高中数学 新人教A版必修4导学案全套

合集下载

新课标-人教A版-高中数学必修4教案精选

新课标-人教A版-高中数学必修4教案精选
o

那么有( D A.
) . B. C. ( ) D.
例 2 用集合表示: (1)各象限的角组成的集合.
o
(2)终边落在
o o
轴右侧的角的集合.
解:(1) 第一象限角: {α|k360 π<α<k360 +90 ,k∈ Z} o o o o 第二象限角: {α|k360 +90 <α<k360 +180 ,k∈ Z} o o o o 第三象限角: {α|k360 +180 <α<k360 +270 ,k∈ Z} o o o 第四象限角:{α|k360 +270o<α<k360 +360 ,k∈Z} (2)在 ~ 中, 轴右侧的角可记为 ,同样把该范围“旋转” 后,得
1
1.定义中说:角的始边与 x 轴的非负半轴重合,如果改为与 x 轴的正半轴重合行不行,为什么? 2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字? 3.是不是任意角都可以归结为是象限角,为什么? 处理:学生思考片刻后回答,教师适时予以纠正。 答:1.不行,始边包括端点(原点) ; 2.端点在原点上; 3.不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。 师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的 预习才是有效果的。 0 0 0 0 0 师生讨论:好,按照象限角定义,图中的 30 ,390 ,-330 角,都是第一象限角;300 ,-60 角,都是第四象限 0 角;585 角是第三象限角。 师:很好,不过老师还有几事不明,要请教大家: (1)锐角是第一象限角吗?第一象限角是锐角吗?为什么? 生:锐角是第一象限角,第一象限角不一定是锐角; 0 师: (2)锐角就是小于 90 的角吗? 0 生:小于 90 的角可能是零角或负角,故它不一定是锐角; 0 0 师: (3)锐角就是 0 ~90 的角吗? 0 0 0 0 0 0 生:锐角:{θ|0 <θ<90 };0 ~90 的角:{θ|0 ≤θ<90 }. 学生练习(口答) 已知角的顶点与坐标系原点重合,始边落在 x 轴的非负半轴上,作出下列各角,并指出 它们是哪个象限的角? 0 0 0 0 (1)420 ; (2)-75 ; (3)855 ; (4)-510 . 答: (1)第一象限角; (2)第四象限角; (3)第二象限角; (4)第三象限角. 5.终边相同的角的表示法 师:观察下列角你有什么发现? 390 330 30 1470 1770 生:终边重合. 0 师:请同学们思考为什么?能否再举三个与 30 角同终边的角? 0 0 0 0 0 0 0 0 0 0 0 生:图中发现 390 ,-330 与 30 相差 360 的整数倍,例如,390 =360 +30 ,-330 =-360 +30 ;与 30 角同终边的 0 0 角还有 750 ,-690 等。 0 0 0 0 师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差 360 的整数倍。例如:750 =2×360 +30 ; 0 0 0 0 -690 =-2×360 +30 。那么除了这些角之外,与 30 角终边相同的角还有: 0 0 0 0 3×360 +30 -3×360 +30 0 0 0 0 4×360 +30 -4×360 +30 ……, ……, 0 0 0 由此,我们可以用 S={β|β=k×360 +30 ,k∈Z}来表示所有与 30 角终边相同的角的集合。 师:那好,对于任意一个角α,与它终边相同的角的集合应如何表示? 0 生:S={β|β=α+k×360 ,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。 6.例题讲评 例 1 设 E {小于90 的角} F {锐角},G={第一象限的角} ,

新课标人教A版必修4教案(全)

新课标人教A版必修4教案(全)

第一章 三角函数1.1任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图 1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于750︒;图1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

人教A版高中数学必修四教案全

人教A版高中数学必修四教案全

高中数学必修4 教案1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 ⑵B 1 y⑴O x45° B 2O x B 3y30°60o 负角:按顺时针方向旋转形成的角 始边 终边顶点AO B例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720°与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角此时,2α属于第四象限角 因此2α属于第二或第四象限角.1.1.2弧度制(一)教学目标(四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360;180;1801()57.305718rad ;180( )nn.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用.7.弧长公式 l l rr弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+=而67π是第三象限的角,193是第三象限角.(2) 315316,666是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.O R l22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业:①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(一)导学案 新人教A版必修4-新人

