最新人教A版必修二 多面体的结构特征 学案
多面体结构结构特征教案

多面体结构结构特征教案教案标题:多面体结构特征教案教案目标:1. 理解多面体的定义和基本特征。
2. 辨认和描述不同种类的多面体。
3. 掌握计算多面体的面数、边数和顶点数的方法。
4. 发展学生的空间思维和几何推理能力。
教案步骤:引入活动:1. 利用实物或图片展示不同种类的多面体,引起学生对多面体的兴趣。
2. 引导学生观察多面体的特征,例如面的形状、边的长度和顶点的数量。
探究活动:3. 将学生分成小组,每组分配一个多面体的模型或图片。
4. 要求学生仔细观察多面体的结构特征,并记录下来。
5. 引导学生讨论多面体的面数、边数和顶点数之间的关系。
6. 引导学生发现和总结计算多面体面数、边数和顶点数的方法。
知识总结:7. 教师对学生的观察和讨论进行总结,强调多面体的定义和基本特征。
8. 教师提供示范和解释计算多面体面数、边数和顶点数的方法。
巩固练习:9. 学生个别或小组完成练习题,计算给定多面体的面数、边数和顶点数。
10. 学生互相交流和讨论答案,并进行纠错。
拓展应用:11. 学生在小组中设计一个新的多面体,并计算其面数、边数和顶点数。
12. 学生展示他们设计的多面体,并解释其结构特征。
评价反馈:13. 教师对学生的练习和表现进行评价,并提供反馈和指导。
14. 学生对教学过程和自己的学习进行反思。
教学资源:1. 实物多面体模型或图片。
2. 多面体的定义和基本特征的PPT或教材资料。
3. 练习题和答案。
教学扩展:1. 引导学生研究不同种类的多面体的特征和性质,例如正多面体、凸多面体和凹多面体。
2. 引导学生探究多面体的投影和展开图。
3. 引导学生应用多面体的结构特征解决实际问题,例如建筑设计和工程规划。
教学提示:1. 鼓励学生积极参与观察、讨论和计算,培养他们的合作和沟通能力。
2. 鼓励学生提出问题和思考,促进他们的探究和发现能力。
3. 根据学生的实际水平和兴趣,适当调整教学内容和难度。
高中数学人教A版必修2讲学案第一章 1.1 空间几何体的结构

③错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的三棱锥中有====.满足底面△为等边三角形.三个侧面△,△,△都是等腰三角形,但长度不一定,三个侧面不一定全等.
[答案]()()
判断棱锥、棱台形状的个方法
()举反例法:
.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
()棱柱的侧面都是平行四边形()
()有一个面是多边形,其余各面都是三角形的几何体叫棱锥()
()用一个平面去截棱锥,底面和截面之间的部分叫棱台()
答案:()√()×()×
.有两个面平行的多面体不可能是()
.棱柱.棱锥
.棱台.以上都错
解析:选 棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.
如图可记作:棱锥
底面(底):多边形面
侧面:有公共顶点的各个三角形面
侧棱:相邻侧面的公共边
顶点:各侧面的公共顶点
棱台
用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台
如图可记作:棱台
¡ä¡ä¡ä¡ä
上底面:原棱锥的截面
下底面:原棱锥的底面
侧面:其余各面
侧棱:相邻侧面的公共边
顶点:侧面与上(下)底面的公共顶点
②每一个面都不会是三角形;
③两底面平行,并且各侧棱也平行;
④棱柱的侧棱总与底面垂直.
其中正确说法的序号是.
解析:①错误,棱柱的底面不一定是平行四边形;
②错误,棱柱的底面可以是三角形;
③正确,由棱柱的定义易知;
④错误,棱柱的侧棱可能与底面垂直,也可能不与底面垂直.所以说法正确的序号是③.
答案:③
高一数学人教版A版必修二课件:1.1.1 多面体的结构特征

规律与方法
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义 判断几何体的形状. 2.各种棱柱之间的关系 (1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱
平行且全等的
斜棱柱
平行四边形 平行且相等
思考 观察下面两组物体,你能说出各组物体的共同点吗?
答案 几何体的表面由若干个平面多边形围成.
答案
答案 几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.
