高二数学上学期期末考试题及答案

合集下载

广东省梅州市2023-2024高二上学期期末数学试卷及答案

广东省梅州市2023-2024高二上学期期末数学试卷及答案

梅州市高中期末考试试卷(2024.1)高二数学注意事项:本试卷共6页,22小题,满分150分.考试用时120分钟.1.答卷前,考生务必用黑色字迹铜笔或签字笔将自己的学校、班级、考生号、姓名和座号填写在答题卡上,2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.作答必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案:不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.在空间直角坐标系中,已知点()()0,1,2,1,2,1,2A B AP AB −−=,则点P 的坐标是( )A .()2,6,6−−B .()2,5,4−−C .()2,7,8−−D .()3,8,7−−2.若过点()()1,,1,0M m N −的直线的倾斜角为34π,则m 的值为( )A .2−B .CD .23.已知3,,,,15a b c 五个数成等差数列,则a b c ++=( )A .21B .24C .27D .304.如图,在三棱台111ABC A B C −中,112,AC AC M N =、分别为11AC A B 、的中点,设1,,AB a AC b AA c ===,则MN 可用,,a b c 表示为( )A .111422a b c −+B .1142a b c −+C .111242a b c ++D .1124a b c −+ 5.已知定点()1,0,A P −为圆22:4C x y +=的动点,则线段AP 的中点M 的轨迹方程为( )A .22112x y ⎛⎫++= ⎪⎝⎭ B .22(1)1x y ++= C .22122x y ⎛⎫++= ⎪⎝⎭ D .22(1)2x y ++= 6.已知点()1,0P ,点Q 为椭圆22:13x C y +=上一动点,则PQ 的最小值为( )A .3B 1−C .2D .2 7.空间直角坐标系中,已知点()0,3,1P −,向量()2,1,1u =−,则过点P 且以u 为法向量的平面方程为( )A .24x y z −+=−B .27x y z +−=C .25x y z −+=−D .25x y z −++=8.已知“整数对”按如下规律排成一列:()()()()()()()()()()1,1,1,2,2,1,1,3,2,2,3,1,1,4,2,3,3,2,4,1,……,则第60个数对是( )A .()2,10B .()5,7C .()6,6D .()7,5二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全得2分,有选错的得0分.9.关于双曲线22:136x y C −=,下列说法正确的是( )A .双曲线C 的焦点坐标为)和()B .双曲线CC .双曲线221918x y −=与双曲线C 的离心率相等 D .双曲线C 的渐近线方程为2y x =±10.已知数列{}:2,4,6,8,10,n a −−,记{}n a 的前n 项和为n S ,下列说法正确的是( ) A .1(2)n n a +=− B .{}212n n a a −−是一个等差数列 C .1719S S > D .20232024S =11.设圆22:4630C x y x y +−−−=与直线:410l kx y k +−−=相交,交点为A B 、,则( )A .当1k =时,直线l 平分圆CB .k R ∈C .弦长AB 的最小值为D .ABC △只能是钝角三角形12.将()23n n ≥个互不相等的数排成下表:。

2023-2024学年北京市房山区高二上学期期末考试数学试卷+答案解析

2023-2024学年北京市房山区高二上学期期末考试数学试卷+答案解析

2023-2024学年北京市房山区高二上学期期末考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在复平面内,复数z对应的点的坐标是,则z的共轭复数()A. B. C. D.2.在三棱柱中,D为棱的中点.设,用基底表示向量,则()A. B. C. D.3.两条直线与之间的距离是()A.5B.1C.D.4.设直线l的方向向量为,两个不同的平面的法向量分别为,则下列说法中错误的是()A.若,则B.若,则C.若,则D.若,则5.如图,四棱锥中,底面ABCD是矩形,,平面ABCD,下列叙述中错误的是()A.平面PCDB.C. D.平面平面ABCD6.已知M为抛物线上一点,M到C的焦点F的距离为6,到x轴的距离为4,则()A.6B.4C.2D.17.下列双曲线中以为渐近线的是()A. B. C.D.8.已知点,若直线上存在点P ,使得,则实数k 的取值范围是()A. B.C.D.9.已知双曲线Q 与椭圆有公共焦点,且左、右焦点分别为,,这两条曲线在第一象限的交点为P ,是以为底边的等腰三角形,则双曲线Q 的标准方程为()A.B.C.D.10.如图,在棱长为2的正方体中,P 为线段的中点,Q 为线段上的动点,则下列结论正确的是()A.存在点Q ,使得B.存在点Q ,使得平面C.三棱锥的体积是定值D.存在点Q ,使得PQ 与AD 所成的角为二、填空题:本题共6小题,每小题5分,共30分。

11.若直线与直线垂直,则a 的值为__________.12.复数的实部为__________.13.已知圆则圆的圆心坐标为__________;若圆与圆内切,则__________.14.如图,在正方体中,直线与直线所成角的大小为__________;平面ABCD 与平面夹角的余弦值为__________.15.已知直线,则与的交点坐标为__________;若直线不能围成三角形,写出一个符合要求的实数a的值__________.16.已知曲线,给出下列四个命题:①曲线关于x轴、y轴和原点对称;②当时,曲线共有四个交点;②当时,③当时,曲线围成的区域内含边界两点之间的距离的最大值是3;④当时,曲线围成的区域面积大于曲线围成的区域面积.其中所有真命题的序号是__________.三、解答题:本题共5小题,共60分。

江苏省高二上学期期末数学试题(解析版)

江苏省高二上学期期末数学试题(解析版)

