拉矫机设计原理
拉弯矫直的原理

A
7
5)L翘 在轧制时由于各种原因,造成带钢上 下表面的延伸不一致,从而使带钢沿长度方向呈现 向上或是向下的翘曲,这种翘曲在实际矫直中很难 消除 。
6)C翘: 带钢沿宽度方向呈现向上或是向下 的翘曲。
图1-2 板形示意图
A
8
连续拉伸矫直机组
按矫直方式,板带材矫直机可分为辊式矫直 机、张力矫直机、连续张力按矫直方式,板带材 矫直机可分为辊式矫直机、张力矫直机、连续张 力矫直机和连续拉弯矫直机等四类。这里介绍连 续张力矫直机.
A
19
拉伸弯曲矫直的根本特点是在张应力水平远低 于材料屈服极限的情况下(T=σs /10- σs /3)使带材产 生了塑性延伸.金属带材拉伸弯曲矫直的主要问题有 以下三个: (1)确定矫直不良板形所需要的带材延伸率。 (2)(2)确定实现上述延伸率所需要的张力和矫正辊的半 (3)径和数量。 (4)(3)对工艺参数进行合理的调整,消除反复弯曲之后 (5)带材产生的纵向卷曲(Curl)和横向卷曲(Gutter)。
A
13
张力辊辊及其传动系统
张力辊组负责提供矫直所需的张力,它由入口张 力辊组和出口张力辊组组成。两个辊组都是驱动的, 但出口张力辊组的线速度高于入口张力辊组.张力辊 组常采用四辊式,即入口和出口辊组各由四个张力辊 组成.由于带材以“S”形经过这些辊子传导出来,所以 又称四辊式“S”辊组.
目前张力辊组常用的传动系统主要有集中传动 与单独传动两大类.在张力辊组的集中传动方式中,前 后张力辊组中的各个张力辊通过齿轮箱、行星齿轮差 动机构由一台主传动电机集体驱动,并由差动调速装 置产生带材矫平所需的延伸率。单独传动是指入口和 出口张力辊组中每个张力辊组都单独由直流电机或交 流变频电机传动。
连续矫直及其拉矫机的研究与应用

连续矫直及其拉矫机的研究与应用发表日期:2006-11-3 阅读次数:149随着现代连铸向高速的方向发展,铸坯在矫直时内部未完全凝固,即铸坯要经受液相矫直,用传统的一点矫直就会使铸坯壳的剪应力、拉应力、变形和变形速度均达到危险的峰值,以至使铸坯产生矫直裂纹。
为此,比较了一些提高铸坯矫直质量新技术:压缩矫直技术、多点矫直技术、渐进矫直(又称连续矫直)技术等。
其中连续矫直技术在近年来方坯连铸高效化改造中起着极为重要的作用。
在方坯连铸高效化改造与开发中,对铸坯带液芯矫直进行了深入研究,以满足改造及开发的连续矫直拉矫机在拉速为2.8~3m/min的条件下生产的铸坯无矫直缺陷、质量完好。
研究中设定连续矫直曲线并着重减少应变速率ε,并使拉矫机在矫直区域内剪应力为零而矫直弯矩为恒值,并使整个矫直区间内铸坯总合力为零。
为此,保证了高拉速下铸坯优良品质。
连续矫直结构优化特点由于单点矫直不能满足高拉速技术发展需要,必须研究新的矫直技术。
经研究,选三次抛物线作为连续连铸机弧形段和直线段的理想连续矫直曲线。
拉矫机矫直方式有单点矫直、多点矫直以及近年发展较快的渐进矫直(连续矫直)技术。
其中小方坯的渐进矫直技术是一种优化的结构,被矫直的变形都不会集中在一点上,从而完成了渐进矫直的过程,使铸坯中心的两相区变形情况得到较大的改善。
渐进矫直(连续矫直)拉矫机的应用近年来,渐进矫直拉矫机的推广使用取得一定成功,取代了单点拉矫机。
单点矫直机在冶金等方面有比较大的问题。
