高中数学 必修三 古典概型 课件(谷风教学)

合集下载

人教A版高中数学必修三:古典概型课件

人教A版高中数学必修三:古典概型课件

例2. 单选题是标准化考试中常用的题型,一般是 从A、 B、C、D四个选项中选择一个正确答案,如果 考生掌握了考察的内容,它可以选择唯一正确的答 案。假设考生不会做,他随机的选择一个答案,问 他答对的概率是多少?
列 例3、掷一颗均匀的骰子,求掷得偶数点的概率。
举 解:掷一颗均匀的骰子,事件包含的结果为:
Ω={1, 2,3, 4,5,6}

∴总共有6个基本事件
而掷得偶数点事件A={2, 4,6}共有3件
∴P(A) = 3 1 62
例4、同时掷两个骰子,计算向上的点数之和是5 的概率是多少?
P130 练习 1、2、3
作业:完成好全优课堂
人教A版高中数学必修三:古典概型 课件
3.2.1 古典概型
第2课时
〖解〗每个密码相当于一个基本事件,共有10000 个基本事件,即0000,0001,0002,…,9999.是 一个古典概型.其中事件A“试一次密码就能取到钱” 由1个基本事件构成.所以:
P(A) 1 10000
人教A版高中数学必修三:古典概型 课件
人教A版高中数学必修三:古典概型 课件
练习一
1、 在掷一颗均匀骰子的实验中,则事
人教A版高中数学必修三:古典概型 课件
1、从含有两件正品a,b和一件次品c 的三件产品中任取2 件,求取出的两 件中恰好有一件次品的概率。 解:试验的总基本事件为:
Ω={ab,ac,bc} ∴n = 3
设事件A={取出的两件中恰好有一 件次品},则 A={ac,bc} ∴m=2
∴P(A)= m 2 n3
3.求某个随机事件A包含的基本事件的个数和实 验中基本事件的总数常用的方法是列举法(画树 状图和列表),注意做到不重不漏。

人教版高中数学必修三第三章第2节 3.2.1 古典概型 课件(共22张PPT) (1)

人教版高中数学必修三第三章第2节 3.2.1 古典概型 课件(共22张PPT) (1)
我们将具有这两个特点的概 率模型称为古典概率概型, 简称古典概型。
问题1:向一个圆面内随机地投射一个点,如果该 点落在圆内任意一点都是等可能的,你认为这是古典概 型吗?为什么?
有限性
等可能性
问题2:某同学随机地向一靶心进行射击,这一试验 的结果只有有限个:“命中10环”、“命中9环”、“命 中8环”、“命中7环”、“命中6环”、“命中5环”和 “不中环”。你认为这是古典概型吗?为什么?
3
(3,1) (3,2) (3,3) (3,4) (3,5) ((33,,66))
4
(4,1) (4,2) (4,3) (4,4) (4,55)) (4,6)
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
6
基本事件的总数
根据上述两则模拟试验,可以概括总结出,古典 概型计算任何事件的概率计算公式为:
P(A)=
A所包含的基本事件的个数 基本事件的总数
在使用古典概型的概率公式时,应该注 意什么? (1)要判断该概率模型是不是古典概型; (2)要找出随机事件A包含的基本事件的个数 和试验中基本事件的总数。
例2. 单选题是标准化考试中常用的题型,一般是从 A、 B、C、D四个选项中选择一个正确答案, 假设考 生不会做,他随机的选择一个答案,问他答对的概 率是多少?
解:含的基本事件的个数 基本事件的总数
= 1 = 0.25 4
变式:改为多选题呢?
2号骰子 1号骰子
1 2 3 4 5 6
1
2
3
4
5
6
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

人教B版高中数学必修三 3.2.1古典概型教学课件(共19张PPT)