高二上学期期末数学试题一、单选题1.在等比数列中,,公比,则( ) {}n a 13a =2q =4a =A .24 B .48 C .54 D .66【答案】A【分析】根据等比数列通项公式基本量计算出答案.【详解】.33413224a a q ==⨯=故选:A2.曲线处的切线与直线平行,则实数( ) y =()1,1y kx =k =A . B .C .D .12-12-12【答案】C【分析】根据导数的几何意义求解.【详解】时,,所以. y '=1x =12y ¢=12k =故选:C .3.已知平面的一个法向量,平面的一个法向量,若,则α()13,0,n λ= β()22,1,6n =αβ⊥λ=( )A .B .4C .D .1921-【答案】C【分析】根据题意,由面面垂直可得法向量也相互垂直,结合空间向量的坐标运算,代入计算即可得到结果.【详解】因为,则可得,αβ⊥12n n ⊥且,, ()13,0,n λ= ()22,1,6n =则可得,解得 660λ+=1λ=-故选:C4.若直线与圆相切,则实数取值的集合为( )340x y m ++=2220x y y +-=mA .B .C .D .{}1,1-{}9,1-{}1{}8,2-【答案】B【分析】根据题意,由直线与圆相切可得,结合点到直线的距离公式,代入计算,即可得到d r =结果.【详解】由圆可得,表示圆心为,半径为的圆,2220x y y +-=()2211x y +-=()0,11则圆心到直线的距离340x y m ++=d 因为直线与圆相切,340x y m ++=2220x y y +-=所以,解得或,d r =11m =9m =-即实数取值的集合为 m {}9,1-故选:B5.已知,则n =( )22A C 30n n +=A .3B .4C .5D .6【答案】C【分析】利用排列数、组合数公式得到,解方程即得解. ()31302n n -=【详解】解:,整理得, ()()()22131A C 13022n nn n n n n n --+=-+==2200n n --=解得(舍),. n =-45n =故选:C .6.函数的图象如图所示,则函数的图象可能是y ()y ()f x f x ==,的导函数y ()f x =A .B .C .D .【答案】D【详解】原函数先减再增,再减再增,且位于增区间内,因此选D .0x =【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图x 0x 象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单0x x 0x 调性时,由导函数的正负,得出原函数的单调区间.'()f x ()f x 7.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 ()A .12种 B .18种 C .24种 D .36种【答案】D【详解】4项工作分成3组,可得:=6,24C 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成, 可得:种. 36363A ⨯=故选D.8.已知数列首项为2,且,则( ){}n a 112n n n a a ++-=n a =A . B . C . D .2n 121n -+22n -122n +-【答案】D【分析】由已知的递推公式,利用累加法可求数列通项.【详解】由已知得,,则当时,有112n n n a a ++-=12a =2n ≥ ,12111221()()(222)n n n n n n n a a a a a a a a -----=-+-++-=+++()12121121222222222212n n n n n n n a a --+-=++++=++++==-- 经检验当时也符合该式.∴.1n =122n n a +=-故选:D二、多选题9.下列四个选项中,不正确的是( ) A .数列,的一个通项公式是 2345,,,3456⋯1n n a n =+B .数列的图象是一群孤立的点C .数列1,,1,,与数列,1,,1,是同一数列1-1-⋯1-1-⋯D .数列,,是递增数列11,24⋯12n 【答案】ACD【分析】由可判断A ;由数列的通项公式以及可判断B ;由数列定义可判断C ; 11223a =≠N*n ∈由递减数列定义可判断D . 【详解】对于A ,当通项公式为时,,不符合题意,故选项A 错误;1n n a n =+11223a =≠对于B ,由数列的通项公式以及可知,数列的图象是一群孤立的点,故选项B 正确; N*n ∈对于C ,由于两个数列中的数排列的次序不同,因此不是同一数列,故选项C 错误;对于D ,数列,,是递减数列,故选项D 错误.11,24⋯12n 故选:ACD .10.下列结论中正确的有( ) A .若,则B .若,则 sin3y π=0y '=2()3(1)f x x f x =-'(1)3f '=C .若,则D .若,则y x =1y ='+sin cos y x x =+cos sin y x x +'=【答案】ABC【解析】根据常见的基本初等函数的导数公式和常用的导数运算法则求解即可.【详解】选项A 中,若,故A 正确; sin3y π==0y '=选项B 中,若,则, 2()3(1)f x x f x =-⋅'()6(1)f x x f '-'=令,则,解得,故B 正确; 1x =(1)6(1)f f ''=-(1)3f '=选项C 中,若,则,故C 正确;y x =+1y ='+选项D 中,若,则x ,故D 错误. sin cos y x x =+cos sin y x x '=-故选:ABC【点睛】1.常见的基本初等函数的导数公式 (1) (C 为常数); ()0C '=(2); ()1()nn x nx n '∈N -+=(3); ; ()sinx cosx '=()cosx sinx '=-(4);,且); ()xx e e '=()(0x x a a lna a '>=1a ≠(5); ,且). 1(ln )'=x x a a 1 (log )'=log e(a>0x x1a ≠2.常用的导数运算法则法则1: . ()()()()[]u x v x u x v x ±''±'=法则2:. ()()()()()()[]u x v x u x v x u x v x '''=+法则3: ()()()()()()()()22[](0)u x u x v x u x v x v x v x v x '''≠-=11.已知名同学排成一排,下列说法正确的是( ) 7A .甲不站两端,共有种排法 1656A A B .甲、乙必须相邻,共有种排法 5252A A C .甲、乙不相邻,共有种排法2555A A D .甲不排左端,乙不排右端,共有种排法7657652A A A -+【答案】AD【分析】A 选项通过特殊元素法判断;B 选项利用捆绑法判断;C 选项利用插空法判断;D 选项用总情况减去不满足的情况即可.【详解】A 选项:甲不站两端,甲有种,剩余6人全排,共有种排法,正确;15A 1656A A B 选项:甲、乙必须相邻,甲、乙捆绑有种,作为整体和剩余5人全排,共有种排法,错22A 2626A A 误;C 选项:甲、乙不相邻,先排其他5人有种,再把甲、乙插入6个空中,共有种排法,错55A 5256A A 误;D 选项:甲不排左端,乙不排右端,用7人全排减去甲在左端的和乙在右端的,再加上甲在左端同时乙在右端的,共有种排法,正确.7657652A A A -+故选:AD.12.如图,在四面体中,点在棱上,且满足,点,分别是线段,OABC M OA 2OM MA =N G BC的中点,则用向量,,表示向量中正确的为( )MN OA OB OCA .B .111344GN OA OB OC =-++111344OG OA OB OC =-+C . D .113232GM OA OB OC =++111344GM OA OB OC =--【答案】AD【分析】连接,利用空间向量基本定理以及空间向量的线性运算进行求解即可. ON 【详解】连接,ON因为点,分别是线段,的中点,N G BC MN 所以,111211()222322OG OM ON OA OB OC =+=⨯+⨯+ 化简可得,故B 错误;111344OG OA OB OC =++所以,故A 正确 1111111()()2344344GN ON OG OB OC OA OB OC OA OB OC =-=+-++=-++ ,故C 错误,D 正确;11121113443344GM GO OM OA OB OC OA OA OB OC =+=---+=--故选:.AD三、填空题13.已知,1,、,2,、,,,若向量与垂直为坐标原(2A 3)(4B -)x (1C x -2)OA OB + OC(O点),则等于__. x 【答案】4【分析】由向量垂直的坐标表示求解.【详解】,()()()2,1,3,4,2,,1,,2OA OB x OC x ==-=-,∴()2,3,3OA OB x +=-+向量与垂直,OA OB + OC,∴()·23260OA OB OC x x +=--++=.4x ∴=故答案为:4.四、双空题14.已知函数,则函数的单调递增区间是______,值域为______.()()212log 43f x x x =-+-【答案】[2,3)[0,)+∞【解析】令,求得函数的定义域,根据在其定义域内为单调减函2430t x x =-+->()12log f x t =数,求函数的单调递增区间转化为求函数在定义域内的减区间,再利用()()212log 43f x x x =-+-t 二次函数的值域求整个函数的值域.【详解】解:令,可得,故函数的定义域为. 2430t x x =-+->13x <<()1,3因为在其定义域内为单调减函数,()12log f x t =故求在定义域内的减区间,又函数在定义域内的减区间为,243t x x =-+-t [2,3)所以函数的单调递增区间为,()()212log 43f x x x =-+-[2,3)当时,,则,()1,3x ∈243(0,1]t x x =-+-∈()12log [0,)f x t =∈+∞即函数的值域为. ()()212log 43f x x x =-+-[0,)+∞故答案为:;.[2,3)[0,)+∞【点睛】本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基本知识的考查.五、填空题15.求和:Sn =1+++1++++…+=________.1(12+11(1)24++1214181111(1)242n -+++⋯+【答案】2n +-2 112n -【分析】先化简数列,结合分组求和法即可求解. 1212k ka ⎛⎫=- ⎪⎝⎭【详解】被求和式的第k 项为:111111121211242212kk k k a -⎛⎫- ⎪⎛⎫⎝⎭=++++==- ⎪⎝⎭-所以Sn =2=22111(1)(1(1)222n -+-+⋯+-231111(2222n n ⎡⎤-+++⋯+⎢⎥⎣⎦ 111111222212212212n n n n n n -⎡⎤⎛⎫- ⎪⎢⎥⎡⎤⎛⎫⎝⎭⎢⎥=-=--=+- ⎪⎢⎥⎝⎭⎢⎥⎣⎦-⎢⎥⎣⎦故答案为:2n +-2. 112n -16.如图,圆形花坛分为部分,现在这部分种植花卉,要求每部分种植种,且相邻部分不能441种植同一种花卉,现有种不同的花卉供选择,则不同的种植方案共有______种(用数字作答)5【答案】260【分析】先分1,3相同与1,3不相同两类,每类中按分步计数原理,分2,4相同或不同两类求解,然后再分类计数原理求和.【详解】根据题意:当1,3相同时,2,4相同或不同两类,有:种, ()5411380⨯⨯⨯+=当1,3不相同时,2,4相同或不同两类,有:种, ()54312180⨯⨯⨯+=所以不同的种植方案共有种, 80180260+=故答案为:260【点睛】本题主要考查计数原理的应用问题,还考查了分析求解问题的能力,所以中档题.六、解答题17.已知等比数列的首项为2,前项和为,且. {}n a n n S 234230S S S -+=(1)求;n a(2)已知数列满足:,求数列的前项和. {}n b n n b na ={}n b n n T 【答案】(1)2n n a =(2)()1122n n T n +=-⋅+【分析】(1)根据题意,由可得公比,再由等比数列的通项公式即可得到结234230S S S -+=q 果;(2)根据题意,由错位相减法即可求得结果. 【详解】(1)设等比数列的公比为,{}n a q 因为,所以,234230S S S -+=()234320S S S S -+-=所以,所以,所以.342a a =2q =112n n n a a q -==(2)由(1)得,,所以,……①2nn b n =⨯212222n n T n =⨯+⨯++⨯ 所以,……②()23121222122n n n T n n +=⨯+⨯++-⨯+⨯ ①-②,得,()()21112122222212212n nn n n n T n n n +++⨯--=+++-⨯=-⨯=-⨯-- 所以.()1122n n T n +=-⋅+18.已知双曲线的实轴长为,一个焦点的坐标为-.2222:1x y C a b-=()0,0a b >>4()-(1)求双曲线的标准方程;(2)已知斜率为的直线与双曲线交于,两点,且的方程.1l C A B AB =l 【答案】(1);(2)22148x y -=1y x =±【分析】(1)由双曲线的实轴长及焦点坐标,再由,,之间的关系求出,进而求出双曲线a b c b 的方程;(2)由题意设直线的方程,与双曲线联立求出两根之和及两根之积,进而求出弦长的AB ||AB 值,再由题意可得参数的值,即求出直线的方程.AB【详解】(1)由得,又,24a =2a =c =2228b c a =-=故双曲线的方程为.22148x y -=(2)设直线的方程为,代入双曲线方程可得,l y x m =+22280x mx m ---=设,,,,则,.1(A x 1)y 2(B x 2)y 122x x m +=2128x x m =--因为||AB ==, ==1m =±所以直线的方程为.l 1y x =±19.从4面不同颜色(红、黄、蓝、绿)的旗子中,选出3面排成一排作为一种信号,共能组成多少种信号? 【答案】24【分析】分步完成:第一步选3面旗帜,第二步3面旗帜全排列,由此可得.【详解】从4面不同颜色旗子中,选出3面排成一排能组成种信号.3343C A 24=20.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm )满足关系:,设为C x ()()4011035C x x x =≤≤+()f x 隔热层建造费用与20年的能源消耗费用之和. (1)求的表达式;()f x (2)隔热层修建多厚时,总费用达到最小,并求最小值. ()f x 【答案】(1) 800()635f x x x =++()110x ≤≤(2)当隔热层修建5cm 厚时,总费用最小,最小值为70万元.【分析】(1)根据已给模型确定函数解析式; (2)利用导数求得最小值.【详解】(1)每年能源消耗费用为,建造费用为, 40()35C x x =+6x .. ()()800206635f x C x x x x ∴=+=++()110x ≤≤(2),令得或(舍. ()()22400'635f x x =-+()0f x '=5x =253x =-)当时,,当时,.∴15x ≤<()0f x '<510x <≤()0f x '>在,上单调递减,在,上单调递增.()f x ∴[15)[510]当时,取得最小值(5).∴5x =()f x f 70=当隔热层修建厚时,总费用最小,最小值为70万元.∴5cm21.三棱柱中,,,线段的中点为,且111ABC A B C -112AB AB AA AC ====120BAC ∠= 11A B M .BC AM⊥(1)求证:平面;AM ⊥ABC (2)点在线段上,且,求二面角的余弦值. P 11B C 11123B P B C =11P B A A --【答案】(1)证明见解析【分析】(1)由、根据线面垂直的判定定理可得平面;AB AM ⊥BC AM ⊥AM ⊥ABC (2)以为原点,以所在的直线为建立空间直角坐标系,求出平面、A 、、AN AC AM x y z 、、11B AA 平面的一个法向量由二面角的向量求法可得答案.1PB A 【详解】(1)三棱柱中,,111ABC A B C -11//AB A B 在中,,线段的中点为,所以,所以;11AB A △11AB AA =11A B M 11A B AM ⊥AB AM ⊥因为,平面,平面,,平面,所以BC AM ⊥BC ⊂ABC AB ⊂ABC AB BC B ⋂=AB BC ⊂、ABC 平面; AM ⊥ABC (2)做交于点,AN AC ⊥BC N 以为原点,以所在的直线为建立空间直角坐标系,A 、、AN AC AM x y z 、、则,,, ()0,0,0A )1,0B-112B -,.()0,2,0C (M 所以,,,112AB =-()BC =(AM = 因为,所以,111222,033B P B C BC ⎛⎫=== ⎪ ⎪⎝⎭32P ⎛ ⎝所以,32AP ⎛= ⎝ 设平面的一个法向量,则, 11B AA ()1111,,n x y z =11111111020n AB y n AM ⎧⋅=-+=⎪⎨⎪⋅==⎩ 解得,令,所以, 10z=1y 11x =()1n = 设平面的一个法向量,则, 1PB A ()2222,,n x y z =222221222302102n AP y n AB x y ⎧⋅=+=⎪⎪⎨⎪⋅=-=⎪⎩令,,所以, 2y =23x =21z =-()21n =- 设二面角的平面角为,则11P B A A --()0180θθ≤≤ ,121212cos cos ,n n n n n n θ⋅==== 由图知二面角的平面角为锐角,11P B A A --所以二面角11P B A A --22.已知函数,.()()2e x f x x ax a =--R a ∈(1)讨论函数的单调性;()f x (2)当时,证明:.0a =()2(ln 2)f x x x >+【答案】(1)答案见解析;(2)证明见解析.【分析】(1)求出函数的导数,再分类讨论求出不等式,的解集作()f x ()f x '()0f x '<()0f x ¢>答.(2)将不等式等价变形,再分别证明和即可作答.e 1x x >+ln 1x x ≥+【详解】(1)依题意,,令,则或()()()()222e 2e x x f x x a x a x x a '⎡⎤=+--=+-⎣⎦()0f x '=2x =-.x a =当时,,则函数在上单调递增; 2a =-()()22e 0x f x x '+≥=()f x R 当时,当时,,当时,,2a >-()2,x a ∈-()0f x '<()(),2,x a ∈-∞-∞+ ()0f x ¢>于是得在,上单调递增,在上单调递减;()f x (),2-∞-(),a +∞()2,a -当时,当时,,当时,,2a <-(),2x a ∈-()0f x '<()(),2,x a ∞∞-∈-+ ()0f x ¢>因此函数在、上单调递增,在上单调递减,()f x (),a -∞()2,-+∞(),2a -所以当时,的单调递增区间为,,单调递减区间为;2a >-()f x (),2-∞-(),a +∞()2,a -当时,在上单调递增;2a =-()f x R 当时,函数的单调递增区间为,,单调递减区间为.2a <-()f x (),a -∞()2,-+∞(),2a -(2)当时,,,,0a =()2e x f x x =0x >()222(ln 2)e (ln 2)e ln 2x x f x x x x x x x >+⇔>+⇔>+令,则,函数在上单调递增,()e 1,0x g x x x =-->()e 10x g x '=->()g x (0,)+∞,,即,(0,)∀∈+∞x ()(0)0g x g >=e 1x x >+令,,当时,,当时,, ()ln 1,0h x x x x =-->1()1h x x'=-01x <<()0h x '<1x >()0h x '>即函数在上单调递减,在上单调递增,,,即()h x (0,1)(1,)+∞(0,)∀∈+∞x ()(1)0h x h ≥=,ln 1x x ≥+于是得,而,因此,,e 1ln 2x x x >+≥+20x >22e (ln 2)x x x x >+所以成立.()2(ln 2)f x x x >+【点睛】关键点睛:利用导数探讨含参函数的单调性,求出导数后分类讨论解不等式是解决问题的关键.。