单点矫直会在切点处形成最大应变,这对全凝固铸坯的矫直已能满足要求,但许多钢厂为提高产量,要求再提高拉速,而冶金长度受厂房限制,铸坯带液芯不能实现单点矫直;由于铸坯液芯长度与拉速成正比,高拉速连铸机铸坯液芯必然很长,如仍采用固相矫直势必使连铸机半径很大,这明显不合理。
因此在改造和新建连铸机上推广渐进矫直矫机,可按以下要求进行设计:(1)在切点前布置一个单支承辊。
(2)拉矫机布置在切点后的一定距离内,利用矫直力矩在铸坯内部的均匀分配形成在设定距离内均匀渐进的连续矫直,使坯壳矫直应力与应变最小,可以满足带液苡矫直的要求。
拉矫机原理的分析与应用

拉矫机原理的分析与应用邹荣吴毛里(新钢自动化部)【摘要】系统分析酸洗线破鳞拉矫机的结构及特点,介绍破鳞拉矫机的工作原理及在酸洗生产线中的作用和使用情况,同时就拉矫机在破鳞方面的发展提出建议。
【关键词】拉矫机破鳞原理带钢Analysis and Application on The Scaling LevellerAbstract:The structure and characteristics of descaling and tension leveller for pickling line were analyzed systematically, the working principle of descaling and withdrawal straightening machine and its function and application on the pickling line were introduced,furthemore,the application tendency of the tension leveller to descaling process was described.Key Words:scaling leveller descaling strip1. 引言拉伸弯曲矫直技术广泛应用于冷轧板带生产中,它将传统辊式矫直技术和拉伸矫直技术合成一体,具有破鳞﹑拉伸﹑弯曲﹑矫直的作用。
酸洗工艺上的拉矫机,一方面可以起到机械破鳞的作用从而提高酸洗效率;另一方面,拉矫机可以改善热轧原料板型,提高成品板型质量,降低带钢在运行中发生跑偏,并大大减少因板型不好对带钢造成的损害。
因此,拉矫机作为热轧与冷轧之间承前启后的设备,对酸洗带钢表面的质量和板型质量都起到了举足轻重的作用。
2. 拉矫机破鳞工作原理利用铁基体与氧化铁皮覆层材料性能的巨大差异,采用机械方法反复弯曲,基体材料受力后产生一定的弹塑性变形,表面氧化铁皮则由于不具有塑性且破坏强度较低,同时与铁基体附着力差,这样当氧化铁皮不能适应金属形状变化而引起的内应力大于其破坏强度时,它便要破裂。
冷轧厂酸洗线拉矫机原理分析

摘要:介绍破鳞拉矫机的工作原理及在酸洗生产线中的作用和使用情况,对系统分析酸洗线破鳞拉矫机的结构及控制进行分析,并对其工作方式进行说明。
关键词:酸洗线拉矫机工作方式随着经济的发展及技术的进步,国内外市场对冷轧薄板质量的要求越来越高,因此如何在各工序采取措施来提高产品质量便成为冷轧厂的当务之急。