高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(一)导学案 新人教A版必修4-新人

1.4.2 正弦函数、余弦函数的性质(一) 学习目标 1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.知识点一 函数的周期性思考1 如果函数f (x )满足f (x +3)=f (x ),那么3是f (x )的周期吗?答案 不一定.必须满足当x 取定义域内的每一个值时,都有f (x +3)=f (x ),才可以说3是f (x )的周期.思考2 所有的函数都具有周期性吗?答案 不是.只有同时符合周期函数定义中的两个条件的函数才具有周期性.思考3 周期函数都有最小正周期吗?答案 周期函数不一定存在最小正周期.例如,对于常数函数f (x )=c (c 为常数,x ∈R ),所有非零实数T 都是它的周期,而最小正周期是不存在的,所以常数函数没有最小正周期. 梳理 函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.知识点二 正弦函数、余弦函数的周期性思考1 证明函数y =sin x 和y =cos x 都是周期函数.答案 ∵sin(x +2π)=sin x ,cos(x +2π)=cos x ,∴y =sin x 和y =cos x 都是周期函数,且2π就是它们的一个周期.思考2 证明函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))(Aω≠0)是周期函数. 答案 由诱导公式一知,对任意x ∈R ,都有A sin[(ωx +φ)+2π]=A sin(ωx +φ),所以A sin[ω⎝ ⎛⎭⎪⎫x +2πω+φ]=A sin(ωx +φ), 即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期. 同理,函数f (x )=A cos(ωx +φ)(ω≠0)也是周期函数.梳理 由sin(x +2k π)=sin x ,cos(x +2k π)=cos x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π (k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π. 知识点三 正弦函数、余弦函数的奇偶性思考 对于x ∈R ,sin(-x )=-sin x ,cos(-x )=cos x ,这说明正弦函数、余弦函数具备怎样的性质?答案 奇偶性.梳理 (1)对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称.(2)对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.类型一 三角函数的周期性例1 求下列函数的最小正周期.(1)y =sin(2x +π3)(x ∈R ); (2)y =|sin x |(x ∈R ).解 (1)方法一 令z =2x +π3,因为x ∈R ,所以z ∈R . 函数f (x )=sin z 的最小正周期是2π,即变量z 只要且至少要增加到z +2π,函数f (x )=sin z (z ∈R )的值才能重复取得.而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3(x ∈R )的最小正周期是π. 方法二 f (x )=sin ⎝⎛⎭⎪⎫2x +π3的最小正周期为2π2=π. (2)因为y =|sin x |=⎩⎪⎨⎪⎧ sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,所以该函数的最小正周期为π.反思与感悟 对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 跟踪训练1 求下列函数的周期.(1)y =sin ⎝ ⎛⎭⎪⎫-12x +π3;(2)y =|cos 2x |. 解 (1)T =2π|-12|=4π. (2)T =π2. 类型二 三角函数的奇偶性例2 判断下列函数的奇偶性.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x );(3)f (x )=1+sin x -cos 2x 1+sin x. 解 (1)显然x ∈R ,f (x )=cos 12x , ∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧ 1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为{x |x ∈R 且x ≠k π+π2,k ∈Z }. ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ).∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称,∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性应把握好两个关键点:关键点一:看函数的定义域是否关于原点对称;关键点二:看f (x )与f (-x )的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.跟踪训练2 判断下列函数的奇偶性.(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (2)f (x )=1-2cos x +2cos x -1.解 (1)f (x )=sin 2x +x 2sin x ,∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )=-sin 2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧ 1-2cos x ≥0,2cos x -1≥0,得cos x =12. ∴f (x )=0,x =2k π±π3,k ∈Z . ∴f (x )既是奇函数又是偶函数.类型三 三角函数的奇偶性与周期性的综合应用例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值. 解 ∵f (x )的最小正周期是π,∴f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32. ∴f ⎝ ⎛⎭⎪⎫5π3=32. 反思与感悟 解决此类问题的关键是运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练3 若f (x )是以π2为周期的奇函数,且f ⎝ ⎛⎭⎪⎫π3=1,求f ⎝ ⎛⎭⎪⎫-5π6的值. 解 因为f (x )是以π2为周期的奇函数,所以f ⎝ ⎛⎭⎪⎫-5π6=f ⎝ ⎛⎭⎪⎫-5π6+π2=f ⎝ ⎛⎭⎪⎫-π3=-f ⎝ ⎛⎭⎪⎫π3=-1.类型四 函数周期性的综合应用例4 已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2 020)的值. 解 ∵f (1)=cos π3=12,f (2)=cos 2π3=-12,f (3)=cos π=-1,f (4)=cos 4π3=-12,f (5)=cos 5π3=12,f (6)=cos 2π=1, ∴f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0.同理,可得每连续六项的和均为0.∴f (1)+f (2)+f (3)+…+f (2 020)=f (2 017)+f (2 018)+f (2 019)+f (2 020)=cos 2 017π3+cos 2 018π3+cos 2 019π3+cos 2 020π3=cos π3+cos 2π3+cos π+cos 4π3=12+(-12)+(-1)+(-12)=-32. 反思与感悟 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.跟踪训练4 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 015)= .解析 ∵f (x )=sin π3x 的周期T =2ππ3=6, ∴f (1)+f (2)+f (3)+…+f (2 015)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015)=335⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3)+f (335×6+4)+f (335×6+5)=335×0+f (1)+f (2)+f (3)+f (4)+f (5)=sin π3+sin 23π+sin π+sin 43π+sin 53π=0.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B.πC.2πD.4π 答案 D2.下列函数中最小正周期为π的偶函数是( )A.y =sin x 2B.y =cos x2 C.y =cos xD.y =cos 2x 答案 D3.设函数f (x )=sin ⎝⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数解析 ∵sin ⎝ ⎛⎭⎪⎫2x -π2=-sin ⎝ ⎛⎭⎪⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )是最小正周期为π的偶函数.4.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为 . 答案 ±π解析 ∵T =2π|ω|=2,∴|ω|=π,∴ω=±π. 5.若函数f (x )的定义域为R ,最小正周期为3π2,且满足 f (x )=⎩⎪⎨⎪⎧ cos x ,-π2≤x <0,sin x ,0≤x <π,则f ⎝⎛⎭⎪⎫-15π4= . 答案 22 解析 f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-15π4+3π2×3 =f ⎝ ⎛⎭⎪⎫3π4=sin 3π4=22.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω. 2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性.课时作业一、选择题1.下列函数中,周期为π2的是( ) A.y =sin x 2B.y =sin 2xC.y =cos x 4D.y =cos(-4x ) 答案 D解析 T =2π|-4|=π2. 2.函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A.5 B.10 C.15 D.20答案 B3.已知a ∈R ,函数f (x )=sin x -|a |(x ∈R )为奇函数,则a 等于( )A.0B.1C.-1D.±1答案 A解析 因为f (x )为奇函数,所以f (-x )=sin(-x )-|a |=-f (x )=-sin x +|a |,所以|a |=0,从而a =0,故选A.4.下列函数中是奇函数,且最小正周期是π的函数是( )A.y =cos|2x |B.y =|sin x |C.y =sin ⎝ ⎛⎭⎪⎫π2+2x D.y =cos ⎝ ⎛⎭⎪⎫3π2-2x 答案 D 解析 y =cos|2x |是偶函数,y =|sin x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式求得其最小正周期T =π. 5.函数y =cos ⎝ ⎛⎭⎪⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11 C.12 D.13答案 D解析 ∵T =2πk 4≤2,即k ≥4π, ∴正整数k 的最小值是13.6.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( ) A.奇函数B.既是奇函数也是偶函数C.偶函数D.非奇非偶函数答案 D解析 由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x=|sin x |, 所以函数的定义域为{x |x ≠2k π+π2,k ∈Z }, 由于定义域不关于原点对称,所以该函数是非奇非偶函数.7.函数f (x )=3sin(23x +15π2)是( ) A.周期为3π的偶函数B.周期为2π的偶函数C.周期为3π的奇函数D.周期为4π3的偶函数 答案 A二、填空题8.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为 . 答案 π4解析 要使g (x )=sin(2x +π4+α)为偶函数, 则需π4+α=k π+π2,k ∈Z ,∴α=k π+π4,k ∈Z . ∵0<α<π2,∴α=π4. 9.函数f (x )=2sin ⎝⎛⎭⎪⎫5π2+2x +1的图象关于 对称.(填“原点”或“y 轴”) 答案 y 轴解析 f (x )=2sin ⎝ ⎛⎭⎪⎫5π2+2x +1=2cos 2x +1, ∵f (-x )=f (x ),∴f (x )是偶函数.∵偶函数的图象关于y 轴对称,∴f (x )的图象关于y 轴对称.10.关于x 的函数f (x )=sin (x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中错误的是 .(填序号)答案 ①④解析 当φ=0时,f (x )=sin x 是奇函数.当φ=π2时,f (x )=cos x 是偶函数. 三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos(π2+2x )cos(π+x ); (2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin x e sin x -e-sin x . 解 (1)∵x ∈R ,f (x )=cos(π2+2x )cos(π+x ) =-sin 2x ·(-cos x )=sin 2x cos x .∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x=-f (x ),∴y =f (x )是奇函数.(2)∵对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0,∴f (x )=1+sin x +1-sin x 的定义域是R .又∵f (-x )=1+sin (-x )+1-sin (-x ), =1-sin x +1+sin x =f (x ),∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x)e sin (-x )-e-sin (-x ) =e -sin x +e sin x e -sin x -esin x =-f (x ),∴y =f (x )是奇函数. 12.已知f (x )是以π为周期的偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,f (x )的解析式. 解 当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,3π-x ∈⎣⎢⎡⎦⎥⎤0,π2, ∵当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ), ∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎢⎡⎦⎥⎤52π,3π. 13.已知函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期. 证明 ∵f (x +4)=f (x +2+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期.四、探究与拓展14.若函数f (x )=2cos ⎝⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为 .答案 6解析 ∵T =2πω,1<2πω<4,则π2<ω<2π. ∴ω的最大值是6.15.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,求ω的最小值.解 函数y =A sin ωx 的最小正周期为2πω,因为在每一个周期内,函数y =A sin ωx (A >0,ω>0)都只有一个最小值,要使函数y =A sin ωx 在闭区间[0,1]上至少出现50个最小值,则y 在区间[0,1]内至少含4934个周期,即⎩⎪⎨⎪⎧ T =2πω,4934T ≤1,解得ω≥199π2,所以ω的最小值为199π2.。