高二上学期的数学期末考试题目及答案

高二上学期的数学期末考试题目及答案

高二上学期的数学期末考试题目及答案一、选择题(共10题,每题2分,共20分)1. 以下哪个是等差数列?- A. 2, 4, 6, 8- B. 3, 6, 9, 12- C. 1, 3, 9, 27- D. 2, 5, 8, 11答案:A2. 函数y = x^2 + 3x + 2的图像是一个什么形状?- A. 抛物线- B. 直线- C. 双曲线- D. 圆答案:A3. 若a + b = 7,且a^2 + b^2 = 37,则a和b的值分别为多少?- A. a = 4, b = 3- B. a = 3, b = 4- C. a = 5, b = 2- D. a = 2, b = 5答案:B4. 在一个等边三角形中,每个内角是多少度?- A. 60°- B. 90°- C. 120°- D. 180°答案:A5. 已知一个正方形的边长为2cm,那么它的周长是多少?- A. 4cm- B. 6cm- C. 8cm- D. 12cm答案:C6. 若sinθ = 0.5,那么θ的值是多少?- A. 30°- B. 45°- C. 60°- D. 90°答案:B7. 以下哪个是素数?- A. 12- B. 17- C. 20- D. 25答案:B8. 一辆汽车以每小时60公里的速度行驶,行驶了2小时30分钟,那么它行驶的距离是多少公里?- A. 75公里- B. 100公里- C. 125公里- D. 150公里答案:C9. 若a:b = 3:5,且b:c = 4:7,则a:c的比值是多少?- A. 12:20- B. 9:20- C. 3:7- D. 12:35答案:B10. 一个扇形的半径为5cm,弧长为10πcm,那么它的圆心角是多少度?- A. 36°- B. 54°- C. 72°- D. 90°答案:C二、填空题(共5题,每题4分,共20分)1. 当x = 2时,函数y = 2x^2 + 3x - 1的值为 \_\_\_。