酸洗拉伸弯曲矫直机作为热轧、冷轧之间承前启后的一台设备,在除鳞的高速、高效化以及对板形的改善方面起到了举足轻重的作用,特别是对近年发展起来的酸洗――冷轧联机技术的实现上,更是成为一种决定性的因素。
以往人们研究的重点往往集中于其对板形质量的改善并已取得了明显的效果,但如今已逐步感受到充分发挥拉矫机破鳞功能对于提高带材表面质量进而提升带钢总体质量水平以及生产顺行的重大意义。
而生产实践也表明,近年来随着板形质量水平的逐渐提高,带材表面质量问题日益凸显。
如何使酸洗拉矫机在实际应用中更好的兼顾改善板形与破鳞的双重功能,这实际上便是一个拉矫机工艺性能的优化问题,这一问题的解决亦有赖于拉矫机破鳞理论的研究。
1.拉伸弯曲矫直原理拉伸弯曲矫直的力学机理:当带钢在小直径辊子上弯曲时,同时施加张力,由于弯曲和变形的同时存在,使得带钢在远低于材料屈服极限的张力下,带材中心层产生塑性延伸,因而能够改善带钢板形(见图1)。
根据带钢拉矫变形的力学机理,带钢在拉矫机前后张力辊大张力的作用下,通过拉矫机时产生了纵向拉应力与弯曲应力,实际矫直过程是发生在上述两种应力的叠加。
叠加应力分布,两种叠应力作用的结果,使被矫带材内的各种应力,通过拉伸和弯曲应力而产生变化,即带材中产生形状不同的长短纤维组织同时被延伸拉长。
在它们弹性收缩之后,延伸变长的纤维仍然保留。
由于拉应力所产生的永久性塑性变形表现为延伸形式,经过几次拉伸状态下的弹性反弯,使带钢产生均匀的塑性延伸,内应力值相同且方向一致,达到了矫直的目的。
2.拉矫机的结构及延伸率控制2.1 拉矫机的组成破鳞拉矫机主要由2部分组成:破鳞拉矫机本体;入口、出口张力辊组及其传动装置(见图2)矫直单元包括产生塑性延伸、消除板形缺陷的弯曲辊组和消除板面翘曲的矫直辊组;张力辊组由入口s辊组和出口s辊组组成,负责提供带钢塑性变形所需的张力。
连续矫直及其拉矫机的研究与应用

连续矫直及其拉矫机的研究与应用发表日期:2006-11-3 阅读次数:149随着现代连铸向高速的方向发展,铸坯在矫直时内部未完全凝固,即铸坯要经受液相矫直,用传统的一点矫直就会使铸坯壳的剪应力、拉应力、变形和变形速度均达到危险的峰值,以至使铸坯产生矫直裂纹。
为此,比较了一些提高铸坯矫直质量新技术:压缩矫直技术、多点矫直技术、渐进矫直(又称连续矫直)技术等。
其中连续矫直技术在近年来方坯连铸高效化改造中起着极为重要的作用。
在方坯连铸高效化改造与开发中,对铸坯带液芯矫直进行了深入研究,以满足改造及开发的连续矫直拉矫机在拉速为2.8~3m/min的条件下生产的铸坯无矫直缺陷、质量完好。
研究中设定连续矫直曲线并着重减少应变速率ε,并使拉矫机在矫直区域内剪应力为零而矫直弯矩为恒值,并使整个矫直区间内铸坯总合力为零。
为此,保证了高拉速下铸坯优良品质。
连续矫直结构优化特点由于单点矫直不能满足高拉速技术发展需要,必须研究新的矫直技术。
经研究,选三次抛物线作为连续连铸机弧形段和直线段的理想连续矫直曲线。
拉矫机矫直方式有单点矫直、多点矫直以及近年发展较快的渐进矫直(连续矫直)技术。
其中小方坯的渐进矫直技术是一种优化的结构,被矫直的变形都不会集中在一点上,从而完成了渐进矫直的过程,使铸坯中心的两相区变形情况得到较大的改善。
渐进矫直(连续矫直)拉矫机的应用近年来,渐进矫直拉矫机的推广使用取得一定成功,取代了单点拉矫机。
单点矫直机在冶金等方面有比较大的问题。