答案
1.空间几何体的定义及分类 (1)定义:如果只考虑物体的 形状 和 大小 ,而不考虑其他因素,那么 由这些物体抽象出来的空间图形 叫做空间几何体. (2)分类:常见的空间几何体有 多面体 与 旋转体 两类. 2.多面体与旋转体
高效学习模型-内外脑模型
2
内脑-思考内化
思 维 导 图 &超 级 记 忆 法 &费 曼 学 习 法
1
外脑-体系优化
知 识 体 系 &笔 记 体 系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆规律
记忆前
选择记忆的黄金时段 前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
这些面所围成的几何体是棱锥 B.棱柱的底面一定是平行四边形 C.棱锥的底面一定是三角形 D.棱柱的侧棱都相等,侧面都是全等的平行四边形
答案
3.下列说法错误的是( D ) A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 解析 由于三棱柱的侧面为平行四边形,故选项D错.
立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。
掌握空间几何体的结构特征,如表面积、体积等。
1.2 教学内容柱体、锥体、球体的定义及性质。
空间几何体的结构特征的计算方法。
1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。
3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。
1.4 课堂练习完成课本练习题,巩固所学知识。
1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。
第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。
掌握点、线、面的位置关系的判定方法。
2.2 教学内容点、线、面的位置关系的定义及判定方法。
2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。
2.4 课堂练习完成课本练习题,巩固所学知识。
2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。
第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。
掌握空间角的计算方法。
3.2 教学内容空间角的定义及性质。
空间角的计算方法。
3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。
3.4 课堂练习完成课本练习题,巩固所学知识。
3.5 课后作业完成课后作业,加深对空间角的计算的理解。
第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。
掌握空间向量的应用方法。
空间向量的定义及性质。
空间向量的应用方法。
4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。
4.4 课堂练习完成课本练习题,巩固所学知识。
4.5 课后作业完成课后作业,加深对空间向量的应用的理解。
第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。
5.2 教学内容立体几何中的综合问题的解题策略。
5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。
新课标人教A版必修2教案(全)

(一)、新课导入:
1.讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?
2.引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。”对于我们所学几何体,常用三视图和直观图来画在纸上.
三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.用途:工程建设、机械制造、日常生活.
⑤讨论:根据以上的三视图,如何逆向得到几何体的形状.
(试变化以上的三视图,说出相应几何体的摆放)
3.教学简单组合体的三视图:
①画出教材P16图(2)、(3)、(4)的三视图.
②从教材P16思考中三视图,说出几何体.
4.练习:
①画出正四棱锥的三视图.
4 画出右图所示几何体的三视图.
③右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.
擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。
③出示例1用斜二测画法画水平放置的正六边形.
(师生共练,注意取点、变与不变→小结:画法步骤)
④练习:用斜二测画法画水平放置的正五边形.
⑤讨论:水平放置的圆如何画?(正等测画法;椭圆模板)
2.教学空间图形的斜二测画法:
①讨论:如何用斜二测画法画空间图形?
③试画出:棱柱、棱锥、棱台、圆台的三视图.(
④讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)
正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
高中数学第一章1-1第1课时多面体的结构特征课件新人教A版必修

研一研·问题探究、课堂更高效
例1 试判断下列说法是否正确:
(1)棱柱中互相平行的两个面叫做棱柱的底面; (2)棱柱的侧棱都相等,侧面是平行四边形.
解 (1)错误.如正六棱柱中相对侧面互相平行.
(2)正确.由棱柱的定义可知,棱柱的侧棱互相平行且相等,且 各侧面都是平行四边形. 小结 概念辨析题常用方法: (1)利用常见几何体举反例; (2)从底面
答
棱柱、棱锥分别具有一些什么几何性质?
棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平
行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多 边形. 棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其 相似比等于顶点到截面距离与高的比的平方.
研一研·问题探究、课堂更高效
探究点四 问题 1 棱台的结构特征 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间
多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位 置关系等角度紧扣定义进行判断.
研一研·问题探究、课堂更高效
跟踪训练 1 根据下列关于空间几何体的描述,说出几何体名称: (1)由 6 个平行四边形围成的几何体. (2)由 7 个面围成,其中一个面是六边形,其余 6 个面是有一个公共 顶点的三角形. 解 (1)这是一个上、下底面是平行四边形,四个侧面也是平行四边 形的四棱柱.
面叫做棱台的侧面,相邻侧面的公共边叫做棱台的侧棱,侧面与底 面的公共顶点叫做棱台的顶点.