人教B版高中数学必修三 3.2.1古典概型教学课件(共19张PPT)
设事件B为“取出的两件产品中恰有一件次品”
{ a 1,a 1,a 1,a 2,a 1,b 1,a 2,a 1, 9个基本事件 a 2,a 2,a 2,b 1,b 1,a 1,b 1,a2,b 1,b 1}
B a 1 , b 1 , a 2 , b 1 , b 1 , a 1 , b 1 , a 2 4个基本事件
例4.从含有两件正品 a1, a2和一件次品 b 1 的3件产品中每
次取出后不放回,连续取2次,求取出的两件产品中恰 有一件次品的概率。
1.设事件A为“取出的两件产品中恰有一件次品” 2. 基本事件空间为:
a 1 , a 2 , a 1 , b 1 , a 2 , a 1 , a 2 , b 1 , b 1 , a 1 , b 1 , a 2
个隐性基因,控制一个人眼睛颜色的基因有BB,Bb,bB,bb,
其中只有bb基因显示为父亲、母亲控制眼睛颜色的基因都为Bb,则孩
子眼睛不为褐色的概率有多大?
1
4
抽取问题
列出下列事件的基本事件空间:
1.从1,2,3中逐个抽取2个数,每次抽取后不放回 {(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)}
练1:某种饮料每箱装6听,如果其中有2听不合格,
问质检人员从中任抽取2听,检测出不合格产品的
概率有多大 ?
5
8
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪��

高中数学必修三课件:古典概型(共34张PPT)

高中数学必修三课件:古典概型(共34张PPT)
法就是把所有的基本事件一一列举出来,再逐个数出.
例如,把从 4 个球中任取两个看成一次试验,那么一次试验共有
多少个基本事件?为了表述方便,对这四个球编号为 1,2,3,4.把每次
取出的两个球的号码写在一个括号内,则有
(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),所以共有 6 个基本事件.用数对来表
(3)记“至少摸出 1 个黑球”为事件 B,
则事件 B 包含的基本事件为 ab,ac,ad,ae,bc,bd,be,共 7 个基本事
件,
所以
7
P(B)=10=0.7,
即至少摸出 1 个黑球的概率为 0.7.
求古典概型概率的计算步骤是:
①确定基本事件的总数 n;
②确定事件 A 包含的基本事件的个数 m;
标注的数字外完全相同,现从中随机取出两个小球,则取出的小球上
标注的数字之和为 5 或 7 的概率是(
)
3
A. 5
2
B. 5
3
C. 10
4
D. 5
解析:从中随机取出两个小球有
(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(
要求证明),在选择题或填空题中可以直接应用.
题型一
判断古典概型
【例题 1】(1)袋中有除颜色外其他均相同的 5 个白球,3 个黑球和 3
个红球,每球有一个区别于其他球的编号,从中摸出一个球.有多少种
不同的摸法?如果把每个球的编号看作一个基本事件,是否为古典概
型?
(2)将一粒豆子随机撒在一张桌子的桌面上,将豆子所落的位置看作

课件_人教版高中数学必修三古典概型课件PPT课件_优秀版

课件_人教版高中数学必修三古典概型课件PPT课件_优秀版

择A,B,C,D的可能性是相等的.所以这是一个
古典概型,
P(答对)
答对包含的基本数 事件1个 基本事件总数 4
变式探究
考试中的不定向选择题是从A,B,C,D四个选项 中选出所有正确的答案.同学们可能有一种感觉,如 果不知道正确答案,不定向选择题更难猜对,试求不定 向选择题猜对的概率. 解:基本事件为(A),(B),(C),(D), (A,B),(A,C),(A,D),(B,C),(B,D),(C,D), (A,B,C),(A,B,D),(A,C,D),(B,C,D), (A,B,C,D).
牛刀小试
依次不放例回抽取12听从饮料,字则(母x,y)a表,示一b次抽,到的c结,果. d中任意取出两个不同字母
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.
试试看:的请举一试个古验典概中型的例,子.有哪些基本事件?
假设有一题我们不会做,随机地选择一个答案,那么答对的概率是多少?
树状图 现有一张《霍比特人3》的电影票,小志和小熊熊两人都想要.为了公平起见,他们约定规则:两人同时各抛一枚质地均匀的骰子,点
如:掷一颗均匀的骰子一次,事件A为“出现偶数点”,请问事件A的概率是多少?
(2)点数之和为5的概E率{b,d},F是{c,d多}. 少? E{b,d},F{c,d}. E{b,d},F{c,d}. E{b,d},F{c,d}.
新课探究1
问题2:观察对比找出抛硬币、掷骰子试验的共同特征.
每个基本事件的概率都 是1/2
3
45
6
7
数学方法:列举法(树状图、列表格或按某种顺序列举等),做到不重不漏.
2点 3 4 5 6 解:基本事件共有4个.随机地选择一个答案,选择A,B,C,D的可能性是相等的.