单点矫直会在切点处形成最大应变,这对全凝固铸坯的矫直已能满足要求,但许多钢厂为提高产量,要求再提高拉速,而冶金长度受厂房限制,铸坯带液芯不能实现单点矫直;由于铸坯液芯长度与拉速成正比,高拉速连铸机铸坯液芯必然很长,如仍采用固相矫直势必使连铸机半径很大,这明显不合理。
因此在改造和新建连铸机上推广渐进矫直矫机,可按以下要求进行设计:(1)在切点前布置一个单支承辊。
(2)拉矫机布置在切点后的一定距离内,利用矫直力矩在铸坯内部的均匀分配形成在设定距离内均匀渐进的连续矫直,使坯壳矫直应力与应变最小,可以满足带液苡矫直的要求。
矫直机毕业设计

矫直机毕业设计矫直机毕业设计随着现代工业的发展,机械设备在生产过程中起到了至关重要的作用。
其中,矫直机作为一种常见的机械设备,被广泛应用于金属加工、汽车制造等领域。
本文将围绕矫直机的毕业设计展开讨论,探究其设计原理、技术要点以及未来发展趋势。
一、设计原理矫直机的设计原理主要基于材料力学和机械原理。
其基本原理是通过对金属材料的弯曲变形进行逆向力学分析,从而实现材料的矫正。
矫直机通常由上、下两个辊轮组成,通过辊轮的旋转和压力调节,对金属材料进行弯曲矫正。
在设计中,需要考虑材料的性质、工件的尺寸和形状等因素。
通过对这些因素的分析和计算,可以确定矫直机的结构参数、工作方式以及控制系统等设计要点。
二、技术要点1. 结构设计:矫直机的结构设计是整个毕业设计的核心。
需要考虑矫直机的稳定性、刚度和精度等因素。
合理的结构设计可以提高矫直机的工作效率和矫直质量。
2. 辊轮设计:辊轮是矫直机的核心部件,直接影响到矫直效果。
辊轮的材料选择、表面处理以及尺寸设计都需要进行详细的分析和计算。
3. 控制系统设计:矫直机的控制系统需要实现对辊轮的旋转速度、压力和位置等参数的精确控制。
控制系统的设计涉及到传感器的选择、电气元件的布置以及控制算法的优化等方面。
4. 安全设计:矫直机在工作过程中存在一定的危险性,因此安全设计至关重要。
需要考虑到紧急停机、过载保护以及防护装置等方面,确保操作人员的安全。
三、未来发展趋势随着科技的不断进步,矫直机也在不断发展和改进。
未来,矫直机的发展趋势主要体现在以下几个方面:1. 自动化:随着工业自动化水平的提高,矫直机将更加智能化和自动化。
通过引入机器学习和人工智能等技术,可以实现矫直过程的自动控制和优化,提高生产效率和产品质量。
2. 精确度和稳定性:随着对产品质量要求的不断提高,矫直机的精确度和稳定性也将成为关注的焦点。
未来的矫直机将更加注重精确度的控制和稳定性的提升,以满足高精度加工的需求。
3. 多功能性:矫直机在不同行业中的应用需求也在不断增加,因此未来的矫直机可能会具备更多的功能和适应性。
拉矫机原理的分析与应用
拉矫机原理的分析与应用拉矫机是一种用于对金属板材进行矫正和拉伸的专用设备。
其原理主要是通过辊轮系统对金属板材施加力,使其产生塑性变形,从而达到矫正和拉伸的效果。
下面将对拉矫机的原理进行详细分析,并讨论其在实际应用中的具体应用场景。
拉矫机的工作原理主要包括以下几个方面:1.辊轮系统:拉矫机通常由一组辊轮组成,其中的辊轮可以自由旋转。
辊轮之间的间距可以调整,以适应不同的金属板材厚度。
2.上下弯曲辊轮:拉矫机的辊轮通常采用一种特殊的形状,即上下弯曲。