2024年上海师范大学附属中学高二上学期期末考试数学试卷含详解

2024年上海师范大学附属中学高二上学期期末考试数学试卷含详解

上师大附中2023学年第一学期期末考试高二年级数学学科一、填空题(本大题共12题)1.已知二次函数22y x =的图象是一条抛物线,则其准线方程为___________.2.直线m 与平面α所成角为60︒,则m 与平面α内任意直线所成角的取值范围是______.3.已知长方体全部棱长的和为36,表面积为52,则其对角线的长为________.4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的侧面积为______.5.如图,Rt O A B '''△是一平面图的直观图,斜边2O B ''=,则这个平面图形的面积是__________6.已知双曲线22221(00)y x a b a b -=>>,,则该双曲线的渐近线方程为______.7.在直三棱柱111ABC A B C -中,11,2,1AB BC AC AA ====,则点1B 到平面1A BC 的距离为__________.8.已知正四棱柱1111ABCD A B C D -中,2AB =,13AA =,O 为上底面中心.设正四棱柱1111ABCD A B C D -与正四棱锥1111O A B C D -的侧面积分别为1S ,2S ,则21S S =__________.9.如图是一座抛物线型拱桥,拱桥是抛物线的一部分且以抛物线的轴为对称轴,当水面在l 时,拱顶离水面2米,水面宽4米.当水位下降,水面宽为6米时,拱顶到水面的距离为______米.10.空间中有三个点,,A B C ,且1AB BC CA ===,在空间中任取2个不同的点,使得它们与,,A B C 恰好成为一个正四棱锥的五个顶点,则不同的取法有______种.11.能使得命题“曲线2221(0)9x ya a -=≠上存在四个点,,,A B C D 满足四边形ABCD 是正方形”为真命题的一个实数a 是__________.12.三面角是立体几何的基本概念之一,而三面角余弦定理是解决三面角问题的重要依据.三面角-P ABC 是由公共端点P 且不共面的三条射线PA PB PC 、、以及相邻两条射线之间的平面部分组成的图形.设APC α∠=,BPC β∠=,APB γ∠=,平面APC 与平面BPC 所成的角为θ,由三面角余弦定理得cos cos cos cos sin sin γαβθαβ-⋅=⋅.在三棱锥-P ABC 中,6PA =,60APC ∠= ,45BPC ∠= ,90APB ∠= ,6PB PC +=,则三棱锥-P ABC体积的最大值为________.二、选择题(本大题共4题)13.用一个平面截如图所示圆柱体,截面的形状不可能是()A . B.C. D.14.设l 是直线,,αβ是两个不同的平面,则下列命题中正确的是()A.若l ∥α,l ∥β,则α∥βB.若l ∥α,l β⊥,则αβ⊥C.若,l αβα⊥⊥,则l β⊥D.若αβ⊥,l ∥α,则l β⊥15.如图所示,已知直线y kx =与曲线()y f x =相切于两点,函数()()0g x kx m m =+>,则对函数()()()F x g x f x =-描述正确的是()A.有极小值点,没有极大值点B.有极大值点,没有极小值点C.至少有两个极小值点和一个极大值点D.至少有一个极小值点和两个极大值点16.如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30∠PAB =︒,则点P 的轨迹是A.直线B.抛物线C.椭圆D.双曲线的一支三、解答题(本大题共5题)17.如图所示,正六棱锥的底面边长为4,H 是BC 的中点,O 为底面中心,60SHO ∠=︒.(1)求出正六棱锥的高,斜高,侧棱长;(2)求六棱锥的表面积和体积.18.(1)如图所示,一只装有半杯水的圆柱形水杯,将其倾斜使水杯与水平桌面成30°,此时水杯内成椭圆形,求椭圆的离心率;(2)如图,AB 为圆柱下底面圆O 的直径,C 是下底面圆周上一点,已知π,23AOC OA ∠==,圆柱的高为5,若点D 在圆柱表面上运动,且满足BC AD ⊥,求点D 的轨迹所围成的图形面积.19.(1)“老六”和他的老铁们要参加学校的“科目三”表演活动,他们要用一张边长为1m 的正方形蓝色纸片做一顶圆锥形装饰帽子,以正方形的一个顶点为圆心,边长为半径画弧,剪下一个最大的扇形,并用这个扇形围成了一个圆锥.如图所示,其中OP 是该圆锥的高,求该圆锥的体积;(2)“老六”将周长为4的矩形ABCD 绕AB 旋转一周得到一个圆柱,求当圆柱的体积最大时矩形ABCD 的面积.20.如图,已知正方体1111ABCD A B C D -的棱长为6,点P 在该正方体的表面上运动.(1)若2AP =,求点P 的轨迹长度;(2)已知P 到三个平面1111ABCD ADD A ABB A 、、中的两个平面的距离相等,且P 到剩下一个平面的距离与P 到此正方体的中心的距离相等,求满足条件的点P 个数;(3)若点M 是线段BC 的中点,P 是正方形11DCC D (包括边界)上运动,且满足APD MPC ∠=∠,求点P 的轨迹长度.21.已知抛物线2Γ:2(0)y px p =>的焦点为F ,过点F 倾斜角为θ的直线l 交抛物线与A B 、两点.点A 在x 轴上方,点B 在x 轴下方.(1)求证:1cos p BF θ=+;(2)若π4θ≥,试求FA 的取值范围;(3)如图,过焦点F 作互相垂直的弦AB CD 、,若ACF △与BDF V 的面积之和最小值为32,求抛物线的方程.上师大附中2023学年第一学期期末考试高二年级数学学科一、填空题(本大题共12题)1.已知二次函数22y x =的图象是一条抛物线,则其准线方程为___________.【答案】18y =-【分析】由22y x =得212x y =,根据准线方程定义即可求解.【详解】由22y x =得212x y =,所以准线方程为18y =-.故答案为:18y =-2.直线m 与平面α所成角为60︒,则m 与平面α内任意直线所成角的取值范围是______.【答案】6090θ︒≤≤︒【分析】直线与平面所成的角是直线与平面内任意一条直线所成角中最小的角,结合直线与平面所成角的范围为090θ︒≤≤︒即可得.【详解】直线与平面所成的角是直线与平面内任意一条直线所成角中最小的角,且直线与平面所成角的范围为090θ︒≤≤︒,则m 与平面α内任意直线所成角的取值范围是6090θ︒≤≤︒.故答案为:6090θ︒≤≤︒.3.已知长方体全部棱长的和为36,表面积为52,则其对角线的长为________.【答案】【分析】根据长方体的几何特征列方程组,用已知表示体对角线即可.【详解】设长,宽,高分别为,,x y z ,则()()252,436xy xz yz x y z ++=++=,===.故答案为:4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的侧面积为______.【答案】2π【分析】由轴截面得到圆锥的底面半径和母线,利用侧面积公式求出答案.【详解】由题意得,圆锥的底面半径为1r =,母线长为2l =,故圆锥的侧面积为ππ122πrl =⨯⨯=.故答案为:2π5.如图,Rt O A B '''△是一平面图的直观图,斜边2O B ''=,则这个平面图形的面积是__________【答案】【分析】根据等腰直角三角形的几何性质,结合由斜二测画法得到的直观图与原图的面积关系,可得答案.【详解】方法一:Rt O A B ''' △是一平面图形的直观图,斜边2O B ''=,∴,∴直角三角形的面积是112=,∴原平面图形的面积是1⨯=方法二:Rt O A B ''' △是一平面图形的直观图,斜边2O B ''=,∴,则O A ''=,根据斜二测画法,原图如下图:则OA =2OB =,则12ABO S AO BO =⋅⋅=V故答案为:6.已知双曲线22221(00)y x a b a b-=>>,,则该双曲线的渐近线方程为______.【答案】y x=±【分析】根据离心率公式和双曲线的,,a b c 的关系进行求解【详解】由题知:222⎧==⎪⇒=⎨⎪=+⎩c e a b a c a b,双曲线的渐近线方程为y x =±故答案为y x=±【点睛】本题考查双曲线渐近线的求法,解题时要熟练掌握双曲线的简单性质7.在直三棱柱111ABC A B C -中,11,2,1AB BC AC AA ====,则点1B 到平面1A BC 的距离为__________.【答案】217【分析】证明AB ⊥平面11ACC A ,再利用等体积法求解【详解】因为11,2,1AB BC AC AA ====,所以222,BC AB AC AB AC =+⊥,又三棱柱为直棱柱,所以1A A ⊥平面ABC ,又1A A ⊂平面11ACC A ,所以平面11ACC A ⊥平面A B C ,又平面11ACC A 平面,ABC AC =,AB AC AB ⊥⊂平面ABC ,所以AB ⊥平面11ACC A ,易得1A B ==12A C ==在△1A BC中由余弦定理:得1co s BA C ∠=,故1414sin BA C ∠=,于是111117sin 22A BC S A C AB BAC =⋅⋅∠= ,由棱柱性质得11//B C BC ,11B C ⊄平面1A BC ,BC ⊂平面1A BC ,所以11//B C 平面1A BC ,点1B 到平面1A BC 的距离即点1C 到平面1A BC 的距离,设为d因为1111C A BC B A C C V V --=,所以111171131323232A C CC d AB ⋅⨯=⨯⨯=⨯,解得217d =故答案为:2178.已知正四棱柱1111ABCD A B C D -中,2AB =,13AA =,O 为上底面中心.设正四棱柱1111ABCD A B C D -与正四棱锥1111O A B C D -的侧面积分别为1S ,2S ,则21S S =__________.【答案】106【分析】根据几何体的结构特征,由棱柱和棱锥的侧面积公式,分别求得正四棱柱1111ABCD A B C D -和正四棱锥1111O A B C D -的侧面积,即可求解.【详解】如图所示,正四棱柱1111ABCD A B C D -中,2AB =,13AA=,则正四棱柱1111ABCD A B C D -的侧面积分别为142324S =⨯⨯=,正四棱锥1111O A B C D -=所以正四棱锥1111O A B C D -的侧面积21422S =⨯⨯=,所以21246S S ==.故答案为:6.【点睛】本题主要考查棱柱和棱锥的几何结构特征,以及棱柱和棱锥的侧面积的计算,其中解答中熟记几何体的结构特征,利用侧面积公式准确计算是解答的关键,着重考查推理与运算能力.9.如图是一座抛物线型拱桥,拱桥是抛物线的一部分且以抛物线的轴为对称轴,当水面在l 时,拱顶离水面2米,水面宽4米.当水位下降,水面宽为6米时,拱顶到水面的距离为______米.【答案】4.5##92【分析】建立平面直角坐标系,设抛物线方程为2x my =,求出抛物线的方程,再代点的坐标即得解.【详解】如图,建立平面直角坐标系,设抛物线方程为2x my =,将()2,2A -代入2x my =,得2m =-,所以22x y =-.设()03,B y ,代入092y =-,得0 4.5y =-.所以拱桥到水面的距离为4.5m .故答案为:4.5.10.空间中有三个点,,A B C ,且1AB BC CA ===,在空间中任取2个不同的点,使得它们与,,A B C 恰好成为一个正四棱锥的五个顶点,则不同的取法有______种.【答案】9【分析】分类讨论.第一类为当ABC 为四棱锥的一个侧面时,其余两点在平面ABC 的同侧,;第二类当ABC 为四棱锥的一个对角面时,其余两点在平面ABC 的异侧.【详解】如图所示,有两种情况:①当ABC 为四棱锥的一个侧面时,其余两点在平面ABC 的同侧,若AB 为底面棱有两种(平面ABC 左右两侧各一组),同理BC AC 、为底面棱时有各两种,故共有6种;②当ABC 为四棱锥的一个对角面时,其余两点在平面ABC 的异侧,若AB 为底面对角线则有一组,同理BC AC 、为底面对角线各有一组,故共有3种;综上所述,共有9种.故答案为:911.能使得命题“曲线2221(0)9x y a a -=≠上存在四个点,,,A B C D 满足四边形ABCD 是正方形”为真命题的一个实数a 是__________.【答案】3a >或3a <-的任意实数,例如4【分析】由题意可设(,),(0,0)A m n m n >>,由对称性可得(,),(,),(,)B m n C m n D m n ----,可得m n =,代入曲线方程,由双曲线的范围,解不等式即可得到所求值.【详解】曲线()222109x y a a-=≠上存在四个点,,,A B C D 满足四边形ABCD 是正方形,可设(,),(0,0)A m n m n >>,由对称性可得(,),(,),(,)B m n C m n D m n ----,则AB AD =,即22m n =,即m n =,由曲线的方程可得2221(0)9x y a a-=≠,即2221(0)9m m a a-=≠有解,即有222999a m a =>-,可得290a ->,解得3a >或3a <-,故答案为:3a >或3a <-的任意实数,例如4.【点睛】本题考查双曲线方程和性质,主要是范围的运用,考查对称性和不等式的解法,属于中档题.12.三面角是立体几何的基本概念之一,而三面角余弦定理是解决三面角问题的重要依据.三面角-P ABC 是由公共端点P 且不共面的三条射线PA PB PC 、、以及相邻两条射线之间的平面部分组成的图形.设APC α∠=,BPC β∠=,APB γ∠=,平面APC 与平面BPC 所成的角为θ,由三面角余弦定理得cos cos cos cos sin sin γαβθαβ-⋅=⋅.在三棱锥-P ABC 中,6PA =,60APC ∠= ,45BPC ∠= ,90APB ∠= ,6PB PC +=,则三棱锥-P ABC 体积的最大值为________.【答案】92##4.5【分析】作出图形,APC α∠=,BPC β∠=,APB γ∠=,平面APC 与平面BPC 所成的角为θ,作BD PC ⊥,BM ⊥平面APC ,则该二面角的平面角为BDM ∠.要解决三棱锥-P ABC 体积的最大值,需要先把体积用函数式表示出来,即13P ABC B APC APC V V S BM --==⋅⋅ ,接下来就根据条件把APC S 和BM 用同一个变量表示出来即可求解.【详解】由题意APC α∠=,BPC β∠=,APB γ∠=,平面APC 与平面BPC 所成的角为θ,作BD PC ⊥,BM ⊥平面APC ,则该二面角的平面角为BDM ∠,由题意得:13P ABC B APC APC V V S BM --==⋅⋅ ,因为60APC ∠= ,45BPC ∠= ,所以120cos cos cos 322cos sin sin 322γαβθαβ-⋅-⋅==-⋅,()0,πθ∈,sin 3θ∴=,sin sin 333BM BD BD PB PB θβ=⋅==⋅⋅=⋅,133sin 22APC S PA PC PC α=⋅=⋅ ,()21111633222P ABC APC V S BM PB PC PB PB PB PB -∴=⋅⋅=⋅⋅=⋅-=-+ 当3PB =时,P ABC V -的最大值为92.故答案为:92.