高中数学 人教A版必修三 3.2古典概型 课件

高中数学 人教A版必修三 3.2古典概型 课件

跟踪训练 2 (1)从 1,2,3,4 中任取 2 个不同的数,则取出的 2 个 数之差的绝对值为 2 的概率是( )
11 A.2 B.3
11 C.4 D.6 (2)从 2 名男同学和 3 名女同学中任选 2 人参加社区服务,则选 中的 2 人都是女同学的概率为( ) A.0.6 B.0.5 C.0.4 D.0.3
(2)关于有放回抽样,应注意在连续取出两次的过程中,因为先 后顺序不同,所以(a1,b),(b,a1)不是同一个基本事件.
跟踪训练 3 一个盒子中装有 4 个形状大小完全相同的球,球 的编号分别为 1,2,3,4.
(1)从盒子中不放回随机抽取两个球,求取出的球的编号之和不 大于 4 的概率.
(2)先从盒子中随机取一个球,该球的编号为 m,将球放回盒子 中,然后再从盒子中随机取一个球,该球的编号为 n,求 n<m+2 的概率.
解析:(1)从盒中随机抽取两个球,其一切可能的结果组成的基 本事件有 1 和 2,1 和 3,1 和 4,2 和 3,2 和 4,3 和 4,共 6 个.
从盒中取出的球的编号之和不大于 4 的事件共有 1 和 2,1 和 3 两个.
因此所求事件的概率 P=26=13. (2)先从盒中随机取一个球,记下编号为 m,放回后,再从袋中 随机取一个球,记下编号为 n,其一切可能的结果(m,n)有:(1,1), (1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4),共 16 个,又满足条件 n≥m+2 的事件为(1,3),(1,4),(2,4),共 3 个,满足条件 n≥m+2 的事件的
知识点一 基本事件

人教A版数学必修三课件:第三章 3.2.1古典概型(共56张PPT)

人教A版数学必修三课件:第三章  3.2.1古典概型(共56张PPT)
有脚踏实地走下去。 志在峰巅的攀登者,不会陶醉在沿途的某个脚印之中。 最后的措手不及是因为当初游刃有余的自己 努力耕耘,少问收获。 过去不等于未来。 只要有信心,人永远不会挫败。 每个人心里都有一段伤痕,时间才是最好的疗剂。 种子牢记着雨滴献身的叮嘱,增强了冒尖的气。 一份信心,一份努力,一份成功;十分信心,十分努力,十分成功。 每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。 不要拿我跟任何人比,我不是谁的影子,更不是谁的替代品,我不知道年少轻狂,我只懂得胜者为。 重要的不是知识的数量,而是知识的质量,有些人知道很多很多,但却不知道最有用的东西。 明天的希望会让我们忘了今天的痛苦。 最容易做到的事是把简单的事变复杂,最难做到的事是把复杂的事变简单。 我不是天生的王者,但我骨子里流着不服输的血液。 明天是世上增值最快的一块土地,因它充满了希望。 付出了不一定有回报,但不付出永远没有回报。 学习是一次独立的行动,需要探索、琢磨、积极应战、顽强应战,艰辛由你独自承担,胜利由你独立争取。 把脸一直向着阳光,这样就不会见到阴影。 没有哪一个聪明人会否定痛苦与忧愁的锻炼价值。

人教版高中数学必修三第三章第2节 3.2.1 古典概型 课件(共17张PPT)