这种设计可以使金属板材在通过辊轮时发生变形,从而实现矫正和拉伸的效果。
3.强制压下:拉矫机的辊轮可以通过液压系统或气动系统施加强制压力,以增加金属板材的变形量。
这样可以加快矫正和拉伸的速度。
4.回弹控制:拉矫机通常还配备了回弹控制装置,用于控制金属板材在经过辊轮后的回弹情况,从而使金属板材的变形保持在需求范围内。
拉矫机的主要应用场景有:1.汽车制造业:拉矫机可以用于汽车制造业中的车身板金加工过程中,对车身板金进行矫正和拉伸,以满足汽车制造的质量要求。
2.建筑业:拉矫机可用于建筑业中的钢结构加工过程中,对钢板进行矫正和拉伸,以确保钢结构的稳定性和强度。
3.电子设备制造业:在电子设备制造业中,拉矫机可用于对金属板材或金属膜进行矫正和拉伸,以满足对电子元件平整度和导电性的要求。
4.航空航天业:在航空航天业中,拉矫机可用于对飞机蒙皮板进行矫正和拉伸,以提高飞机蒙皮板的强度和整体质量。
5.金属加工行业:在金属加工行业中,拉矫机可用于对各种金属板材进行矫正和拉伸,以满足不同需求的工件加工要求。
总的来说,拉矫机通过对金属板材施加力,使其产生塑性变形,从而实现矫正和拉伸的效果。
它可以广泛应用于汽车制造、建筑业、电子设备制造、航空航天等多个领域,为各行业的生产加工提供了重要的技术支持。
拉弯矫直原理范文
拉弯矫直原理范文拉弯矫直是一种常见的金属加工工艺,用于将金属材料弯曲或矫直为所需的形状和尺寸。
其原理基于材料的塑性变形特性,通过施加外力或热加工的方式,改变材料的形状,以满足特定的设计要求。
本文将详细探讨拉弯矫直的原理,包括其基本过程、影响因素以及应用领域。
拉弯矫直的基本原理是应用外力或热加工,使金属材料产生塑性变形,从而改变其形状和尺寸。
在拉弯矫直过程中,金属材料一般会受到两个相对方向的力或应变,从而引发塑性变形。
这两个方向分别称为压边方向和拉边方向。
压边方向施加的力使材料向内弯曲,而拉边方向施加的拉力则使材料向外弯曲。
拉弯矫直通常分为两个步骤:预弯和最终弯曲。
在预弯阶段,金属材料会首先被弯曲到一个初步形状。
这个预弯形状通常比最终形状要小一些,以考虑到材料弹性恢复和形变的去除。
在最终弯曲阶段,金属材料被进一步弯曲为所需的形状。
拉弯矫直的原理受到多种因素的影响。
首先,金属材料的物理性质是决定拉弯矫直能否成功的基础。
其次,拉弯矫直的操作方法和设备也对结果产生重要影响。
例如,材料的弯曲半径和弯曲角度会受到应变速度、应变速率和应变量等参数的影响。
此外,材料的厚度和宽度也会对受力分布和变形产生一定影响。
而对于不同材料来说,其抗弯强度、断裂强度和塑性等指标也有差异,进而影响拉弯矫直的可行性和效果。
拉弯矫直在工业生产中有广泛应用。
首先,该工艺常用于金属制品的生产。
例如,汽车行业中的车门、车身、座椅和零部件等,以及航空航天行业中的飞机机身和部件等,都需要经过拉弯矫直工艺来满足特定的形状和尺寸要求。
其次,拉弯矫直也用于建筑领域的钢结构制作,如钢梁、桥梁和管道等。
此外,该工艺还应用于电子电气领域的电缆和导线生产,以及压力容器和锅炉等设备的制作。
拉弯矫直的应用还可以通过其他附加工艺得到更好的效果。
例如,轧制、碾压、焊接和涂覆等工艺都可以与拉弯矫直结合,以满足更高的要求。