高中数学 3.1.1两角差的余弦公式(讲)新人教A版必修4-新人教A版高中必修4数学教案

高中数学 3.1.1两角差的余弦公式(讲)新人教A版必修4-新人教A版高中必修4数学教案
③怎样利用几何直观寻找OM的表示式。
设计意图:尽量用动画课件把探索过程展示出来,使学生能从几何直观角度加强对公式结构形式的认识。
设角 终边与单位圆地交点为P1, 。
过点P作PM⊥X轴于点M,那么OM就是 的余弦线。
过点P作PA⊥OP1于A,过点A作AB⊥x轴于B,过点P作PC⊥AB于C
那么OA表示 ,AP表示 ,并且
(1) ;(2)
(让学生联系公式 和本题的条件,考虑清楚要计算 ,应作那些准备。)
解:由 ,得
又由 , 是第三象限角,得
所以
让学生结合公式 ,明确需要再求哪些三角函数值,可使问题得到解决。
变式训练:
(三)、质疑答辩,排难解惑,发展思维
1.利用两角和(差)的余弦公式,求
【点评】:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如: ,要学会灵活运用.
2.求值
3.化简
提示:利用拆角思想 的变换技巧
(设计意图:通过变式训练,进一步加深学生对公式的理解和应用,体验公式既可正用、逆用,还可变用.还可使学生掌握“变角”和“拆角”的思想方法解决问题,培养了学生的灵活思维品质,提高学生的数学交流能力,促进思维的创新。)
(四)发导学案、布置预习
本节我们学习了两角和与差的余弦公式,要求同学们掌握公式 的推导,能熟练运用公式 ,注意公式 的逆用。在解题过程中注意角 、 的象限,也就是符号问题,学会灵活运用.课下完成本节的课后练习以及课后延展作业,课本 习题2.3.4
3.1.1两角差的余弦公式(讲)
一、教材分析
《两角差的余弦公式》是人教A版高中数学必修4第三章《三角恒等变换》第一节《两角和与差的正弦、余弦和正切公式》第一节课的内容。本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论。