人教版高中数学必修三第三章第2节 3.2.1 古典概型 课件(共17张PPT)
我们把具有这两个特点的概率模型称为古典概型。
探究1:向一个圆面内随机地投射一个点,如果 该点落在圆内任意一点都是等可能的,你认为这是古典 概型吗?为什么?
探究2:在古典概型中,基本事件的概率是多少? 随机事件的概率如何计算?
3、师生探讨、导出公式。
掷硬币
P(正)=P(反) P(正)+P(反)=1
P(正)=P(反)=1/2
(3)古典概型在实际生活中应用十分广泛,学 生能学以致用,体会数学与社会的密切联系。
二、教学目标.
(1)知识目标:理解基本事件,古典 概型的概念,掌握古典概型的计算公式。
(2)能力目标:正确识别古典概型, 分清基本事件,运用公式计算事件的概率。
(3)创新、情感目标:培养学生的动 手,动脑能力和创新意识,通过生活中事 件概率的探讨,密切数学与生活的联系, 使学生的情感态度得到充分发展。
(2) 向上点数和为7的有:(1、6)(2、5)(3、4) (4、3)(5、2)(6、1)共6个基本事件 ∴P(7点)=6/36=1/6 同理,可求出其它点数和的概率,比较得出P(7点)最 大。
6、小结。
1、什么是基本事件? 2、什么是古典概型? 3、怎样求古典概型的概率?
7、练习:P130 : 1、2 作业:P134:4、5
掷骰子
P(1点)=P(2点)= --- =P(6点) P(1点)+P(2点)+ - =P(6点)=1/6 P(偶)=P(2点)+P(4点)+ P(6点) P(偶)=1/6+1/6+1/6=1/2
结论:
对于古典概型,事件A的概率为:
1
A包含的基本事件的个数
教学思路设计
设问 ——— 提出问题 —— 进入情境
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习1 储蓄卡上的密码由6个数字组成,每个数字可 以是0~9十个数字中的任意一个,假设一个人完全 忘记了自己的储蓄卡密码,问他能到自动取款机上 随机试一次密码就能取到钱的概率是多少?
练习2 某种饮料每箱装6听,如果其中有2听不合格, 问质检人员从中随机抽出2听,检测出不合格产品 的概率有多大?
沐风教育
选自人教版高中数学必修3 第三章第二节(第一课时)
沐风教育
1
新新课课引引入入 方法探究 典型例题 课堂训练 课堂小结
• 上节课例题P126
• 已知,如果从不包括大小王的52张扑克牌中