另外,一些可塑性较差的材料,如不锈钢、铝合金和钛合金等,通常会在拉弯矫直之前进行加热处理,以提高其塑性和变形能力。
拉矫机
拉矫机的概念、基本要求拉矫机的概念在各种连铸机中都必须有拉坯机,以便将引锭链及与其凝结在一起的铸坯连续拉出结晶器,然后经过二次冷却支撑导向装置使铸坯进入拉矫机。
铸坯出拉辊后便可脱锭(即将引锭链与铸坯分开)。
现叙述的是弧形连铸机,生产的产品是直铸坯。
因此,当铸坯出拉坯及后还必须进行矫直。
由于在实际的弧形连铸机中,拉坯和矫直这两道工序常是在同一个机组中完成的,故通称其为拉坯矫直机,简称拉坯机。
拉矫机的基本要求拉矫机在设计和使用上,应满足生产工艺的下述基本要求:(1)应具有足够的拉坯和矫直能力,以适应生产上可能出现的最大阻力,但应备有可靠的过载保护措施;(2)驱动系统应具有良好的调速性能,并能实现反转,拉坯速度一般应与结晶的振动速度实现连锁;(3)为了适应连续、高温的工作环境,设备应有足够的强度和刚度,并采用有高效的方法对设备本体进行冷却,以防止变形;(4)在结构上要能适应铸坯断面在一定范围内的变化,并允许不能矫直的铸坯通过,以及在多机多流连铸机上对其结构的特殊要求;(5)采用多辊拉矫机时,可考虑为实行夜心拉娇和压缩浇铸新工艺创造条件。
拉矫机的型式及构造连铸机中拉矫机型式较多,构造也各不相同。
通常都以拉坯矫直直辊系中棍子多少来区别和标称不同型式的拉矫机,如四辊拉矫机、五辊拉矫机……和多辊拉矫机等。
根据拉矫机拉娇铸坯时的特点来区分拉矫机的型式,可分为一般(即铸坯完全凝固的)拉矫机和夜心铸坯拉矫机。
目前,只有多辊拉矫机适于尚未完全凝固铸坯的拉娇(即液心拉娇),其他拉矫机这只适用于在进入拉矫机已完全凝固的铸坯的拉娇。
拉矫机和其他机械一样,有传动系统和工作系统两大部分组成。
传动系统主要包括电动机、减速器、齿轮座级万向联轴器。
工作系统主要包括机架、拉矫辊及轴承、压下装置等。
机架主要用于安放和支撑拉矫辊及其调整装置的。
拉矫辊一般用45好钢制造,最好选用热疲劳强度较高的钢制造。
其压下与调节机构通常用电动和液压两种,只有个别小型铸机用手动压下螺丝调节。
拉伸弯曲矫直机的结构设计理论分析
机 组 技 术 参 数 如 下 : 材 料 机 械 性 能 弹 性 模 量 带 材 宽 度 带 材 厚 度 矫 直 速 度 人 口张 力 出 口 张 力
≤ 35 M P
。
E=2.13x1 MPa B=500—1 500 mm
T=0.5—2.5 r砌 /3≤ 150 m/s
拉 伸 弯 曲 矫 直 机 应 用 于 精 整 机 组 中 ,对 簿 带 材 进 行 矫 以 矫 平 板 形 较 差 的 带 材 ;同 时 矫 直 辊 组 中 的 调 整辊 .用 来
直 。 目前 . 国 外 已 经 开 发 生 产 出 多 种 机 型 ,并 已 广 泛 应 补 偿 由 于张 力 和 矫 直 辊 组 共 同 带 来 的 不 均 匀 变 形 。 以 上 分
组 以 上 的 矫 直 辊 组 , 并 且 增 加 了 支 撑 辊 的 数 目 ,提 高 了 矫
直 辊 的 抗 弯 刚 度 和 强 度 .这 样 就 可 以 矫 直 高 强 度 的 薄 带
材 。
拉 弯矫 直 机 的 设 计 制 造 方 法 ,在 国 外 已 较 为 成 熟 . 而