2020-2021学年数学人教A版必修4学案:3.2 简单的三角恒等变换

2020-2021学年数学人教A版必修4学案:3.2 简单的三角恒等变换

3.2 简单的三角恒等变换[目标] 1.记住三角恒等变换常用公式. 2.能够利用三角函数公式进行简单的三角函数式的化简、求值和证明.[重点] 三角恒等变换常用公式. [难点] 三角恒等变换的化简与求值.知识点一 降幂公式与半角公式[填一填][答一答]1.半角公式中“±”号如何选取? 提示:符号由α2所在象限决定.2.已知sin θ=45,且5π2<θ<3π,则sin θ2=-255,cos θ2=-55,tan θ2=2.解析:∵sin θ=45,5π2<θ<3π, ∴cos θ=-1-sin 2θ=-35, ∵5π4<θ2<3π2, ∴sin θ2=-1-cos θ2=-1+352=-255. cos θ2=-1+cos θ2=-1-352=-55.tan θ2=sin θ2cos θ2=2(或tan θ2=sin θ1+cos θ=451-35=2).知识点二 常见的三角恒等变换[填一填]1.a sin α+b cos α =a 2+b 2(sin α·a a 2+b 2+cos α·ba 2+b2) =a 2+b 2sin(α+φ).(其中令cos φ=a a 2+b 2,sin φ=ba 2+b2)2.sin 2α=1-cos2α2,cos 2α=1+cos2α2,sin αcos α=12sin2α.[答一答]3.如何确定上述辅助角公式中的φ值?提示:可以由sin φ和cos φ的符号来确定φ所在的象限,由sin φ或cos φ的值确定角φ的大小.4.填空:(1)sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (2)3sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π6. (3)sin α±3cos α=2sin ⎝ ⎛⎭⎪⎫α±π3.类型一 半角公式的应用[例1] (1)设5π<θ<6π,cos θ2=a ,则sin θ4等于( ) A.1+a 2 B .1-a 2 C .-1+a 2D .-1-a 2(2)若sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.[解析] (1)由题知,5π<θ<6π,cos θ2=a ,则54π<θ4<32π,则sin θ4=-1-cos θ22=-1-a2.故选D.(2)∵sin(π-α)=-53,α∈⎝ ⎛⎭⎪⎫π,32π, ∴sin α=-53,cos α=-23,又∵α2∈⎝ ⎛⎭⎪⎫π2,34π,∴sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-1+cos α2=-66.[★★答案★★](1)D(2)-66已知θ的某个三角函数值,求θ2的三角函数值的步骤是:(1)利用同角三角函数基本关系式求得θ的其他三角函数值;(2)代入半角公式计算即可.[变式训练1]已知α∈(-π2,0),cosα=45,则tanα2=(D) A.3B.-3C.13D.-13解析:因为α∈(-π2,0),且cosα=45,所以α2∈(-π4,0),tanα2=-1-cosα1+cosα=-1-451+45=-13,故选D.类型二三角恒等式的化简与证明[例2]已知π<α<3π2,化简:1+sinα1+cosα-1-cosα+1-sinα1+cosα+1-cosα.[解]原式=⎝⎛⎭⎪⎫sinα2+cosα222⎪⎪⎪⎪⎪⎪cosα2-2⎪⎪⎪⎪⎪⎪sinα2+⎝⎛⎭⎪⎫sinα2-cosα222⎪⎪⎪⎪⎪⎪cosα2+2⎪⎪⎪⎪⎪⎪sinα2,∵π<α<3π2,∴π2<α2<3π4. ∴cos α2<0,sin α2>0.∴原式=⎝ ⎛⎭⎪⎫sin α2+cos α22-2⎝ ⎛⎭⎪⎫sin α2+cos α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫sin α2-cos α2 =-sin α2+cos α22+sin α2-cos α22=-2cos α2.三角恒等变换是指依据三角函数的有关公式、定理,对三角函数式进行某种变形的过程,凡三角问题几乎都要通过三角恒等变换来解决.具体步骤如下:(1)发现差异——观察角、名、形三方面的差异;(2)寻找联系——根据式子的结构特征,找出差异间的联系; (3)合理转化——选取恰当的公式,进行恒等变形,促使差异转化. [变式训练2] 化简sin4α4sin 2⎝ ⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α得( A )A .sin2αB .cos2αC .sin αD .cos α解析:∵4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α=4cos 2⎝⎛⎭⎪⎫π4-αtan ⎝ ⎛⎭⎪⎫π4-α=4cos ⎝ ⎛⎭⎪⎫π4-αsin ⎝ ⎛⎭⎪⎫π4-α =2sin ⎝ ⎛⎭⎪⎫π2-2α=2cos2α,∴原式=sin4α4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝⎛⎭⎪⎫π4-α=sin4α2cos2α=2sin2αcos2α2cos2α=sin2α. 类型三 三角恒等变换的应用命题视角1:三角恒等变换与三角函数性质的结合[例3] 函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.[解析] 由题意知,f (x )=12sin2x +12(1-cos2x )+1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ).[★★答案★★] π [3π8+k π,7π8+k π](k ∈Z )讨论三角函数的性质一般要把三角函数化为y =A sin (ωx +φ),y =A cos (ωx +φ),y =A tan (ωx +φ)的形式才能进行讨论.[变式训练3] 已知函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6,则函数的值域为[-1,1],对称轴方程为x =56π+k π(k ∈Z ).解析:f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6=sin x -32cos x -12sin x=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3则函数f (x )的值域是[-1,1].令x -π3=π2+k π,k ∈Z ,得x =56π+k π,k ∈Z . 所以函数f (x )的对称轴方程为x =56π+k π(k ∈Z). 命题视角2:三角恒等变换与平面向量的结合[例4] 在平面直角坐标系xOy 中,点A (cos θ,2sin θ),B (sin θ,0),其中θ∈R .(1)当θ=2π3时,求向量AB →的坐标; (2)当θ∈⎣⎢⎡⎦⎥⎤0,π2时,求|AB →|的最大值.[解] (1)由题意得AB →=(sin θ-cos θ,-2sin θ),当θ=2π3时,sin θ-cos θ=sin 2π3-cos 2π3=1+32,-2sin θ=-2sin 2π3=-62,所以AB →=⎝ ⎛⎭⎪⎫1+32,-62. (2)因为AB →=(sin θ-cos θ,-2sin θ), 所以|AB →|2=(sin θ-cos θ)2+(-2sin θ)2 =1-sin2θ+2sin 2θ=1-sin2θ+1-cos2θ =2-2sin ⎝ ⎛⎭⎪⎫2θ+π4.因为0≤θ≤π2,所以π4≤2θ+π4≤5π4. 所以当2θ+π4=5π4时,|AB →|2取到最大值, |AB →|2=2-2×⎝⎛⎭⎪⎫-22=3,即当θ=π2时,|AB →|取到最大值 3.三角恒等变换与平面向量的坐标运算相结合是常见的题型,这种题型往往体现了三角恒等变换的工具性.[变式训练4] 已知A ,B ,C 是△ABC 三内角,向量m =(-1,3),n =(cos A ,sin A ),且m·n =1,则角A =( D )A.π2B.π6C.π4D.π3 解析:∵m·n =1,∴(-1,3)·(cos A ,sin A )=1,即3sin A -cos A =1,∴2⎝⎛⎭⎪⎫sin A ·32-cos A ·12=1,∴sin ⎝ ⎛⎭⎪⎫A -π6=12.∵0<A <π,∴-π6<A -π6<5π6, ∴A -π6=π6,∴A =π3.命题视角3:三角恒等变换的实际应用[例5] 有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另外两点B ,C 落在半圆的圆周上,已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大?[分析] 在△AOB 中利用∠AOB 表示OA ,AB 的长→ 表示矩形面积:2OA ·AB →得到面积与角间的函数关系→ 通过求函数的最值得到面积的最值 [解]画图如图所示,设∠AOB =θ(θ∈(0,π2)),则AB =a sin θ,OA =a cos θ. 设矩形ABCD 的面积为S ,则S =2OA ·AB ,即S =2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin2θ.∵θ∈(0,π2),∴2θ∈(0,π),当2θ=π2,即θ=π4时,S max =a 2,此时,A ,D 距离O 点都为22a .解决实际问题应首先设定主变量角α以及相关的常量与变量,建立含有角α的三角函数关系式,再利用三角函数的变换、性质等进行求解.求三角函数最值的问题,一般需利用三角函数的有界性来解决.[变式训练5] 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解:如图,连接OC ,设∠COB =θ,则0°<θ<45°,OC =1.∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ=-12(1-cos2θ)+12sin2θ =12(sin2θ+cos2θ)-12=22cos ⎝ ⎛⎭⎪⎫2θ-π4-12.当2θ-π4=0,即θ=π8时,S max =2-12(m 2).∴割出的长方形桌面的最大面积为2-12m 2.1.已知cos α=-15,π2<α<π,则sin α2等于( D ) A .-105 B.105 C .-155 D .155 解析:∵π2<α<π,∴π4<α2<π2, ∵cos α=-15,∴sin α2=1-cos α2=155.2.下列各式中,值为12的是( B ) A .sin15°cos15°B .cos 2π6-sin 2π6C.tan30°1-tan 230° D .1+cos60°2解析:A 中,原式=12sin30°=14; B 中,原式=cos π3=12;C 中,原式=12×2tan30°1-tan 230°=12tan60°=32; D 中,原式=cos30°=32,故选B.3.函数y =12sin2x +sin 2x ,x ∈R 的值域是( C )A.⎣⎢⎡⎦⎥⎤-12,32 B .⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎡⎦⎥⎤-22+12,22+12 D .⎣⎢⎡⎦⎥⎤-22-12,22-12 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝ ⎛⎭⎪⎫2x -π4+12.故函数值域为⎣⎢⎡⎦⎥⎤-22+12,22+12. 4.若α∈(0,π),且cos α+sin α=-13,则cos2α=179.解析:∵(cos α+sin α)2=19,∴sin αcos α=-49, 而sin α>0,∴cos α<0.∴cos α-sin α=-(cos α+sin α)2-4sin αcos α=-173. ∴cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=-13×⎝⎛⎭⎪⎫-173=179. 5.证明:sin α+11+sin α+cos α=12tan α2+12.证明:∵左边=2tanα21+tan2α2+11+2tanα21+tan2α2+1-tan2α21+tan2α2=tan2α2+2tanα2+11+tan2α2+2tanα2+1-tan2α2=⎝⎛⎭⎪⎫tanα2+122tanα2+2=12⎝⎛⎭⎪⎫tanα2+1=12tanα2+12=右边.∴等式成立.——本课须掌握的三大问题1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tanφ=ba(或sinφ=ba2+b2,cosφ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