【点睛】关键点睛:关键是等体积转换法13P ABC B APC APC V V S BM --==⋅⋅ ,再结合条件等式将体积表示成同一个变量的函数即可求解.二、选择题(本大题共4题)13.用一个平面截如图所示圆柱体,截面的形状不可能是()A. B.C. D.【答案】D【分析】根据不同角度截得几何体的形状判断得出答案.【详解】解:对于选项A :当截面与轴截面垂直时,得到的截面形状是圆;对于选项B :当截面与轴截面平行时,得到的截面形状是长方形;对于选项C :当截面与轴截面斜交时,得到的截面形状是椭圆;对于选项D :截面的形状不可能是等腰梯形;故选:D14.设l 是直线,,αβ是两个不同的平面,则下列命题中正确的是()A.若l ∥α,l ∥β,则α∥βB.若l ∥α,l β⊥,则αβ⊥C.若,l αβα⊥⊥,则l β⊥ D.若αβ⊥,l ∥α,则l β⊥【答案】B【分析】对于A ,α与β相交或平行;对于B ,由面面垂直的判定定理得αβ⊥;对于C ,l 与β平行或l β⊂;对于D ,l 与β相交、平行或l β⊂.【详解】设l 是直线,α,β是两个不同的平面,对于A ,若//l α,//l β,则α与β相交或平行,故A 错误;对于B ,若//l α,则α内存在直线//l l ',因为l β⊥,所以l β'⊥,由面面垂直的判定定理得αβ⊥,故B 正确;对于C ,若αβ⊥,l α⊥,则l 与β平行或l β⊂,故C 错误;对于D ,若αβ⊥,//l α,则l 与β相交、平行或l β⊂,故D 错误.故选:B .15.如图所示,已知直线y kx =与曲线()y f x =相切于两点,函数()()0g x kx m m =+>,则对函数()()()F x g x f x =-描述正确的是()A.有极小值点,没有极大值点B.有极大值点,没有极小值点C.至少有两个极小值点和一个极大值点D.至少有一个极小值点和两个极大值点【答案】C 【分析】由题设()()F x k f x ''=-,令y kx =与()y f x =切点横坐标为12,x x 且12x x <,由图存在012(,)x x x ∈使()00F x '=,则()F x '有三个不同零点102x x x <<,结合图象判断()F x '的符号,进而确定()F x 单调性,即可确定答案.【详解】由题设,()()F x kx m f x =+-,则()()F x k f x ''=-,又直线y kx =与曲线()y f x =相切于两点且横坐标为12,x x 且12x x <,所以()0F x '=的两个零点为12,x x ,由图知:存在012(,)x x x ∈使()00F x '=,综上,()F x '有三个不同零点102x x x <<,由图:1(0,)x 上()0F x '<,10(,)x x 上()0F x '>,02(,)x x 上()0F x '<,2(,)x +∞上()0F x '>,所以()F x 在1(0,)x 上递减,10(,)x x 上递增,02(,)x x 上递减,2(,)x +∞上递增.故()F x 至少有两个极小值点和一个极大值点.故选:C.16.如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30∠PAB =︒,则点P 的轨迹是A.直线B.抛物线C.椭圆D.双曲线的一支【答案】C 【详解】用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P 满足30PAB ∠=︒,可理解为P 在以AB 为轴的圆锥的侧面上,再由斜线段AB 与平面α所成的角为60︒,可知P 的轨迹符合圆锥曲线中椭圆定义.故可知动点P 的轨迹是椭圆.故选C.考点:1.圆锥曲线的定义;2.线面位置关系.三、解答题(本大题共5题)17.如图所示,正六棱锥的底面边长为4,H 是BC 的中点,O 为底面中心,60SHO ∠=︒.(1)求出正六棱锥的高,斜高,侧棱长;(2)求六棱锥的表面积和体积.【答案】(1)高为6,斜高为43213(2)表面积为3,体积为483【分析】(1)依据图象,根据底边是正六边及边长可求出OH ,进而在Rt SOH △中,可求出SO ,即正六棱锥的高及斜高,继而在等腰SBC △中可求得侧棱长;(2)求出底面积,利用棱锥体积计算公式求解即可.【小问1详解】如图:在正六棱锥S ABCDEF -中,SB SC =,H 为BC 中点,所以SH BC ⊥.因为O 是正六边形ABCDEF 的中心,所以SO 为正六棱锥的高.32OH BC ==,在Rt SOH △中,60SHO ∠=︒,所以tan 606SO OH =⋅︒=.在Rt SOH △中,SH ==在Rt SHB 中,SH =,2BH =,所以SB ==.故该正六棱锥的高为6,斜高为【小问2详解】SBC △的面积为11422BC SH ⨯=⨯⨯=OBC △的面积为11422BC OH ⨯=⨯⨯=,所以正六棱锥的表面积为66⨯+⨯=体积为13⨯=ABCDEF S SO 1663⨯⨯=18.(1)如图所示,一只装有半杯水的圆柱形水杯,将其倾斜使水杯与水平桌面成30°,此时水杯内成椭圆形,求椭圆的离心率;(2)如图,AB 为圆柱下底面圆O 的直径,C 是下底面圆周上一点,已知π,23AOC OA ∠==,圆柱的高为5,若点D 在圆柱表面上运动,且满足BC AD ⊥,求点D 的轨迹所围成的图形面积.【答案】(1)12(2)10【分析】(1)根据题干条件作出辅助线,求出cos303DE AC AB a === ,即23b a =,进而求出离心率.(2)先推出BC ⊥平面ACD ,设过A 的母线与上底面的交点为E ,过C 的母线与上底面的交点为F ,连,,EF CF AC ,推出BC ⊥平面ACE ,从而可得点D 的轨迹是矩形AEFC ,计算这个矩形的面积即可得解.【详解】(1)如图:由题意得:30BAC ∠= ,2AB a =,2DE b =,且AC DE =,则在直角三角形ABC 中,cos303AC AB a == ,所以23b a =,于是此椭圆的离心率22112c b e a a ==-=.(2)因为AB 是圆柱下底面圆O 的直径,所以BC AC ⊥,又BC AD ⊥,AC AD A = ,,AC AD ⊂平面ACD ,所以BC ⊥平面ACD .设过A 的母线与上底面的交点为E ,过C 的母线与上底面的交点为F ,连,,EF CF AC ,如图:因为⊥AE 平面ABC ,BC ⊂平面ABC ,所以AE BC ⊥,因为AE AC A = ,,AE AC ⊂平面ACE ,所以BC ⊥平面ACE ,所以点D 在平面ACE 内,又点D 在圆柱的表面,于是点D 的轨迹是矩形AEFC .依题意得5AE =,2OA OC ==,π3AOC ∠=,所以2AC =,所以矩形AEFC 的面积为5210⨯=.故点D 的轨迹所围成图形的面积为10.19.(1)“老六”和他的老铁们要参加学校的“科目三”表演活动,他们要用一张边长为1m 的正方形蓝色纸片做一顶圆锥形装饰帽子,以正方形的一个顶点为圆心,边长为半径画弧,剪下一个最大的扇形,并用这个扇形围成了一个圆锥.如图所示,其中OP 是该圆锥的高,求该圆锥的体积;(2)“老六”将周长为4的矩形ABCD 绕AB 旋转一周得到一个圆柱,求当圆柱的体积最大时矩形ABCD 的面积.【答案】(1)15π192(2)89【分析】(1)由题意得母线长为正方形边长,圆锥底面圆周长为以正方形的一个顶点为圆心,边长为半径画弧,剪下一个最大的扇形的弧长,由此即可求出圆锥的底面半径以及高,进而得解.(2)由题意圆柱的高以及底面半径构成一个条件等式,将圆柱体积表示成关于半径的函数,求导得圆柱的体积最大时的半径,从而得解.【详解】(1)如图所示:由题意母线长为正方形边长,即1PE =,圆锥底面圆周长为以正方形的一个顶点为圆心,边长为半径画弧,剪下一个最大的扇形的弧长,不妨设圆锥底面半径为OE r =,所以π2π12r =⨯,解得14OE r ==,所以圆锥的高4PO h ===,所以圆锥的体积为2211111515πππ33344192V Sh r h ⎛⎫===⨯⨯= ⎪⎝⎭.(2)由题意不妨设AB h =,则4222h AD r h -===-,所以2h r =-,所以圆柱的体积可表示为()()()22ππ2,02V r r h rr r ==-<<,求导得()()()π43,02V r r r r '=-<<,所以当403r <<时,()0V r '>,()V r 单调递增,当423r <<时,()0V r '<,()V r 单调递减,所以当圆柱的体积最大时43r =,此时矩形ABCD 的面积为()4282339S rh r r ==-=⨯=.20.如图,已知正方体1111ABCD A B C D -的棱长为6,点P 在该正方体的表面上运动.(1)若AP =,求点P 的轨迹长度;(2)已知P 到三个平面1111ABCD ADD A ABB A 、、中的两个平面的距离相等,且P 到剩下一个平面的距离与P 到此正方体的中心的距离相等,求满足条件的点P 个数;(3)若点M 是线段BC 的中点,P 是正方形11DCC D (包括边界)上运动,且满足APD MPC ∠=∠,求点P 的轨迹长度.【答案】(1)9π(2)6个(3)43π【分析】(1)确定点P 以点A 为球心的,半径为(2)确定P 在平面11ADC B 上,根据1||P AB d PQ -=得到P 的轨迹为平面11ADC B 内的一条抛物线,建立坐标系确定抛物线方程,计算交点得到答案.(3)确定P 点轨迹为圆的一部分可求解【小问1详解】若62AP =,则点P 以点A 为球心半径为62的球面上运动,又P 在正方体表面运动,6,AD AD =⊥平面11CDD C ,则P 在以D 为圆心,半径为()226266-=的圆上(正方形11CDD C 内部),如图所示: 1632D C ππ=⨯=,同理可得 111632B C B D ππ==⨯=,故点P 的轨迹长度为339ππ⨯=【小问2详解】若P 到平面ABCD 、11ADD A 距离相等,根据对称性知P 在平面11ADC B 上,AD ⊥平面11AA B B ,AD ⊂平面11ADC B ,故平面11ADC B ⊥平面11AA B B ,故P 到平面11ABB A 的距离即P 到1AB 的距离,设正方体的中心为Q ,即1||P AB d PQ -=,故P 的轨迹为平面11ADC B 内的一条抛物线,正方体棱长为6,1AB 中点为M ,以MQ 所在的直线为x 轴,以线段MQ 的垂直平分线为y 轴,建立直角坐标系,抛物线方程为26y x =,当32y =±932x =<,故抛物线与棱11B C 和AD 相交,故共有236⨯=个点满足条件.【小问3详解】易知正方体中AD ⊥平面11DCC D ,MC ⊥平面11DCC D ,,DP PC ⊂平面11DCC D ,所以,AD DP MC CP ⊥⊥,又APD MPC ∠=∠,所以~Rt ADP Rt MCP 2PD AD PC MC ∴==即2PD PC =如图,在平面11DCC D 中,以D 为原点,1,DC DD 分别为x,y 轴建立平面直角坐标系:则()()()0,0,6,0,,D C P x y 由2PD PC =知()()()()222200260x y x y -+-=-+-化简整理得()22816,06x y x -+=≤≤所以点P 的轨迹为圆()22816,x y -+=在正方形11DCC D 内部的部分,即 EF ,其中24CM MF ==,,则3FMC π∠=,由弧长公式知4433ππ⨯=21.已知抛物线2Γ:2(0)y px p =>的焦点为F ,过点F 倾斜角为θ的直线l 交抛物线与A B 、两点.点A 在x 轴上方,点B 在x 轴下方.(1)求证:1cos p BF θ=+;(2)若π4θ≥,试求FA 的取值范围;(3)如图,过焦点F 作互相垂直的弦AB CD 、,若ACF △与BDF V 的面积之和最小值为32,求抛物线的方程.【答案】(1)证明见解析(2),222p p ⎛⎤+ ⎥⎝⎦(3)28y x=【分析】(1)根据题意画图象,由斜率可得MF ,从而利用BF KF MF =-即可得证;(2)同理(1)求FA ,结合π4θ≥和cos y θ=单调性可得FA 的取值范围;(3)先求直线CD 的倾斜角,再结合(1)(2)求出CF ,DF ,并求出ACF △与BDF V 面积之和的表达式,通过不断换元,并利用导数判断函数的单调性求出两个三角形面积之和的最小值,求出p 的值,从而得出抛物线的方程.【小问1详解】证明:抛物线2Γ:2(0)y px p =>的准线方程1:2p l x =-,分别作11,BB l BM x ⊥⊥轴,1l 与x 轴交于点K ,AFH θ∠=,如图:由抛物线的定义可知,1,BF BB KF p ==,在Rt BFM 中,BFM AFH θ∠=∠=,cos MF BF θ=,由图可知,1cos BF BB KM KF MF p BF θ===-=-,即()1cos BF p θ+=,进而得1cos p BF θ=+.所以1cos p BF θ=+.【小问2详解】同理(1),1cos AF AA KF FH p AF θ==+=+,可得1cos p AF θ=-.因为函数cos y θ=在()0,π上单调递减,而π,π4θ⎡⎫∈⎪⎢⎣⎭,于是1cos 2θ-<≤,进而221cos 22θ≤-<,则11221cos θ<≤+-.所以(221cos p p p θ<≤+-,即(22p FA p <≤+.故π4θ≥时,FA 的取值范围,22p p ⎛⎤+ ⎥⎝⎦.【小问3详解】由(1)(2)可知,1cos p AF θ=-,1cos p BF θ=+,因为AB CD ⊥,所以直线CD 的倾斜角为π2θ+,因此,π1sin 1cos 2p p CF θθ==+⎛⎫-+ ⎪⎝⎭,π1sin 1cos 2p p DF θθ==-⎛⎫++ ⎪⎝⎭.ACF ∴△的面积为:()()21221cos 1sin ACFp S AF CF θθ=⋅=-+ ()()2222sin 2cos 2sin cos 12cos 2sin cos 1p p sin θθθθθθθθ==+---+-+()2222(sin cos )2sin cos 1(1sin cos )p p θθθθθθ==-+-++-,即22(1sin cos )ACF p S θθ=+-△.同理可得BDF V 的面积为:22(1sin cos )BDFp S θθ=-+△.令πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,由题意可知0πθ<<,即πππ444θ-<-<,则()1,1t ∈-.则ACF △与BDF V 面积之和为:()2222222221(1)(1)(1)p t p p t t t ++=+--,再令[)211,2x t =+∈,则ACF △与BDF V 面积之和为:()222222221224(1)(2)4p t p x p t x x x+==--+-,令44y x x =+-,当[)1,2x ∈时2240x y x-'=>,所以函数44y x x =+-在[)1,2上单调递减,于是4041x x <+-≤,则1144x x ≥+-,所以222244p p x x≥+-.综上所述,当1x =时,ACF △与BDF V 面积之和取到最小值,即2232p =,由于0p >,得4p =,因此,抛物线的方程为28y x =.【点睛】方法点睛:本题考查直线与抛物线的综合问题,考查抛物线的定义,通过换元法得到面积最值的表达式,利用对勾函数的单调性求出最值的情况,从而得到方程,解出即可.。