国 内 只 作过 小 型样 机 及理 论 探 讨 ,还 未 达 到 在 生 产 中 应 用
单 组 合 , 见 图 1一a.矫 直 效 果 并 不 显 著 。 后 来 出 现 了 如 图
1_b所 示 类 型 的 拉 弯 矫 直 机 , 这 种 矫 直 机 既 减 少 了矫 直 辊
的 数 量 , 又 达 到 了 较 好 的 矫 直 精 度 。 经 过 不 断 的 开 发 研
b
究 ,近 年 来 又 出 现 了 多 重 拉 弯 矫 直 机 ,如 图 1一c,使 用 两
紧 装 置 或 张 力辊 组 产 生 拉 伸 变 形 .使 带 材 产 生 一 定 的 塑 性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
【关键词】拉拉伸弯曲矫直机张力延伸率
1前言
拉伸弯曲矫直机组(简称“拉矫机”)是为适应带材高要求的平直度需要发展起来的一种新型 2 2.1 2.2 2.3 种变形原理,带张力的带钢至少要通过两个弯曲辊,进行整个板面均匀的延伸,再经过一个矫直辊,对残余应力进行重新分布均衡。
为了适应不同厚度带钢的矫直需要,要设置两组弯曲-矫直辊。
3拉矫机的结构
拉矫机由张力辊组与拉伸弯曲机座组成,据不同的工艺要求和现场条件,这两组有多种形式。
3.1拉伸弯曲机座
拉弯矫直机座使带材产生拉伸弯曲变形,由弯曲辊单元与矫直辊单元组成,弯曲辊由两个或多个小直径的弯曲辊,它使带材在张力作用下,经过剧烈的反复弯曲变形,导致带材产生塑性延伸,以达到工艺要求的延伸率。
弯曲辊机座的结构,要据工艺要求进行合理确定结构形式,工艺设备结构满足工艺要求使用性能,应用方便合理,设备制造工艺能达到设备要求性能。
3.1.1弯曲辊单元
弯曲辊的作用:弯曲辊用做产生弯曲应力并在拉伸应力的联合作用下产生弹塑性延伸,实现
为
消除带的。
,对。
实现工艺性能,达到功能实现保证质量需要。
弯曲辊机座的自动倾斜控制,整个机座可倾斜±10°。
以此改变带钢的出口角度,实现拉伸量调节并消除横向弯曲。
出口顺导辊
顺导辊直径大约为Φ200mm
弯曲辊工艺技术参数
弯曲辊直径:弯曲辊直径,与带材厚度及带材的屈伏限有关,采用小直径弯曲辊时,不仅矫正效果好,而且还能相应的减小带材单位张力。
但辊子直径过小,将使辊子转速增加,辊子磨损加大而降低使用寿命;相应的刚性减小,降低矫正质量,应有提高刚性的措施。
资料表明:a型式弯曲辊推荐弯曲辊最小直径为30mm,带材厚度增加时辊子直径相应增加。
浮动辊形式多用于矫正极薄的高强度带材,因带材的弯曲半径和辊子半径相近,减小辊子直径对矫正质量影响很大,其直径最小可达6~20mm,带材越薄,材料屈服极限越高,则辊径应该越小。
屈服极限对弯曲辊直径选择的影响:材料屈服极限越高,则辊径应越小。
3.1.2矫直辊单元
最终板
3.2
张力辊的数目及布置形式决定于带材拉弯所需的最大拉伸力和工艺现场条件。
3.2.1张力辊的直径
确定张力辊直径的原则是带材在张力辊上应保持弹性变形,主要据不同带厚条件进行相应的计算确定。
张力辊直径计算公式为D=hE/σs
h-带材厚度,
E-带材弹性模量,
σs-带材屈伏限。
此公式计算出张力辊直径往往过大,实际选定张力辊直径时允许带材在辊子有少量的弹塑性弯曲变形,一般辊径在500~1500mm范围内,据带材不同厚度合理选用。