人教A版高中数学必修4第一章三角函数1.2.2同角三角函数的基本关系导学案

人教A版高中数学必修4第一章三角函数1.2.2同角三角函数的基本关系导学案

1.2.2.同角三角函数的基本关系学习目标.1.能通过三角函数的定义推导出同角三角函数的基本关系式.2.理解同角三角函数的基本关系式.3.能运用同角三角函数的基本关系式进行三角函数式的化简、求值和证明.知识点.同角三角函数的基本关系式 思考1.计算下列式子的值: (1)sin 230°+cos 230°; (2)sin 245°+cos 245°; (3)sin 290°+cos 290°.由此你能得出什么结论?尝试证明它. 答案.3个式子的值均为1.由此可猜想:对于任意角α,有sin 2α+cos 2α=1,下面用三角函数的定义证明:设角α的终边与单位圆的交点为P (x ,y ),则由三角函数的定义,得sin α=y ,cos α=x .∴sin 2α+cos 2α=x 2+y 2=|OP |2=1.思考2.由三角函数的定义知,tan α与sin α和cos α间具有怎样的等量关系?答案.∵tan α=y x ,∴tan α=sin αcos α.梳理.(1)同角三角函数的基本关系式 ①平方关系:sin 2α+cos 2α=1.②商数关系:tan α=sin αcos α (α≠k π+π2,k ∈Z ).(2)同角三角函数基本关系式的变形 ①sin 2α+cos 2α=1的变形公式 sin 2α=1-cos 2α;cos 2α=1-sin 2α. ②tan α=sin αcos α的变形公式sin α=cos αtan α;cos α=sin αtan α.类型一.利用同角三角函数的关系式求值命题角度1.已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值例1.若sin α=-513,且α为第四象限角,则tan α的值为(..)A.125B.-125C.512D.-512 答案.D解析.∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.反思与感悟.同角三角函数的关系揭示了同角三角函数之间的基本关系,其常用的用途是“知一求二”,即在sin α,cos α,tan α三个值之间,知道其中一个可以求其余两个.解题时要注意角α的象限,从而判断三角函数值的正负.跟踪训练1.已知tan α=43,且α是第三象限角,求sin α,cos α的值.解.由tan α=sin αcos α=43,得sin α=43cos α.①又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,∴cos α=-35,sin α=43cos α=-45.命题角度2.已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值 例2.已知cos α=-817,求sin α,tan α的值.解.∵cos α=-817<0,且cos α≠-1,∴α是第二或第三象限角. (1)当α是第二象限角时,则 sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-8172=1517, tan α=sin αcos α=1517-817=-158.(2)当α是第三象限角时,则sin α=-1-cos 2α=-1517,tan α=158.反思与感悟.利用同角三角函数关系式求值时,若没有给出角α是第几象限角,则应分类讨论,先由已知三角函数的值推出α的终边可能在的象限,再分类求解. 跟踪训练2.已知cos α=-513,求13sin α+5tan α的值. 解.方法一.∵cos α=-513<0,∴α是第二或第三象限角. (1)若α是第二象限角, 则sin α=1-cos 2α =1-(-513)2=1213,tan α=sin αcos α=1213-513=-125,故13sin α+5tan α=13×1213+5×(-125)=0.(2)若α是第三象限角, 则sin α=-1-cos 2α=- 1-(-513)2=-1213,tan α=sin αcos α=-1213-513=125,故13sin α+5tan α=13×(-1213)+5×125=0.综上可知,13sin α+5tan α=0. 方法二.∵tan α=sin αcos α,∴13sin α+5tan α=13sin α(1+513·1cos α)=13sin α[1+513×(-135)]=0.类型二.利用同角三角函数关系化简 例3.已知α是第三象限角,化简: 1+sin α1-sin α-1-sin α1+sin α.解.原式= (1+sin α)(1+sin α)(1+sin α)(1-sin α)-(1-sin α)(1-sin α)(1+sin α)(1-sin α)=(1+sin α)21-sin 2α- (1-sin α)21-sin 2α=1+sin α|cos α|-1-sin α|cos α|.∵α是第三象限角,∴cos α<0.∴原式=1+sin α-cos α-1-sin α-cos α=-2tan α(注意象限、符号).反思与感悟.解答这类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系,化简过程中常用的方法有:(1)化切为弦,即把非正弦、余弦的函数都化为正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.跟踪训练3.化简:(1)cos 36°-1-cos 236°1-2sin 36°cos 36°;(2)1cos 2α1+tan 2α-1+sin α1-sin α(α为第二象限角).解.(1)原式= cos 36°- sin 236°sin 236°+cos 236°-2sin 36°cos 36°=cos 36°-sin 36°(cos 36°-sin 36°)2=cos 36°-sin 36°|cos 36°-sin 36°|=cos 36°-sin 36°cos 36°-sin 36°=1.(2)∵α是第二象限角,∴cos α<0, 则原式=1cos 2α 1+sin 2αcos 2α-(1+sin α)21-sin 2α=1cos 2α cos 2αcos 2α+sin 2α-1+sin α|cos α|=-cos αcos 2α+1+sin αcos α=-1+1+sin αcos α=sin αcos α=tan α. 类型三.利用同角三角函数关系证明例4.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.证明.∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边,∴原等式成立.反思与感悟.证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法:(1)证明一边等于另一边,一般是由繁到简. (2)证明左、右两边等于同一个式子(左、右归一). (3)比较法:即证左边-右边=0或左边右边=1(右边≠0).(4)证明与已知等式等价的另一个式子成立,从而推出原式成立. 跟踪训练4.求证:cos x 1-sin x =1+sin xcos x .证明.方法一.(比较法——作差)∵cos x 1-sin x -1+sin x cos x =cos 2x -(1-sin 2x )(1-sin x )cos x =cos 2x -cos 2x (1-sin x )cos x =0, ∴cos x 1-sin x =1+sin xcos x.方法二.(比较法——作商)∵左右=cos x 1-sin x 1+sin x cos x =cos x ·cos x (1+sin x )(1-sin x )=cos 2x 1-sin 2x =cos 2x cos 2x =1. ∴cos x 1-sin x =1+sin xcos x.方法三.(综合法)∵(1-sin x )(1+sin x )=1-sin 2x =cos 2x =cos x ·cos x , ∴cos x 1-sin x =1+sin xcos x.类型四.齐次式求值问题例5.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α. 解.(1)原式=4tan α-25+3tan α=611.(2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α =14tan 2α+13tan α+12tan 2α+1 =14×4+13×2+125=1330. 反思与感悟.(1)关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(2)注意(2)式中不含分母,可以视分母为1,灵活地进行“1”的代换,由1=sin 2α+cos 2α代换后,再同除以cos 2α,构造出关于tan α的代数式. 跟踪训练5.已知sin α+cos αsin α-cos α=2,计算下列各式的值.