研一研·问题探究、课堂更高效
问题 3
答
根据三棱锥、四棱锥、五棱锥……的定义,如何定义三棱
台、四棱台、五棱台……?如何用字母表示棱台?
由三棱锥、四棱锥、五棱锥……截得的棱台分别叫做三棱台、 四棱台、五棱台……;与棱柱的表示一样棱台也用上、下底面的各 顶点的字母表示.
2021新教材高中数学第八章8.1第1课时多面体教学用书教案新人教A版必修第二册

必备知识·探新知
知识点1空间几何体
1.概念:如果只考虑物体的__形状__和__大小__,而不考虑其他因素,那么由这些物体抽象出来的__空间图形__叫做空间几何体.
2.多面体与旋转体
(1)多面体:由若干个__平面多边形__围成的几何体叫做多面体(如图),围成多面体的各个多边形叫做多面体的__面__;相邻两个面的__公共边__叫做多面体的棱;棱与棱的__公共点__叫做多面体的顶点.
(3)正棱柱:底面是正多边形的直棱柱叫做正棱柱.
(4)平行六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四边形.
(5)长方体:底面是矩形的直棱柱叫做长方体.
(6)正方体:棱长都相等的长方体叫做正方体.
2.棱锥
定义
一般地,有一个面是__多边形__,其余各面都是__有一个公共顶点__的三角形,由这些面所围成的多面体叫做棱锥
(3)围成一个多面体至少要有四个面.
(4)规定:在多面体中,不在同一面上的两个顶点的连线叫做多面体的对角线,不在同一面上的两条侧棱称为多面体的不相邻侧棱,侧棱和底面多边形的边统称为棱.
(5)一个多面体是由几个面围成,那么这个多面体称为几面体.
知识点2几种常见的多面体
1.棱柱
定义
一般地,有两个面互相__平行__,其余各面都是__四边形__,并且每__相邻__两个四边形的公共边都互相__平行__,由这些面所围成的__多面体__叫做棱柱
关键能力·攻重难
题型探究
题型一 棱柱的结构特征
典例1下列关于棱柱的说法:
(1)所有的面都是平行四边形;
(2)每一个面都不会是三角形;
高中数学新人教版A版精品教案《空间几何体的结构》

必修二空间几何体的结构(教学设计)一、目标认知学习目标:1.知识与技能1通过实物操作,增强直观感知2能根据几何结构特征对空间物体进行分类3会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征4会表示有关于几何体以及柱、锥、台的分类2.过程与方法1通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征2观察、讨论、归纳、概括所学的知识3.情感态度与价值观1感受空间几何体存在于现实生活周围,增强学习的积极性,同时提高观察能力2培养空间想象能力和抽象括能力重点:通过空间实物及模型,概括出柱、锥、台、球的结构特征难点:对柱、锥、台、球结构特征的概括和理解二、知识要点梳理知识点一:棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面.2、棱柱的分类:底面是三角形、四边形、五边形、……的棱柱分别叫做三棱柱、四棱柱、五棱柱……3、棱柱的表示方法:①用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为、、;②用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱或棱柱等;五棱柱可表示为棱柱、棱柱等;六棱柱可表示为棱柱、棱柱、棱柱等.4、棱柱的性质:棱柱的侧棱相互平行知识点二:棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥……;3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥;知识点三:圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线.2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱知识点四:圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴.垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线.2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥.知识点五:棱台和圆台的结构特征1、定义:用一个平行于棱锥圆锥底面的平面去截棱锥圆锥,底面和截面之间的部分叫做棱台圆台;原棱锥圆锥的底面和截面分别叫做棱台圆台的下底面和上底面;原棱锥圆锥的侧面被截去后剩余的曲面叫做棱台圆台的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴2、棱台的表示方法:用各顶点表示,如四棱台;3、圆台的表示方法:用表示轴的字母表示,如圆台;注:圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成知识点六:球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球半圆的半径叫做球的半径半圆的圆心叫做球心半圆的直径叫做球的直径2、球的表示方法:用表示球心的字母表示,如球O知识点七:特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台;注:简单几何体的分类如下表:知识点八:简单组合体的结构特征1、组合体的基本形式:①由简单几何体拼接而成的简单组合体;②由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:①多面体与多面体的组合;②多面体与旋转体的组合;③旋转体与旋转体的组合三、规律方法指导:1.