3.2.2张力辊的数量
张力辊的数量主要取决于矫直带材时所需的张力值,张力辊依靠辊面与带材的摩擦力传递张力,所传递的张力值与辊面摩擦系数及带材对张力辊的包角有关。
张力计算公式有T2=T1efα
f-带材与辊面的摩擦系数,
α-带材在辊上包角总和,α为弧度值,取实际包角,
e-自然对数的底e=2.718。
实际使用的是由于金属弹性变形实际包角α′小于理论包角α,理论包角乘以0.8~0.9换算成实际包角α′。
一般理论计算包角α为450°时,实际包角α′为(0.8~0.9)α=360~405°,则弧度值á=6.283~7.06858。
对于钢辊子与带钢的摩擦系数f取0.15~0.18,对于包胶辊f取0.18~0.28,当表面橡胶磨光后,摩擦系数f应比原有数值降低50%左右。
经验选取摩擦系数的取值,进行扩大系数的计算。
摩擦张力辊的张力由入口张力和出口张力组成,张力是由带钢与辊子间的摩擦力形成的,出入口之间的张力关系为张力扩大系数efα′,从上式看张力差只与摩擦系数f、实际包角α′有关,但是扩大系数的实现要靠张力辊电机提供出相应的传动力矩,传动力矩过小实现不了这个扩大系数,传动力矩过大则产生打滑现象。
张力辊外端的小张力由此张力辊系统外的张力设备提供;必须由此外加张力实现在张力辊上的压应力来产生摩擦力,这个外张力增大张力辊提供的张力也相应增大,此外压应力应在运行时保持稳定。
电动机的力矩M=2T2(efα′-1)/D(电动机状态T1>T2)张力辊扩大张力为T2(efα′-1),电动机的功率计算为:
N=Mn/(9550η)
M-张力辊上传动力矩,N·m;
n-张力辊的转速r/min;
η-张力辊上的传动效率(包括电机效率),取η=0.8。
3.2.3张力辊的布置形式
张力辊的布置形式有多种,工艺要求使得工艺设备选型不一,则工艺设备布置位置也不一致,工艺设备结构及张力辊的布置形式也会不一样。
一般有两辊式和四辊式。
4.拉矫机在实际中的应用
1700mm拉伸弯曲矫直机组为例。
4.1拉矫机的参数
20kN;
0.5%~3
4.2
销售。
生产0.6×1150mmSPCC钢带,设定延伸率为0.5%,第一弯曲辊压下深度为6.5mm,第二弯曲辊压下深度为4.5mm,矫直辊的压下深度为3.2mm和2.5mm,入口张力设定为28.5kN,出口张力设定为40.5kN。
生产中根据出口带材的平直度对矫直机的压下量进行微调整,使带材的平直度达到最佳。
使用拉矫机前后带材的平直度对比情况如图1所示:
由图1可以看出,使用拉矫机之后,带材的平直度得到了明显改善,浪形由原来的15I降低到4I。
对较薄规格的带材,拉矫机的使用效果会更加明显。
但是,拉矫机对于退火料的拉伸矫直,板形的平直度虽然得到改善,但板形表面易出现拉矫纹,在延伸率大于0.5%时拉矫纹会更加明显。
因此,拉矫机对于普碳钢冷硬板的生产,会有很好的拉伸矫直效果。
但对于退火带材的平整矫直,还要放在平整机之后进行。
5结束语
为适应带材精度越来越高的需要,拉矫机的应用也越来越广泛。
人们对于拉矫机的工作原理、设备性能也越来越熟悉。
熟练的工艺操作,可保证拉矫的作业率及产品质量。
但是退火带材易出现拉矫纹,且延伸率越大,拉矫纹越厉害。
平整后的带材不易产生拉矫纹。
所以拉矫工艺放在带材平。