(1)3sin α-cos α2sin α+3cos α; (2)sin 2α-2sin αcos α+1.解.由sin α+cos αsin α-cos α=2,化简,得sin α=3cos α,所以tan α=3.(1)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89.(2)原式=sin 2α-2sin αcos αsin 2α+cos 2α+1 =tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=1310.1.若sin α=45,且α是第二象限角,则tan α的值等于(..)A.-43B.34C.±34D.±43答案.A解析.∵α为第二象限角,sin α=45,∴cos α=-35,tan α=-43.2.已知sin α-cos α=-54,则sin αcos α等于(..)A.74 B.-916 C.-932 D.932答案.C解析.由题得(sin α-cos α)2=2516,即sin 2α+cos 2α-2sin αcos α=2516,又sin 2α+cos 2α=1,∴1-2sin αcos α=2516,∴sin αcos α=-932.故选C.3.化简1-sin23π5的结果是(..) A.cos 3π5B.sin 3π5C.-cos 3π5D.-sin 3π5答案.C 解析.1-sin23π5= cos23π5=|cos 3π5|, ∵π2<3π5<π,∴cos 3π5<0, ∴|cos 3π5|=-cos 3π5,即1-sin23π5=-cos 3π5,故选C. 4.若tan θ=-2,则sin θcos θ= . 答案.-25解析.sin θcos θ=sin θcos θsin 2θ+cos 2θ=tan θtan 2θ+1=-25. 5.已知sin α=15,求cos α,tan α.解.∵sin α=15>0,∴α是第一或第二象限角.当α为第一象限角时,cos α=1-sin 2α =1-125=265, tan α=sin αcos α=612;当α为第二象限角时,cos α=-265,tan α=-612.1.利用同角三角函数的基本关系式,可以由一个角的一个三角函数值,求出这个角的其他三角函数值.2.利用同角三角函数的关系式可以进行三角函数式的化简,结果要求:(1)项数尽量少;(2)次数尽量低;(3)分母、根式中尽量不含三角函数;(4)能求值的尽可能求值.3.在三角函数的变换求值中,已知sin α+cos α,sin αcos α,sin α-cos α中的一个,可以利用方程思想,求出另外两个的值.4.在进行三角函数式的化简或求值时,细心观察题目的特征,灵活、恰当地选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.利用同角三角函数的基本关系主要是统一函数,要掌握“切化弦”和“弦化切”的方法.5.在化简或恒等式证明时,注意方法的灵活运用,常用技巧:(1)“1”的代换;(2)减少三角函数的个数(化切为弦、化弦为切等);(3)多项式运算技巧的应用(如因式分解、整体思想等);(4)对条件或结论的重新整理、变形,以便于应用同角三角函数关系来求解.课时作业一、选择题1.已知cos α=-35,α∈(π2,π),sin β=-1213,β为第三象限角,则sin α·tan β等于(..) A.-4825B.4825 C.13 D.-13答案.B解析.∵cos α=-35,α∈(π2,π),sin β=-1213,β是第三象限角,∴sin α=1-cos 2α=45,cos β=-1-sin 2β=-513,即tan β=125,则sin α·tan β=4825.故选B.2.已知α是第二象限角,tan α=-12,则cos α等于(..)A.-55B.-15C.-255D.-45答案.C解析.∵α是第二象限角,∴cos α<0. 又sin 2α+cos 2α=1,tan α=sin αcos α=-12,∴cos α=-255.3.已知A 是三角形的一个内角,sin A +cos A =23,则这个三角形是(..)A.锐角三角形B.钝角三角形C.直角三角形D.等腰直角三角形答案.B解析.∵sin A +cos A =23,∴1+2sin A cos A =49,∴sin A cos A =-518<0,又∵A ∈(0,π),sin A >0, ∴cos A <0,即A 为钝角.故选B.4.函数y =1-sin 2x cos x +1-cos 2xsin x 的值域是(..)A.{0,2}B.{-2,0}C.{-2,0,2}D.{-2,2}答案.C解析.y =|cos x |cos x +|sin x |sin x .当x 为第一象限角时,y =2;当x 为第三象限角时,y =-2; 当x 为第二、四象限角时,y =0. 5.已知sin α-cos α=-52,则tan α+1tan α的值为(..) A.-4 B.4 C.-8 D.8 答案.C解析.tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α.∵sin αcos α=1-(sin α-cos α)22=-18,∴tan α+1tan α=-8. 6.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于(..) A.-43B.54C.-34D.45答案.D解析.sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1, 又tan θ=2,故原式=4+2-24+1=45.7.已知cos x sin x -1=12,则1+sin xcos x 等于(..)A.12B.-12C.2D.-2答案.B解析.利用1-sin 2x =cos 2x ,可得1+sin x cos x =-cos x sin x -1=-12.二、填空题8.已知sin α+2cos αcos α=1,则α在第 象限.答案.二或四解析.sin α+2cos αcos α=tan α+2=1,tan α=-1<0,∴α在第二或第四象限.9.已知α∈R ,sin α+2cos α=102,则tan α= . 答案. 3或-13解析.因为sin α+2cos α=102,又sin 2α+cos 2α=1, 联立解得⎩⎪⎨⎪⎧ sin α=-1010,cos α=31010或⎩⎪⎨⎪⎧ sin α=31010,cos α=1010,故tan α=sin αcos α=-13或3. 10.在△ABC 中,2sin A =3cos A ,则角A = .答案.π3解析.由题意知cos A >0,即A 为锐角. 将2sin A =3cos A 两边平方,得2sin 2A =3cos A .∴2cos 2A +3cos A -2=0, 解得cos A =12或cos A =-2(舍去), ∴A =π3. 11.若sin θ=-22,tan θ>0,则cos θ= . 答案.-22 12.已知sin αcos α=18,且π<α<5π4,则cos α-sin α= . 答案.-32解析.因为π<α<5π4, 所以cos α<0,sin α<0.利用三角函数线知,cos α<sin α,cos α-sin α=-(cos α-sin α)2=- 1-2×18=-32. 三、解答题13.已知tan α=-12,求1+2sin αcos αsin 2α-cos 2α的值. 解.原式=(sin α+cos α)2sin 2α-cos 2α=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13. 四、探究与拓展14.若sin α+cos α=1,则sin n α+cos n α(n ∈Z )的值为 .答案.1解析.∵sin α+cos α=1,∴(sin α+cos α)2=1,又sin 2α+cos 2α=1,∴sin αcos α=0,∴sin α=0或cos α=0.当sin α=0时,cos α=1,此时有sin n α+cos n α=1;当cos α=0时,sin α=1,也有sin n α+cos n α=1,∴sin n α+cos n α=1.15.已知关于x 的方程2x 2-(3+1)x +2m =0的两根为sin θ和cos θ(θ∈(0,π)),求:(1)m 的值;(2)sin θ1-cot θ+cos θ1-tan θ的值(其中cot θ=1tan θ); (3)方程的两根及此时θ的值.解.(1)由根与系数的关系可知,sin θ+cos θ=3+12,① sin θ·cos θ=m .② 将①式平方得1+2sin θ·cos θ=2+32, 所以sin θ·cos θ=34,代入②得m =34. (2)sin θ1-cot θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12. (3)由(1)得m =34,所以原方程化为2x 2-(3+1)x +32=0,解得x 1=32,x 2=12. 所以⎩⎪⎨⎪⎧sin θ=32,cos θ=12或⎩⎪⎨⎪⎧ sin θ=12,cos θ=32.又因为θ∈(0,π), 所以θ=π3或π6.。