随机抽取一张,记取到红心为事件A,P(A)=
1 4
沐风教育
2
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
(3)事件“抽到红心”包含哪几个基本事件?
红心A,红心2,红心3,红心4,红心5,红心6, 红心7,红心8,红心9,红心10,红心J,红心Q, 红心K。总共13个基本事件。
任何事件(除不可能事件)都可以表示成基本事件的和
沐风教育
4
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
一次试验可能出现的每一个结果 称为一个 基本事件
试验1掷一枚质地均匀的硬币一次,结果哪几个基本事件?
2个基本事件,正面朝上,反面朝上。
试验2掷一颗均匀的骰子一次,结果有哪几个基本事件?
6个基本事件,1点,2点,3点,4点,5点,6点。
试验3从字母a、b、c、d任意取出两个不同字母的试验中,
有哪些基本事件?
树状图
a
bc b d
c d
c
d
解:所求的基本事件共有6个:
P(方片A)= P(方片2)=…… =P(方片K)
=P(梅花A)=…… =P(黑心K)=
1 52
沐风教育
10
新课引入 方方法法探探究究 典型例题 课堂训练 课堂小结
问题:随机抽取一张扑克牌,记取到红心为事件A,P(A)=?
基本事件总数:52 A事件包含的基本事件个数:13
P(A)= P(红心A)+ P(红心2)+…… +P(红心K)
个:选择A、选择B、选择C、选择D,即基本事件共
有4个,考生随机地选择一个答案是选择A,B,C,
D的可能性是相等的。从而由古典概型的概率计算公
式得:
P(“答对”)=“答对”所包含的基本事件的个数 =1=0.25
基本事件的总数
4
沐风教育
13
新课引入 方法探究 典型例题 课课堂堂训训练练 课堂小结
变式1假设有20道单选题,如果有一个考生答对了 17道题,他是随机选择的可能性大,还是他掌握了 一定知识的可能性大?
P(A)= 基本事件的总数n 2.思想方法:树状图(列举法) 数学建模
沐风教育
15
新课引入 方法探究 典型例题 课堂训练 课堂小结
验 “3点”、“4点” 2 “5点”、“6点”
两个基本事件
的可能性都是
1 2
六个基本事件
的可能性都是
1 6
(1) 试验中所有可能出现的基本事件的个数 有限
(2) 每个基本事件出现的可能性 相等
沐风教育
6
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
(1)所有可能出现的基本事件的个数 有限 (2)每个基本事件出现的可能性 相等
问题: 随机抽取一张扑克牌,记取到红心为事件A,P(A)=?
基本事件总数:52 A事件包含的基本事件个数:13
P (方片AU方片2U……U黑心K)=
P(方片A)+ P(方片2)+…… +P(方片K)+ P (梅花A)+……+ P(黑心K)=P(必然事件)=1
P(方片A)= P(方片2)=…… =P(方片K) =P(梅花A)=…… =P(黑心K)
A {a, b} B {a, c} C {a, d}
D {b, c} E {b, d} F {c, d}
沐风教育
5
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
问题:观察对比,找出试验1和试验2的共同特点:
基本事件
基本事件出现的可能性
试 验 1
“正面朝上” “反面朝上”
试 “1点”、“2点”
辨析2:某同学随机地向一靶心进行射击,这一试验
的结果有:“命中10环”、“命中9环”、“命中8
环”、“命中7环”、“命中6环”、“命中5环”和
“不中环”。
你认为这是古典概型吗?
5 6
为什么?
7
有限性 等可能性
8 9 5 6 7 8 9109 8 7 6 5 9 8
7 6
5
沐风教育
9
新课引入 方方法法探探究究 典型例题 课堂训练 课堂小结
我们将具有这两个特点的概率模型称为 古典概率模型
简称:古典概型
沐风教育
7
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
辨析1:向一个圆面内随机地投射一个点,如 果该点落在圆内任意一点都是等可能的,你认 为这是古典概型吗?为什么?
有限性
等可能性
沐风教育
8
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
=
1 52
+
1 52
++

1 52
= 13
52
13个
=
1 4
沐风教育
11
新课引入 方方法法探探究究 典型例题 课堂训练 课堂小结
在古典概率模型中,如何求随机事件出现的概率?
古典概型的概率计算公式:
P(A)
A包含的基本事件的个数m
基本事件的总数 n
在使用古典概型的概率公式时,应该注意: 要判断所用概率模型是不是古典概型(前提)
14
新课引入 方法探究 典型例题 课堂训练 课课堂堂小小结结
1.知识点:
(1)基本事件的定义和特点: ①任何两个基本事件是互斥的;
②任何事件(除不可能事件)
都可以表示成基本事件的和。 (2)古典概型的定义和特点 ①有限性;
②等可能性。
(3)古典概型计算任何事件A的概率计算公式
A所包含的基本事件的个数m
一次试验可能出现的每一个结果称为一个 基本事件
沐风教育
3
新基课本引概入念 方法探究 典型例题 课堂训练 课堂小结
问题: (1)在一次试验中,会同时出现 红心A 与 方片2
这两个基本事件吗?
不会
任何两个基本事件是互斥的
(2)事件“抽到2”包含哪几个基本事件? 方片2,梅花2,红心2,黑桃2,4个基本事件
沐风教育
12
新课引入 方法探究 典型例题 课堂训练 课堂小结
例2 单选题是标准化考试中常用的题型,一般 是从A,B,C,D四个选项中选择一个正确答 案。如果考生掌握了考察的内容,他可以选择 唯一正确的答案。假设考生不会做,他随机的 选择一个答案,问他答对的概率是多少?
解:这是一个古典概型,因为试验的可能结果只有4
相关文档
最新文档