2024北京东城区高二上学期期末数学试题及答案

2024北京东城区高二上学期期末数学试题及答案

东城区2023-2024学年度第一学期期末教学统一检测 高二数学参考答案及评分标准 2024.1一、选择题(共10小题,每小题3分,共30分)(1)A (2)C (3)B (4)C (5)A(6)D (7)B (8)B (9)A (10)C二、填空题(共5小题,每小题4分,共20分)(11)1−,20x y −+= (12)5(13)(1,2)−,1 (14)0.8 (15)① ② ③ 三、解答题(共5小题,共50分)(16)(本小题10分)解:(Ⅰ)因为111ABC A B C −是直三棱柱,所以1CC ⊥底面ABC .因为AC ⊂底面ABC ,BC ⊂底面ABC ,所以1CC AC ⊥,1CC BC ⊥.因为AC BC ⊥,如图建立空间直角坐标系C xyz −. 设2AC =,则(2,0,0)A ,(0,2,0)B ,(0,0,0)C , 1(2,0,2)A ,1(0,0,2)C .因为D ,E 分别为1CC ,1BA 的中点,所以(0,0,1)D ,(1,1,1)E .所以(1,1,0)DE =,1(0,0,2)CC =.因为1CC ⊥底面ABC ,所以1CC 是平面ABC 的一个法向量.因为11010020DE CC ⋅=⨯+⨯+⨯=,所以1DE CC ⊥.因为DE ⊄平面ABC ,所以//DE 平面ABC . ………………6分(Ⅱ)因为1(2,2,2)BA =−,(0,2,1)BD =−,设平面1A BD 的法向量为(,,)x y z =n ,所以10,0.BA BD ⎧⋅=⎪⎨⋅=⎪⎩n n 即2220,20.x y z y z −+=⎧⎨−+=⎩ 令1y =,则2z =,1x =−.于是(1,1,2)=−n . 设平面1A BD 与平面ABC 的夹角为θ,1x所以111||cos|cos,||||||CCCCCCθ⋅=<>===⋅nnn所以平面1A BD与平面ABC………………10分(17)(共10分)解:(Ⅰ)因为该地区观看了亚运会开幕式的学生的频率为0.50.20.10.8++=,所以该地区观看了亚运会开幕式的学生人数估计为100000.88000⨯=.………………………4分(Ⅱ)设事件A:从该地区所有学生中随机抽取1人,该学生观看了亚运会开幕式.由频率估计概率,得()0.8P A=.设事件B:从该地区所有学生中随机抽取2人,这2名学生都观看了亚运会开幕式. 由于这两名学生观看亚运会开幕式相互独立,则2()0.80.64P B==. …7分(Ⅲ)设事件C:从该地区所有观看了亚运会开幕式的学生中随机抽取1人,该学生使用电脑观看了开幕式,则0.21()10.24P C==−.设事件D:从该地区所有观看了亚运会开幕式的学生中随机抽取2人,至少1人用电脑观看了开幕式,则()P D=2171(1)416−−=. ……………10分(18)(共10分)解:(Ⅰ) 因为{}n b为等比数列,11b=,48b=,设{}n b的公比为q,则3418b b q==.解得2q=.所以22b=.因为222a b+=,所以2a=.因为{}n a为等差数列,11a=,所以31a=−. ………………………4分(Ⅱ)选择条件②:因为{}n a为等差数列,{}n b为等比数列,111a b==,222a b+=,333a b+=,设{}n a的公差为d,{}n b的公比为q,则112112,2 3.a d a q a d a q ++=⎧⎪⎨++=⎪⎩即21,2 2.d q d q +=⎧⎨+=⎩ 解得2q =或0q =(舍).所以1112n n n b b q −−==,1211n n n b b q T q−==−−. ……………………………10分(19)(共10分) 解:(Ⅰ)由题意得1b =,则椭圆C 的方程为222 1 x y a +=,代入1)2N −,可得a =故椭圆C 的方程为22 1 2x y +=. ………………4分 (Ⅱ)设直线l 的方程为2y kx =+,(,)Q Q Q x y . 由22,212x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)860k x kx +++=. 由0∆>,得232k >. 设11(,)A x y ,22(,)B x y ,则11(,)D x y −.122821k x x k +=−+,122621x x k =+. 直线BD 的方程为212221()y y y y x x x x +−=−−, 令0y =,得()()()()1221122112121212122222()22()4Q x kx x kx x y x y kx x x x x y y kx kx k x x ++++++===++++++. 所以2222121621218421Q k k k k x k k k −++==−−++. 因为12||||22OPQ Q S x k ∆=⨯⋅=−=, 所以2k =±.经检验满足0∆>. 所以直线l 的斜率为2. …………………10分(20)(共10分)解:(Ⅰ)①4:3,1,7,5A ,任意两项和的结果有4,6,8,10,12共5个,而45a =,所以具有性质P .②5:2,4,8,16,32A ,任意两项和的结果有6,10,12,18,20,24,34,36,40,48共10个,而532a =,所以不具有性质P . ……………………2分(Ⅱ)对于数列6:2,4,8,16,32,A m ,任意两项和不同的取值最多有15个,所以15m ≤.而5:2,4,8,16,32A 中任意两项和的结果有10个,且全是偶数.(1)当m 为奇数时,(15)i a m i +≤≤都是奇数,与前5项中任意两项和的值均不相同,则6:2,4,8,16,32,A m 中所有(16)i j a a i j +<≤≤的值共有15个,所以15m =.(2)当m 为偶数时,(15)i a m i +≤≤都是偶数,所以1015m ≤<.所以{10,12,14}m ∈.10m =时,103242+=在前5项中任两项和的结果中未出现, 所以6:2,4,8,16,32,A m 中任意两项和的不同值的个数大于10,即10m >,矛盾.12m =时,123244+=,121628+=,12214+=这三个结果在前5项中任意两项和的结果中未出现,所以6:2,4,8,16,32,A m 中任意两项和的不同值的个数大于12,即12m >,矛盾.14m =时,6:2,4,8,16,32,A m 中任意两项和的不同值有6,10,12,16,18,20,22,24,30,34,36,40,46,48共14个,成立. 综上, 14m =或15m =. ……………………6分 (Ⅲ)2024a 存在最小值,且最小值为4045.将2024A 的项从小到大排列构成新数列2024122024:,,,B b b b , 所以2024121312202202420243b b b b b b b b b b +<+<⋯<+<+<⋯<+. 所以(12024)i j b b i j +<≤≤的值至少有202320224045+=个.即(12024)i j a a i j +<≤≤的值至少有4045个,即20244045a ≥. 数列2024:1,3,5,,4043,4047,4045A 符合条件. 2024:1,3,5,,4043,4047,4045A 可重排成等差数列2024:1,3,5,,4045,4047B , 考虑(12024)i j b b i j +<≤≤,根据等差数列的性质,5当2024i j +≤时,11i j i j b b b b +−+=+;当2024i j +>时,i j i j n n b b b b +−+=+, 因此每个(12024)i j b b i j +<等于1(22024)k b b k +≤≤中的一个,或者等于 2024(12023)l b b l +≤≤中的一个.所以2024:1,3,5,,4045,4047B 中(12024)i j b b i j +<≤≤共有4045个不同值. 即2024:1,3,5,,4043,4047,4045A 中(12024)i j a a i j +<≤≤共有4045个不同值.综上,2024a 的最小值是4045, 一个满足条件的数列2024:1,3,5,,4043,4047,4045A .…………………………10分。

河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)

河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)

石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。

天津市部分区2023-2024学年高二上学期期末考试 数学(含答案)

天津市部分区2023-2024学年高二上学期期末考试 数学(含答案)