根据几何体特征的描述判断几何体形状1根据几何体的结构特点判断几何体的类型,首先要熟练掌握各类几何体的概念,把握好各类几何体的性质,其次要有一定的空间想象能力.2圆柱、圆锥、圆台可以看做是分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的几何体.其轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题一般要作出轴截面.2.几何体中的计算问题几何体的有关计算中要注意下列方法与技巧:1在正棱锥中,要掌握正棱锥的高、侧面、等腰三角形中的斜高及高与侧棱所构成的两个直角三角形,有关证明及运算往往与两者相关.2正四棱台中要掌握其对角面与侧面两个等腰梯形中关于上、下底及梯形高的计算,有关问题往往要转化到这两个等腰梯形中.另外要能够将正四棱台、正三棱台中的高与其斜高、侧棱在合适的平面图形中联系起来.3研究圆柱、圆锥、圆台等问题的主要方法是研究它们的轴截面,这是因为在轴截面中,易找到所需有关元素之间的位置、数量关系.4圆柱、圆锥、圆台的侧面展开是把立体几何问题转化为平面几何问题处理的重要手段之一.5圆台问题有时需要还原为圆锥问题来解决.6关于球的问题中的计算,常作球的一个大圆,化"球"为"圆",应用平面几何的有关知识解决;关于球与多面体的切接问题,要恰当地选取截面,化"空间"为平面.经典例题透析:类型一:概念判断1、如果两个面互相平行,其余各面均为四边形的几何体一定是棱柱.这种说法是否正确?如果正确说明理由;如果不正确,举出反例.思路点拨:判断一个几何体是哪几种几何体,一定要紧扣住柱、锥、台、球的结构特征,注意定义中的特殊字眼棱柱的结构特征有三方面:有两个面互相平行;其余各面是平行四边形;这些平行四边形中,相邻两个面的公共边都互相平行当一个几何体同时满足这三方面的结构特征时,这个几何体才是棱柱解析:不正确.如图所示的几何体是由两个底面相等的四棱柱组合而成,它有两个面互相平行,其余各面都是平行四边形,但是显然它不是棱柱.举一反三:【变式1】如果一个面是多边形,其余各面都是三角形的几何体一定是棱锥.这种说法是否正确?如果正确说明理由;如果不正确,举出反例.解析:不正确.如图所示的几何体由两个底面相等的四棱锥组合而成,它有一个面是四边形,其余各面都是三角形,但是该几何体不是棱锥.2、描述下列几何体的结构特征,并说出它的名称1由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形;2如图,一个圆环面绕着过圆心的直线旋转解析:1特征:侧面都是全等的矩形,底面是五边形,几何体为正五棱柱;2由两个同心的大球和小球,大球里去掉小球后剩下的部分类型二:基本计算3、若三棱锥的底面为正三角形,侧面为等腰三角形,侧棱长为2,底面周长为9,求棱锥的高解析:底面正三角形中,边长为3,高为,中心到顶点距离为,则棱锥的高为4、用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm,求圆台的母线长解析:设圆台的母线为,截得圆台的上、下底面半径分别为r,4r根据相似三角形的性质得,,解得所以,圆台的母线长为总结升华:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质与底面全等或相似,同时结合旋转体中的轴截面经过轴的截面的几何性质,利用相似三角形中的相似比,构设相关几何变量的方程组而解得5、圆锥底面半径为1cm,高为,其中有一个内接正方体,求这个内接正方体的棱长解析:过圆锥的顶点S和正方体底面的一条对角线CD作圆锥的截面,得圆锥的轴截面SEF,正方体对角面,如图所示设正方体棱长为,则作SO⊥EF于O,则,OE=1,∵△ECC1∽△EOS,∴,即∴,即内接正方体棱长为总结升华:此题也可以利用△SCD∽△SEF而求两个几何体相接、相切的问题,关键在于发现一些截面之间的图形关系常常是通过分析几个轴截面组合的平面图形中的一些相似,利用相似比列出方程而求注意截面图形中各线段长度的计算学习成果测评基础达标1:1.一个棱柱是正四棱柱的条件是A底面是正方形,有两个侧面是矩形B底面是正方形,有两个侧面垂直于底面C底面是菱形,且有一个顶点处的三条棱两两垂直D每个侧面都是全等矩形的四棱柱2.下列说法中正确的是A以直角三角形的一边为轴旋转所得的旋转体是圆锥B以直角梯形的一腰为轴旋转所得的旋转体是圆台C圆柱、圆锥、圆台的底面都是圆D圆锥侧面展开图为扇形、这个扇形所在圆的半径等于圆锥的底面圆的半径3.下列说法错误的是A若棱柱的底面边长相等,则它的各个侧面的面积相等B九棱柱有9条侧棱,9个侧面,侧面为平行四边形C六角螺帽、三棱镜都是棱柱D三棱柱的侧面为三角形4.用一个平面去截正方体,所得的截面不可能是A六边形 B菱形 C梯形 D直角三角形5.下列说法正确的是A平行于圆锥某一母线的截面是等腰三角形B平行于圆台某一母线的截面是等腰梯形C过圆锥顶点的截面是等腰三角形D过圆台上底面中心的截面是等腰梯形6.设圆锥母线长为,高为,过圆锥的两条母线作一个截面,则截面面积的最大值为________7.若长方体的三个面的面积分别是,则此长方体的对角线长为________基础达标2:1.右图的几何体是由下面哪个平面图形旋转得到的2.下列几何体的轴截面一定是圆面的是A.圆柱B.圆锥 C.球 D.圆台3.把直角三角形绕斜边旋转一周,所得的几何体是A.圆锥B.圆柱 C.圆台 D.由两个底面贴近的圆锥组成的组合体4.圆锥的底面半径为r,高为h,在此圆锥内有一个内接正方体,则此正方体的棱长为A.B.C.D.5.