⎨⎧==夹角是线圈平面与磁场方向瞬时值公式,····有感应电动势最大值线圈平面与磁场平行时··θθωεωεcos S B n BS nm 注意:区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在∆t 内迁移的电量(感应电量)为Rn t t R n t R t I q φφε∆=∆∆∆=∆=∆=, 仅由回路电阻和磁通量的变化量决定, 与发生磁通量变化的时间无关。

▲四、楞次定律:1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化产生−→−−感应电流建立−→−−感应电流磁场阻碍−→−−磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

●(口诀:增反减同,来拒去留,近躲离追)楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程: (1)阻碍原磁通的变化(原始表述);(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;(3)使线圈面积有扩大或缩小的趋势;(4)阻碍原电流的变化(自感现象)。

如图1所示,在O 点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。

若按常规方法,应先由楞次定律 判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。

若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。

因此环将向右摆动。

显然,用第二种方法判断更简捷。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。

用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。

反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。

如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

(“因电而动”用左手,“因动而电”用右手)五、互感 自感 涡流1、互感:由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中激发了感应电动势。

这种现象叫互感。

2、自感:由于线圈(导体)本身电流的变化而产生的电磁感应现象叫自感现象。

在自感现象中产生感应电动势叫自感电动势。

自感现象分通电自感和断电自感两种, 其中断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题, 如图2所示, 原来电路闭合处于稳定状态, L 与L A 并联, 其电流分别为I I L A 和, 方向都是从左到右。

在断开S 的瞬间, 灯A 中原来的从左向右的电流I A 立即消失, 但是灯A 与线圈L 构成一闭合回路, 由于L 的自感作用, 其中的电流I L不会立即消失, 而是在回路中逐断减弱维持暂短的时间, 在这个时间内灯A中有从右向左的电流通过, 此时通过灯A 的电流是从I L 开始减弱的, 如果原来I I L A >, 则在灯A 熄灭之前要闪亮一下; 如果原来I I L A ≤, 则灯A 是逐断熄灭不再闪亮一下。

原来I I L A 和哪一个大, 要由L 的直流电阻R L 和A 的电阻R A 的大小来决定, 如果R R I I L A L A ≥≤,则, 如果R R I I L A L A <>,。

由上例分析可知:自感电动势总量阻碍线圈(导体)中原电流的变化。

自感电动势的大小跟电流变化率成正比。

ε自=LIt∆∆L是线圈的自感系数,是线圈自身性质,线圈越长,单位长度上的匝数越多,截面积越大,有铁芯则线圈的自感系数L越大。

单位是亨利(H)。

3、涡流及其应用1.变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。

一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流2.应用:(1)新型炉灶——电磁炉。

(2)金属探测器:飞机场、火车站安全检查、扫雷、探矿。

▲六、交变电流描述交变电流的物理量和图象一)交流电的产生及变化规律:(1)产生:强度和方向都随时间作周期性变化的电流叫交流电。

矩形线圈在匀强磁场中,绕垂直于匀强磁场的线圈的对称轴作匀速转动时,如图5—1所示,产生正弦(或余弦)交流电动势。

当外电路闭合时形成正弦(或余弦)交流电流。

图5—1(2)变化规律:(1)中性面:与磁力线垂直的平面叫中性面。

线圈平面位于中性面位置时,如图5—2(A)所示,穿过线圈的磁通量最大,但磁通量变化率为零。

因此,感应电动势为零。

图5—2当线圈平面匀速转到垂直于中性面的位置时(即线圈平面与磁力线平行时)如图5—2(C)所示,穿过线圈的磁通量虽然为零,但线圈平面内磁通量变化率最大。

因此,感应电动势值最大。

εωm N B l v N B S ==2·······(伏) (N 为匝数) (2)感应电动势瞬时值表达式:若从中性面开始,感应电动势的瞬时值表达式:e t m =εω·sin (伏)如图5—2(B )所示。

相关文档
最新文档