天津市部分区2023~2024学年度第一学期期末练习高二数学(答案在最后)第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.45.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1ACE 的距离为()A.3B.6C.4D.148.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.22D.329.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.11.直线10x -=的倾斜角为_______________.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.14.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,求直线l 的方程.18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.19.在数列{}n a 中,11a =,()*122nn n a a n +-=∈N .(1)求2a ,3a ;(2)记()*2n n n a b n =∈N .(i )证明数列{}n b 是等差数列,并求数列{}n a 的通项公式;(ii )对任意的正整数n ,设,,,.n n n a n c b n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.天津市部分区2023~2024学年度第一学期期末练习高二数学第Ⅰ卷(共36分)一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知空间向量()1,2,3a =-,()2,1,1b =-,则2a b -= ()A.()3,4,5--B.()5,0,5-C.()3,1,2- D.()1,3,4--【答案】A 【解析】【分析】直接由空间向量的坐标线性运算即可得解.【详解】由题意空间向量()1,2,3a =-,()2,1,1b =- ,则()()()()()21,2,322,1,11,2,34,2,23,4,5a b -=---=---=--.故选:A.2.已知直线1l :330x ay +-=与直线2l :()210a x y +++=平行,则实数a 的值为()A.1B.3- C.1或3- D.不存在【答案】A 【解析】【分析】求出直线1l 与2l 不相交时的a 值,再验证即可得解.【详解】当直线1l 与2l 不相交时,(2)30a a +-=,解得1a =或3a =-,当1a =时,直线1l :330x y +-=与直线2l :310x y ++=平行,因此1a =;当3a =-时,直线1l :3330x y --=与直线2l :10x y -++=重合,不符合题意,所以实数a 的值为1.故选:A3.抛物线24x y =的焦点坐标为()A.()1,0 B.()0,1 C.()1,0- D.()0,1-【答案】B 【解析】【分析】根据抛物线的方程与焦点之间的关系分析求解.【详解】由题意可知:此抛物线的焦点落在y 轴正半轴上,且24p =,可知12p=,所以焦点坐标是()0,1.故选:B.4.在等比数列{}n a 中,135a a +=,2410a a +=,则{}n a 的公比为()A.1B.2C.3D.4【答案】B 【解析】【分析】直接由等比数列基本量的计算即可得解.【详解】由题意()()21242131110251a q q a a q a a a q ++====++(1,0a q ≠分别为等比数列{}n a 的首项,公比).故选:B.5.若双曲线()222210,0x y a b a b -=>>经过椭圆221259x y +=的焦点,且双曲线的一条渐近线方程为20x y +=,则该双曲线的方程为()A.221259x y -= B.221416x y -=C.2211664x y -= D.221164x y -=【答案】D 【解析】【分析】先求椭圆的焦点坐标,再代入双曲线方程可得2a ,利用渐近线方程可得2b ,进而可得答案.【详解】椭圆221259x y +=的焦点坐标为()4,0±,而双曲线()222210,0x y a b a b -=>>过()4,0±,所以()2222401a b ±-=,得216a =,由双曲线的一条渐近线方程为20x y +=可得2214y x =,则2214b a =,于是21164b =,即24b =.所以双曲线的标准标准为221164x y -=.故选:D.6.过(1,0)点且与圆224470x y x y +--+=相切的直线方程为()A.220x y --=B.3430x y --=C.220x y --=或1x = D.3430x y --=或1x =【答案】D 【解析】【分析】由题意分直线斜率是否存在再结合直线与圆相切的条件进行分类讨论即可求解.【详解】圆224470x y x y +--+=,即圆()()22221x y -+-=的圆心坐标,半径分别为()2,2,1,显然过(1,0)点且斜率不存在的直线为1x =,与圆()()22221x y -+-=相切,满足题意;设然过(1,0)点且斜率存在的直线为()1y k x =-,与圆()()22221x y -+-=相切,所以1d r ===,所以解得34k =,所以满足题意的直线方程为3430x y --=或1x =.故选:D.7.在棱长为1的正方体1111ABCD A B C D -中,E 为AB 的中点,则点1B 到平面1A CE 的距离为()A.63B.66C.24D.14【答案】A 【解析】【分析】建立空间直角坐标系,利用空间向量法求点到平面的距离公式即可求出结果.【详解】分别以1,,DA DC DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,()11,0,1A ,11,,02E ⎛⎫⎪⎝⎭,()0,1,0C ,()11,1,1B ,110,,12A E ⎛⎫=- ⎪⎝⎭ ,()11,1,1AC =-- ,()110,1,0A B = 设平面1A CE 的法向量为(),,n x y z =,1100A E n A C n ⎧⋅=⎪⎨⋅=⎪⎩,即1020y z x y z ⎧-=⎪⎨⎪-+-=⎩,取1,2,1x y z ===,()1,2,1n = 所以点1B 到平面1ACE的距离为113A B n d n⋅===uuu u r rr .故选:A.8.已知1F ,2F 是椭圆C :()222210x y a b a b+=>>的左、右焦点,以12F F 为直径的圆与椭圆C 有公共点,则C 的离心率的最小值为()A.13B.12C.2D.2【答案】C 【解析】【分析】由圆222x y c +=与椭圆有交点得c b ≥,即2222c b a c ≥=-,可得212e ≥,即可求解.【详解】由题意知,以12F F 为直径的圆的方程为222x y c +=,要使得圆222x y c +=与椭圆有交点,需c b ≥,即2222c b a c ≥=-,得222c a ≥,即212e ≥,由01e <<,解得12e ≤<,所以椭圆的离心率的最小值为2.故选:C9.设数列{}n a 满足()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为()A.2011B.116C.5122 D.236【答案】C 【解析】【分析】由题意首项得()*121n n n a +=∈+N ,进而有()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,由裂项相消法求和即可.【详解】由题意()*1232321n a a a na n n +++⋅⋅⋅=+∈N ,则()()()*1231232111n n n a a a na n n a ++++⋅⋅⋅++++=∈N ,两式相减得()()*112n n n a ++=∈N ,所以()*121n n n a+=∈+N ,又1221131a =⨯+=≠,所以()*3,12,2n n a n n n =⎧⎪=∈⎨≥⎪⎩N ,()()*3,1221112,211n n a n n n n n n n ⎧=⎪⎪=∈⎨⎛⎫+⎪=-≥ ⎪++⎪⎝⎭⎩N ,所以数列1n a n ⎧⎫⎨⎬+⎩⎭的前10项和为31111113115122223341011221122⎛⎫⎛⎫+⨯-+-++-=+⨯-= ⎪ ⎪⎝⎭⎝⎭.故选:C.第Ⅱ卷(共84分)二、填空题:本大题共6小题,每小题4分,共24分.10.已知空间向量()2,1,3a =- ,()4,2,1b = ,则a b ⋅=__________.【答案】9【解析】【分析】根据空间向量数量积的坐标表示即可求解.【详解】由题意知,(2,1,3)(4,2,1)24(1)2319a b ⋅=-⋅=⨯+-⨯+⨯=.故答案为:911.直线10x -=的倾斜角为_______________.【答案】150 【解析】【分析】由直线10x +-=的斜率为3k =-,得到00tan [0,180)3αα=-∈,即可求解.【详解】由题意,可知直线10x +-=的斜率为3k =-,设直线的倾斜角为α,则00tan [0,180)3αα=-∈,解得0150α=,即换线的倾斜角为0150.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.12.设n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,则101112a a a ++=_________.【答案】39【解析】【分析】由题意36396129,,,S S S S S S S ---成等差数列,结合315S =-,612S =-即可求解.【详解】由题意n S 为等差数列{}n a 的前n 项和,且315S =-,612S =-,所以()()36312151518S S S -=++=--,而36396129,,,S S S S S S S ---成等差数列,所以3101112129318155439a S a S a S =++=⨯+-+=-=.故答案为:39.13.已知空间三点()0,2,3A ,()2,1,5B -,()0,1,5C -,则点A 到直线BC 的距离为__________.【答案】2【解析】【分析】利用空间向量坐标法即可求出点到直线的距离.【详解】因为()0,2,3A ,()2,1,5B -,()0,1,5C -,所以()2,2,0BC =-,()2,1,2AB =-- 与BC同向的单位方向向量BC n BC ⎫==-⎪⎭uu u rr uu u r,2AB n ⋅=-uu u r r 则点A 到直线BC 的距离为2=.故答案为:214.圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长为___________.【答案】【解析】【分析】由两圆的方程先求出公共弦所在的直线方程,再利用点到直线的距离公式,弦长公式,求得公共弦长即可.【详解】 两圆方程分别为:2210100x y x y +--=①,2262400x y x y +-+-=②,由②-①可得:412400x y +-=,即3100x y +-=,∴两圆的公共弦所在的直线方程为:3100x y +-=,2210100x y x y +--=的圆心坐标为()5,5,半径为,∴圆心到公共弦的距离为:d ==,∴公共弦长为:=.综上所述,公共弦长为:故答案为:.15.已知抛物线E :()220y px p =>的焦点为F ,过点F 的直线l 与抛物线E 交于A ,B 两点,若直线l 与圆220x y px +-=交于C ,D 两点,且38AB CD =,则直线l 的一个斜率为___________.,答案不唯一)【解析】【分析】设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立直线方程和抛物线方程,再由焦点弦公式得12222p AB x x p p k=++=+,由圆220x y px +-=的方程可知,直线l 过其圆心,2CD r =,由38AB CD =列出方程求解即可.【详解】由题意知,l 的斜率存在,且不为0,设l 的方程为2p y k x ⎛⎫=- ⎪⎝⎭,()()1122,,,A x y B x y ,联立222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得()22222204k p k x k p p x -++=,易知0∆>,则2122222k p p p x x p k k ++==+,所以12222p AB x x p p k =++=+,圆220x y px +-=的圆心,02p ⎛⎫ ⎪⎝⎭,半径2p r =,且直线l 过圆心,02p ⎛⎫ ⎪⎝⎭,所以2CD r p ==,由38AB CD =得,22328p p p k ⎛⎫+= ⎪⎝⎭,k =..三、解答题:本大题共5小题,共60分.解答应写出文字说明、证明过程或演算步骤.16.记n S 为等差数列{}n a 的前n 项和,已知15a =-,42S =-.(1)求{}n a 的通项公式;(2)若{}n b 是等比数列,且24b a =,335b a a =+,求{}n b 的前n 项和n T .【答案】(1)38n a n =-(2)122n n T +=-【解析】【分析】(1)由已知条件求出数列首项与公差,可求{}n a 的通项公式;(2)由23,b b 可得{}n b 的首项与公比,可求前n 项和n T .【小问1详解】设等差数列{}n a 公差为d ,15a =-,4143422S a d ⨯=+=-,解得3d =,所以()1138n a a n d n =+-=-;【小问2详解】设等比数列{}n b 公比为q ,244==b a ,335178b a a +=+==,得2123148b b q b b q ==⎧⎨==⎩,解得122b q =⎧⎨=⎩,所以()()11121222112nnn n b q T q +--===---.17.已知圆C 经过()4,0A ,()0,2B 两点和坐标原点O .(1)求圆C 的方程;(2)垂直于直线0x y +=的直线l 与圆C 相交于M ,N两点,且MN =,求直线l 的方程.【答案】(1)()()22215x y -+-=(2)30x y --=或10x y -+=【解析】【分析】(1)由题意可知OA OB ⊥,由此得圆的半径,圆心,进而得解.(2)由直线垂直待定所求方程,再结合点到直线距离公式、弦长公式即可得解.【小问1详解】由题意可知OA OB ⊥,所以圆C 是以()4,0A ,()0,2B 中点()2,1C 为圆心,12r AB ===为半径的圆,所以圆C 的方程为()()22215x y -+-=.【小问2详解】因为垂直于直线0x y +=的直线l 与圆C 相交于M ,N 两点,且MN =,所以不妨设满足题意的方程为0x y m -+=,所以圆心()2,1C 到该直线的距离为d =所以MN ==,解得123,1m m =-=,所以直线l 的方程为30x y --=或10x y -+=18.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥平面ABC ,ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.(1)求直线DE 与BC 所成角的余弦值;(2)求证:1B F ⊥平面AEF ;(3)求平面1AB E 与平面AEF 夹角的余弦值.【答案】(1)10(2)证明见解析(3)6【解析】【分析】(1)建立适当的空间直角坐标系,求出()()1,2,0,2,2,0DE BC =-=- ,结合向量夹角余弦公式即可得解.(2)要证明1B F ⊥平面AEF ,只需证明11,B F AE B F AF ⊥⊥,即只需证明110,0B F AF B F AE ⋅=⋅= .(3)由(2)得平面AEF 的一个法向量为()11,1,2B F =-- ,故只需求出平面1AB E 的法向量,再结合向量夹角余弦公式即可得解.【小问1详解】由题意侧棱1AA ⊥平面ABC ,又因为,AB AC ⊂平面ABC ,所以11,AA AB AA AC ⊥⊥,因为90BAC ∠=︒,所以BA BC ⊥,所以1,,AB AC AA 两两互相垂直,所以以点A 为原点,1,,AB AC AA 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系:因为ABC 为等腰直角三角形,90BAC ∠=︒,且12AB AA ==,D ,E ,F 分别是1B A ,1CC ,BC 的中点.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2A B C A B C ,()()()1,1,0,0,2,1,1,0,1F E D ,所以()()1,2,0,2,2,0DE BC =-=- ,设直线DE与BC所成角为θ,所以cos cos,10DE BCDE BCDE BCθ⋅===⋅.【小问2详解】由(1)()()()11,1,2,1,1,0,0,2,1B F AF AE=--==,所以111100,0220B F AF B F AE⋅=-+-=⋅=-+-=,所以11,B F AE B F AF⊥⊥,又因为,,AE AF A AE AF=⊂平面AEF,所以1B F⊥平面AEF.【小问3详解】由(2)可知1B F⊥平面AEF,即可取平面AEF的一个法向量为()11,1,2B F=--,由(1)可知()()12,0,2,0,2,1AB AE==,不妨设平面1AB E的法向量为(),,n x y z=,则22020x zy z+=⎧⎨+=⎩,不妨令2z=-,解得2,1x y==,即可取平面1AB E的法向量为()2,1,2n=-,设平面1AB E与平面AEF夹角为α,则111cos cos,6B F nB F nB F nα⋅===⋅.19.在数列{}n a中,11a=,()*122nn na a n+-=∈N.(1)求2a,3a;(2)记()*2nnnab n=∈N.(i)证明数列{}n b是等差数列,并求数列{}n a的通项公式;(ii)对任意的正整数n,设,,,.nnna ncb n⎧=⎨⎩为奇数为偶数,求数列{}n c的前2n项和2n T.【答案】19.24a=,312a=20.(i )证明见解析;()1*2n n a n n -=⋅∈N .(ii )()()*216554929n n n n n T n +-⎛⎫=++∈⎪⎝⎭N .【解析】【分析】(1)由递推公式即可得到2a ,3a ;(2)对于(i ),利用已知条件和等差数列的概念即可证明;对于(ii ),先写出n c ,再利用错位相减法求得奇数项的前2n 项和,利用等差数列的前n 项和公式求得偶数项的前2n 项和,进而相加可得2n T .【小问1详解】由11a =,()*122n n n a a n +-=∈N ,得()*122n n n a a n +=+∈N ,所以121224a a =+=,2322212a a =+=,即24a =,312a =.【小问2详解】(i )证明:由122n n n a a +-=和()*2n n n a b n =∈N 得,()*11111122122222n n n n n n n n n n n a a a a b b n ++++++--=-===∈N ,所以{}n b 是111122a b ==,公差为12的等差数列;因为()1111222n b n n =+-⨯=,所以()*1,22n n n a b n n ==∈N ,即()1*2n n a n n -=⋅∈N .(ii )由(i )得12,1,2n n n n c n n -⎧⋅⎪=⎨⎪⎩为奇数为偶数,当n 为奇数,即()*21n k k =-∈N 时,()()()221*21212214N k k k c k k k ---=-⋅=-⋅∈,设前2n 项中奇数项和为n A ,前2n 项中偶数项和为nB 所以()()0121*143454214n n A n n -=⨯+⨯+⨯++-⋅∈N ①,()()123*4143454214n n A n n =⨯+⨯+⨯++-⋅∈N ②,由①-②得:()()()()()012131431453421234214n n n A n n k -⎡⎤-=⨯+-⨯+-⨯++---⋅--⋅⎣⎦,()()121121444214n n n -=-+⨯++++--⋅ ,()()1142214114nn n ⨯-=⨯--⋅--()242214133n n n ⨯=---⋅-()2521433n n ⎡⎤=---⎢⎥⎣⎦()*552433n n n ⎛⎫=--∈ ⎪⎝⎭N ,即()*5532433n n A n n ⎛⎫-=--∈ ⎪⎝⎭N ,则()*655499n n n A n -⎛⎫=+∈ ⎪⎝⎭N ;当n 为偶数,即()*2n k k =∈N 时,()*212N 2k c k k k =⨯=∈,所以()()*11232n n n B n n +=++++=∈N .综上所述,()()*216554929n n n n n n n T A B n +-⎛⎫=+=++∈ ⎪⎝⎭N .20.已知椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M .(1)求C 的方程:(2)过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),且OMN 的面积为3(O 为坐标原点),求直线l 的方程.【答案】(1)221205x y +=(2)220x y --=【解析】【分析】(1)由离心率和椭圆上的点,椭圆的方程;(2)设直线方程,代入椭圆方程,利用弦长公式和面积公式求出直线斜率,可得直线方程.【小问1详解】椭圆C :()222210x y a b a b +=>>,离心率为2,且经过点()4,1M ,则有22222161132a b a b c c e a ⎧+=⎪⎪⎪=+⎨⎪⎪==⎪⎩,解得2220,5a b ==,所以椭圆C 的方程为221205x y +=.【小问2详解】过点M 且斜率大于零的直线l 与椭圆交于另一个点N (点N 在x 轴下方),设直线l 的方程为()41y k x =-+,椭圆左顶点为()A -,MA k =,点N 在x 轴下方,直线l的斜率k >,由()22411205y k x x y ⎧=-+⎪⎨+=⎪⎩,消去y 得()()222214846432160k x k k x k k ++-+--=,设(),N m n ,则有()2284414k k m k -+=+,得22168414k k m k --=+,)288414k MN k +==-=+,原点O 到直线l 的距离d =则有)2388121124OMN S MN d k k =⋅⋅++=⋅= ,当41k >时,方程化简为241270k k +-=,解得12k =;当041k <<时,方程化简为2281210k k +-=,解得114k =,不满足k >所以直线l 的方程为()1412y x =-+,即220x y --=.【点睛】方法点睛:解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.要强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学上学期期末考试题
一、
选择题:(每题5分,共60分)
2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )
(A )18, (B )6, (C )23, (D )243 3、与不等式
x
x --23
≥0同解的不等式是 ( ) (A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)3
2--x x
≥0, (D)(x-3)(2-x)>0
6、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( )
(A )L 1到L 2的角为π43, (B )L 1到L 2的角为4π
(C )L 2到L 1的角为43π, (D )L 1到L 2的夹角为π4
3
7、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( )
(A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=0
8、直线y=x+23被曲线y=21
x 2
截得线段的中点到原点的距离是 ( )
(A )29 (B )29 (C )
429 (D )2
29
11、双曲线: 的准线方程是19
162
2=-x y ( ) (A)y=±
7
16 (B)x=±
516 (C)X=±7
16 (D)Y=±516
12、抛物线:y=4ax 2
的焦点坐标为 ( ) (A )(
a 41,0) (B )(0, a 161) (C)(0, -a 161) (D) (a
161
,0)
二、填空题:(每题4分,共16分) 13、若不等式ax 2
+bx+2>0的解集是(–
21,3
1
),则a-b= . 14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 .
15、已知圆的方程⎩⎨
⎧-=+=θ
θ
sin 43cos 45y x 为(θ为参数),则其标准方程为 .
16、已知双曲线162x -9
2
y =1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双曲线的离
心率互为倒数,则椭圆的方程为 .
三、 解答题:(74分)
17、如果a ,b +∈R ,且a ≠b ,求证: 4
2
2
4
6
6
b a b a b a +>+(12分)
19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1
,求线段PP 1
中点M 的轨迹方程。