将一个半径为R的木球削成尽可能大的正方体,则正方体的体积是________6.三棱柱的底面为正三角形,侧面是全等的矩形,内有一个内切球,已知球的半径为R,则这个三棱柱的底面边长为________能力提升:1.长方体的全面积为11,十二条棱的长度之和为24,求这个长方体的一条对角线长2.如图所示,长方体1这个长方体是棱柱吗?如果是,是几棱柱?为什么?2用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示如果不是,说明理由3.正四棱锥棱锥底面是正方形,侧面都是全等等腰三角形有一个内接正方体,,高为h,求内接正方体的棱长4.一个四棱台的上、下底面均为正方形,且面积分别为、,侧面是全等的等腰梯形,棱台的高为h,求此棱台的侧棱长和斜高侧面等腰梯形的高答案与解析:基础达标1:;6;7基础达标2:5; 6基础达标3:; 6.球、圆柱、圆锥能力提升:1.解:设长方体的长、宽、高分别为a、b、c,则,而对角线长2.解:1是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面都是全等的四边形,其余各面都是矩形,且四条侧棱互相平行,符合棱柱定义2截面BCNM的上方部分是三棱柱,下方部分是四棱柱3.解:作截面,利用相似三角形知识,设正方体的棱长为,则,解得4.解:上、下底面正方形的边长为、,此棱台对角面、过两相对斜高的截面都是等腰梯形,则侧棱长为;斜高为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多面体的结构特征学习目标1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.知识点一空间几何体的定义、分类及相关概念思考观察下面两组物体,你能说出各组物体的共同点吗?答案(1)几何体的表面由若干个平面多边形围成.(2)几何体的表面由平面图形绕其所在平面内的一条定直线旋转而成.1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.多面体与旋转体思考观察下列多面体,有什么共同特点?答案(1)有两个面相互平行;(2)其余各面都是平行四边形;(3)每相邻两个四边形的公共边都互相平行.棱柱的定义、分类、图示及其表示思考观察下列多面体,有什么共同特点?答案(1)有一个面是多边形;(2)其余各面都是有一个公共顶点的三角形.棱锥的定义、分类、图形及表示思考观察下列多面体,分析其与棱锥有何区别与联系?答案(1)区别:有两个面相互平行.(2)联系:用平行于棱锥底面的平面去截棱锥,其底面和截面之间的部分即为该几何体.棱台的定义、分类、图形及表示类型一棱柱的结构特征例1 试判断下列说法是否正确:(1)棱柱中互相平行的两个面叫做棱柱的底面;(2)棱柱的侧棱都相等,侧面是平行四边形.解(1)错误.如长方体中相对侧面互相平行.(2)正确.由棱柱的定义可知,棱柱的侧棱互相平行且相等,且各侧面都是平行四边形.反思与感悟概念辨析题常用方法:(1)利用常见几何体举反例;(2)从底面多边形的形状、侧面形状及它们之间的位置关系、侧棱与底面的位置关系等角度紧扣定义进行判断.跟踪训练1 根据下列关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.解(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)该几何体是六棱柱.类型二棱锥的结构特征例2 如图,几何体中,四边形AA1B1B为边长为3的正方形,CC1=2,CC1∥AA1,CC1∥BB1,请你判断这个几何体是棱柱吗?若是棱柱,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征.在立体图中画出截面.解(1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱.(2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.反思与感悟认识一个几何体,要看它的结构特征,并且要结合它各面的具体形状,棱与棱之间的关系,分析它是由哪些几何体组成的组合体,并能用平面分割开.跟踪训练2 试从如图正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.解(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).类型三棱台的结构特征例3 有下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有( )A.0个 B.1个 C.2个 D.3个答案 A解析①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,故②③错.反思与感悟一个棱台的基本特征是上、下底面平行且相似,侧棱延长后交于一点,这是判断几何体是否为棱台的依据.跟踪训练3 已知四棱台的上底面、下底面分别是边长为4、8的正方形,各侧棱长均相等,且侧棱长为17,求四棱台的高.解 如图,在截面ACC 1A 1中,A 1A =CC 1=17,A 1C 1=42,AC =82,过A 1作A 1E ⊥AC 交AC 于点E .在Rt △A 1EA 中,AE =12(82-42)=22,A 1A =17,∴A 1E =A 1A 2-AE 2=172-222=3,即四棱台的高为3.1.下列说法中正确的是( ) A .棱柱的面中,至少有两个面互相平行 B .棱柱中两个互相平行的平面一定是棱柱的底面 C .棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形答案 A解析棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B 错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形.但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.下列说法中,正确的是( )A.有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体是棱锥B.棱柱的底面一定是平行四边形C.棱锥的底面一定是三角形D.棱柱的侧棱都相等,侧面都是全等的平行四边形答案 A3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形答案 D解析由于三棱柱的侧面为平行四边形,故选项D错.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C .棱柱与棱锥的组合体D .不能确定答案 A解析 形成的几何体前后两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,符合棱柱的定义.5.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫做侧棱. 答案 ①③解析 ①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状. 2.各种棱柱之间的关系 (1)棱柱的分类棱柱⎩⎨⎧直棱柱⎩⎪⎨⎪⎧正棱柱一般的直棱柱斜棱柱(2)常见的几种四棱柱之间的转化关系3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:一、选择题1.下列说法正确的是( )A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱答案 D解析棱柱与棱锥的底面可以是任意多边形,A、B不正确.过棱锥的顶点的纵截面可以把棱锥分成两个棱锥,C不正确,应选D.2.具备下列条件的多面体是棱台的是( )A.两底面是相似多边形的多面体B.侧面是梯形的多面体C.两底面平行的多面体D.两底面平行,侧棱延长后交于一点的多面体答案 D解析棱台是由棱锥截得的,因此一个几何体要成为棱台应有两个条件:一是上、下底面平行;二是各侧棱延长后必须交于一点.选项C只具备一个条件,选项A、B则两条件都不具备.3.有两个面平行的多面体不可能是( )A.棱柱 B.棱锥 C.棱台 D.以上都错答案 B解析由棱锥的定义可得.4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2 B.1∶4 C.2∶1 D.4∶1解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.5.下图中不可能围成正方体的是( )答案 D6.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A.20 B.15 C.12 D.10答案 D解析如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).7.下列图形中,不是三棱柱的展开图的是( )二、填空题8.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 答案12解析因棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为605=12 cm.9.如图所示,在所有棱长为1的直三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.答案10解析将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.10.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何图形是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.答案①③④⑤解析如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD.则正确的说法是①③④⑤.11.如图,M是棱长为2 cm的正方体ABCD—A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________cm.答案13解析由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.三、解答题12.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面,EF,B′C′,BC是侧棱.截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面,A′D′,EF,BC,AD为侧棱.13.如图所示,有12个小正方体,每个正方体6个面上分别写着数字1,9,9,8,4,5,用这12个小正方体拼成一个长方体,那么图中看不见的那些小正方体的面有多少个,并求这些面上的数字和.解这12个小正方体,共有6×12=72个面,图中看得见的面共有3+4×4=19个,故图中看不见的面有72-19=53个,12个小正方体各个面的数字的和为(1+9+9+8+4+5)×12=432.而图中看得见的数字的和为131,所以看不见的那些小正方体的面上的数字的和为432-131=301.。