2020版高中数学人教A版必修4 导学案 《任意角》(含答案解析)学生版

2020版高中数学人教A版必修4 导学案 《任意角》(含答案解析)学生版

1.下列说法正确的是( )
ห้องสมุดไป่ตู้
A.终边相同的角一定相等
B.钝角一定是第二象限角
C.第一象限角一定不是负角
D.小于 90°的角都是锐角
2.与-457°角终边相同的角的集合是(
A.{α|α=k·360°+457°,k∈Z}
B.{α|α=k·360°+97°,k∈Z}
C.{α|α=k·360°+263°,k∈Z}
命题角度 2 求终边在给定直线上的角的集合 例 4:写出终边在直线 y=- 3x 上的角的集合.
反思与感悟 求终边在给定直线上的角的集合,常用分类讨论的思想,即分 x≥0 和 x<0 两 种情况讨论,最后再进行合并.
3 跟踪训练 4 写出终边在直线 y= x 上的角的集合.
3
类型四 区域角的表示 例 5:如图所示.
课时作业
一、选择题
1.把-1 485°化成 k·360°+α(0°≤α<360°,k∈Z)的形式是( )
A.315°-5×360° B.45°-4×360° C.-315°-4×360° D.-45°-10×180°
2.若α是第四象限角,则 180°-α是( )
A.第一象限角
B.第二象限角
C.第三象限角
D.{α|α=k·360°-263°,k∈Z}
3.2 017°是第
象限角.
4.与-1 692°终边相同的最大负角是
5.写出终边落在坐标轴上的角的集合 S.
) .
1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理 解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”. 2.关于终边相同的角的认识 一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合 S={β|β=α+k·360°, k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 注意:(1)α为任意角; (2)k·360°与α之间是“+”号,k·360°-α可理解为 k·360°+(-α); (3)相等的角终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差 360°的整数倍; (4)k∈Z 这一条件不能少.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任意角高中数学1.1.1任意角导学案新人教A版必修4一、学习目标:1.理解并掌握任意角、象限角、终边相同的角的定义。

2.会写终边相同的角的集合并且会利用终边相同的角的集合判断任意角所在的象限。

二、重点、难点:任意角、象限角、终边相同的角的定义是本节课的重点,用集合和符号来表示终边相同的角是本节课的难点三、知识链接:1.初中是如何定义角的?2.什么是周角,平角,直角,锐角,钝角?四、学习过程:(一)阅读课本1-3页解决下列问题。

问题1、按方向旋转形成的角叫做正角,按 - 方向旋转形成的角叫做负角,如果一条射线没有作____旋转,我们称它形成了一个零角。

零角的与重合。

如果α是零角,那么α= 。

问题2、问题3、象限角与象限界角为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标重合;(2)使角的始边和x轴重合.这时,角的终边落在第几象限,就说这个角是的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,那么这个角就叫做,这个角不属于任何一个象限。

问题4、在平面直角坐标系中作出下列各角并指出它们是第几象限角:(1)420o (2) -75o(3) 855o(4) -510o问题6、以上各角的终边有什么关系?这些有相同的始边和终边的角,叫做 。

把与-32o角终边相同的所有角都表示为 ,所有与角α 终边相同的角,连同角α 在内可构成集合为 .。

即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。

例1. 在0︒~360︒之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)︒480; (2)︒-760; (3)03932'︒.变式练习 1、 在0︒~360︒之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:(1)420 º (2)—54 º18′ (3)395º 8 ′ (4)—1190º 30′2、写出与下列各角终边相同的角的集合,并把集合中适合不等式-720oβ≤<360o 的元素写出来:(1)1303o 18, (2)--225o问题8、(1)写出终边在x 轴上角的集合 (2) 写出终边在y 轴上角的集合变式练习 写出终边在直线y =x 上角的集合s,并把s 中适合不等式-360≤β<720o 元素β写出来。

当堂检测:1、以原点为角的顶点,x 轴正方向为角的始边,终边在坐标轴上的角等于( ) (A )00、900或2700(B )k ⋅3600(k ∈Z ) (C )k ⋅1800(k ∈Z ) (D )k ⋅900(k ∈Z ) 2、如果x 是第一象内的角,那么( ) (A )x 一定是正角(B )x 一定是锐角(C )-3600<x <-2700或00<x <900(D )x ∈{x ∣k ⋅3600<x <k ⋅3600+900k ∈Z } 3、设A={θ∣θ为正锐角},B={θ∣θ为小于900的角}, C={θ∣θ为第一象限的角} D={θ∣θ为小于900的正角}。