(12分)
21、某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1
㎡的造价为150元,池壁每1㎡的造价为120元,问怎样设计水池能使总造价最低,最低造价是多少元?(13分)
22、某家具厂有方木料90m3,五合板600㎡,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料0.1m3,五合板2㎡,生产每个书橱需方木料0.2m3,五合板1㎡,
出售一张书桌可获利润80元,出售一个书橱可获利润120元,问怎样安排同时生产书桌和书橱可使所获利润最大?(13分)
一、选择题: 2、(B ), 3、(B ),6、(A ), 7、(B ), 8、(D ), 11、(D ), 12、(B )。

二、填空题:
13、-10, 14、 8, 15、(x-5)2
+(y-3)2
=42
, 16、13
522
22=+y x
三、解答题:
17、证明:(a )4
2
2
4
6
6
()b a b a b +-+
)()())(()()()
()222224
4
2
2
224224426246>+-=--=---=-+-=b a b a b a b a b a b b a a b a b b a a
于是4
22466422466,0)()b a b a b a b a b a b a +>+>+-+即 19、解:设点M 的坐标为(x, y) , 点P 的坐标为(x ),00y ,则 x=x 44),(,2
,2
020220000=+=+=
y x y x y x P y y 上所以在圆因为 (1) 将 x 44)1(2,2
200=+==y x y y x 得代入方程
即14
22
=+y x ,所以点M 的轨迹是一个椭圆。

21、解:设水池底面一边的长度为x 米,则另一边的长度为米x
34800
, 又设水池总造价为L 元,根据题意,得
297600,40,1600
2976004027202400001600
.2720240000)
1600
(720240000)34800
3232(12034800150有最小值时即当L x x
x x
x x x x
x L ==
=⨯⨯+=⨯+≥++=⨯⨯+⨯+⨯=
答:当水池的底面是边长为40米的正方形时,水池的总造价最低, 最低总造价是297600元。

22、解:设生产书桌x 张,书橱y 张,由题意得
,0
6002902.01.0⎪⎪⎩⎪
⎪⎨
⎧≥≥≤+≤+y o x y x y x 求Z=80x+120y 的最大值最优解为两直线 ⎩

⎧=+=+600290
2.01.0y x y x 的交点A (100,400)。

答:生产书桌100张,书橱400张时,可使生产利润最大。

相关文档
最新文档