则下列等式中成立的是( ) (A )A=B (B )B=C (C )A=C (D )A=D4、在直角坐标系中,若α与β的终边互相垂直,那么α与β的关系为( )(A )β=α+900(B )β=α±900(C )β=α+900+k ·3600(D )β=α±900+ k ·3600k ∈Z 5、设α是第二象限角,则2α是 象限角。

6、与角-1560°终边相同角的集合中最小的正角是 . 7、如果2x是第三象限角,则x 在第 象限和 半轴。

8、若α为锐角,则180°+α在第__________象限,-α在第______________象限.9、写出与370°23′终边相同角的集合S ,并把S 中在-720°~360°间的角写出来.10、钟表经过4小时,时针与分针各转了 度课堂小结:1、任意角的概念与分类。

2、象限角的概念及第一,二,三,四象限角的表示。

3、终边相同角的集合表示。

高中数学 1.1.2弧度制教学案 新人教A 版必修4一、学习目标1.理解弧度制的意义;2.能正确的应用弧度与角度之间的换算;3.记住公式||lrα=(l 为以.α作为圆心角时所对圆弧的长,r 为圆半径); 4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。

二、重点、难点弧度与角度之间的换算;弧长公式、扇形面积公式的应用。

三教学过程(一)复习:初中时所学的角度制,是怎么规定1o角的?角度制的单位有哪些,是多少进制的? (二)为了使用方便,我们经常会用到一种十进制的度量角的单位制——弧度制。

<我们规定> 叫做1弧度的角,用符号 表示,读作 。

练习:圆的半径为r ,圆弧长为2r 、3r 、2r的弧所对的圆心角分别为多少? <思考>:圆心角的弧度数与半径的大小有关吗? 由上可知:如果半径为r 的园的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值是:,α的正负由 决定。

正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。

<说明>:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的度量。

例如:当弧长4l r π=且所对的圆心角表示负角时,这个圆心角的弧度数是 4||4l r r rπαπ-=-=-=-. (三)角度与弧度的换算3602π=o rad 180π=o rad1801π=︒rad 0.01745≈rad 1rad =︒)180(π5718'≈o例1、把下列各角从度化为弧度:(1)0252 (2)0/1115变式练习 把下列各角从度化为弧度:(1)22 º30′ (2)—210º (3)1200º (4) 030 (5)'3067︒归纳:把角从弧度化为度的方法是:把角从度化为弧度的方法是:<试一试>:一些特殊角的度数与弧度数的互相转化,请补充完整30° 90° 120° 150°270°4π3π43πππ2(四)在弧度制下分别表示轴线角、象限角的集合(1)终边落在x 轴的非负半轴的角的集合为 ;x 轴的非正半轴的角的集合为 ;终边落在y 轴的非负半轴的角的集合为 ;y 轴的非正半轴的角的集合为 ;所以,终边落在x 轴上的角的集合为 ;落在y 轴上的角的集合为 。

(2)第一象限角的集合为 ;第二象限角的集合为 ;第三象限角的集合为 ;第四象限角的集合为 .(五)弧度是一个量,弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.(六)弧度制下的弧长公式和扇形面积公式 弧长公式:||l r α=⋅因为||l rα=(其中l 表示α所对的弧长),所以,弧长公式为||l r α=⋅. 扇形面积公式:.说明:以上公式中的α必须为弧度单位.例3、知扇形的周长为8cm ,圆心角α为2rad ,,求该扇形的面积。

变式练习 若2弧度的圆心角所对的弧长是4cm ,则这个圆心角所在的扇形面积是 .正角 零角 负角正实数 零 负实数(2) ;R 21(1)S 2α=2(1) 1(2) 21(3) 2l RS RS lR αα===B(九)当堂检测1、半径为120mm 的圆上,有一条弧的长是144mm ,求该弧所对的圆心角的弧度数。

2、半径变为原来的12,而弧长不变,则该弧所对的圆心角是原来的 倍。

3、在ABC ∆中,若::3:5:7A B C ∠∠∠=,求A ,B ,C 弧度数。

4、以原点为圆心,半径为1的圆中,一条弦AB 3,AB 所对的圆心角α的弧度数为 .5、直径为20cm 的滑轮,每秒钟旋转45o,则滑轮上一点经过5秒钟转过的弧长是多少?6、选做题 如图,扇形OAB 的面积是24cm ,它的周长是8cm ,求扇形的中心角及弦AB 的长。

高中数学 1.2.1任意角的三角函数(1)教学案 新人教A 版必修4学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符号.2.能初步应用定义分析和解决与三角函数值有关的一些简单问题. 重点难点教学重点:任意角的正弦、余弦、正切的定义。

.教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符号。

教学过程(一)提出问题问题1:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题2:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?问题3:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题4:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?(二)新课导学 1、单位圆的概念:.在直角坐标系中,我们称以 为圆心,以 为半径的圆为单位圆.2、三角函数的概念我们可以利用单位圆定义任意角的三角函数.如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离r=22b a >0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为b. 根据初中学过的三角函数定义,我们有 sin α=OP MP =r b ,cos α=OP OM =r a ,tan α=OP MP =ab.如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y 叫做α的正弦,记作sinα,即sinα=y; (2)x 叫做α的余弦,记作cosα,即cosα=x;(3)x y 叫做α的正切,记作tanα,即tanα=xy(x≠0). 所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.注意:(1)正弦、余弦、正切、都是以角为自变量,以比值为函数值的函数.(2)sinα不是sin 与α的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin”“tan”等是没有意义的.(3)由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.3、例1:已知角α的终边与单位圆的交点是 求角α的正弦、余弦和正切值。

练习1:已知角α的终边经过点 ,求角α正弦、余弦和正切值。

例2 求 的正弦、余弦和正切值.练习2:用三角函数的定义求 的三个三角函数值4、定义推广:35π)22,22(-P 67π)23,21(-P设角α是一个任意角,P (x,y )是其终边上的任意一点, 点P 与原点的距离022>+=y x r4、 探究 .三角函数的定义域 三角函数 定义域5、例题讲解 例3已知角α的终边经过点P 0(-3,-4),求角α的正弦、余弦和正切值 .练习3. 已知角θ的终边过点P(-12,5) ,求θ的正弦、余弦和正切三个三角函数值.5、探究三角函数值在各象限的符号r yry =αsin rx r x=αcos xy()0tan ≠=x x y α③ 叫做α的正切,即 那么① 叫做α的正弦,即 ② 叫做α的余弦,即 αsin αcos αtan6、例题讲解例4、 求证:当且仅当下列不等式组成立时,角θ为第三象限角.反之也对。

相关文档
最新文档