材料力学弯曲应力
合集下载
材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
材料力学5弯曲应力_图文

(1)合理安排载荷 (2)分散载荷(从使用方案考虑) (3)调整支座位置(从设计角度)
1、合理安排梁的受力
(1)合理安排载荷
P
(降低最大弯矩)
P
a
b
l
1、合理安排梁的受力(降低最大弯矩)
(2)分散载荷(从使用方面考虑)
P P
P
若:
l
1、合理安排梁的受力(降低最大弯矩)
(3)调整支座位置(从设计角度)
aP
q
A
C
E
l
P
B D
弯曲切应力强度校核
一般而言,对于等直梁,梁上的最大切应力发生在剪力最大 截面的中性轴上,且
是中性轴一侧的面积对中性轴的静矩 。
型钢可查表
切应力强度条件:
梁上的最大切应力max≤[]
例题4-10 图示梁为工字型截面,跨长2a=4 m、 q=25 KN/m;材
料许用应力[]=160 MPa,[]=100 MPa。试选择工字钢型号。
3950
(3)合理截面要符合材料的力学性能
塑性材料
z
z
采用关于中性轴对称的截面
y
y
脆性材料
z
采用关于中性轴不对称的截面
y
理想情况: 可调整各部分尺寸,使
z
y
y1 z
y2 y
3、采用变截面梁
以危险截面的弯矩设计梁的截面,而在其
他截面的弯矩较小,材料不能被充分利用。
从强度的角度来看,如果在弯矩大的部位采用较大的截面,弯矩较 小的部位采用较小的截面,就比较合理。截面尺寸沿梁轴线变化的梁 叫变截面梁。 若各个截面上的最大应力都等于材料的许用应力,这种梁叫等强度梁。
正应力大小与其到中 性轴距离成正比;
1、合理安排梁的受力
(1)合理安排载荷
P
(降低最大弯矩)
P
a
b
l
1、合理安排梁的受力(降低最大弯矩)
(2)分散载荷(从使用方面考虑)
P P
P
若:
l
1、合理安排梁的受力(降低最大弯矩)
(3)调整支座位置(从设计角度)
aP
q
A
C
E
l
P
B D
弯曲切应力强度校核
一般而言,对于等直梁,梁上的最大切应力发生在剪力最大 截面的中性轴上,且
是中性轴一侧的面积对中性轴的静矩 。
型钢可查表
切应力强度条件:
梁上的最大切应力max≤[]
例题4-10 图示梁为工字型截面,跨长2a=4 m、 q=25 KN/m;材
料许用应力[]=160 MPa,[]=100 MPa。试选择工字钢型号。
3950
(3)合理截面要符合材料的力学性能
塑性材料
z
z
采用关于中性轴对称的截面
y
y
脆性材料
z
采用关于中性轴不对称的截面
y
理想情况: 可调整各部分尺寸,使
z
y
y1 z
y2 y
3、采用变截面梁
以危险截面的弯矩设计梁的截面,而在其
他截面的弯矩较小,材料不能被充分利用。
从强度的角度来看,如果在弯矩大的部位采用较大的截面,弯矩较 小的部位采用较小的截面,就比较合理。截面尺寸沿梁轴线变化的梁 叫变截面梁。 若各个截面上的最大应力都等于材料的许用应力,这种梁叫等强度梁。
正应力大小与其到中 性轴距离成正比;
材料弯曲应力

材料弯曲应力
在材料力学中,弯曲应力是指在横截面上的一个点上由于外部载荷而引起的正应力(垂直于横截面的方向)。
弯曲应力的大小取决于材料的弯曲形状、外部载荷的大小和分布、以及材料的截面性质。
弯曲应力(σb)可以用以下的公式表示:
其中:
•σb是弯曲应力;
•Mc是在横截面上的一个点上的弯矩;
•S是该点处横截面的静力矩。
弯曲应力的单位通常是帕斯卡(Pascal,Pa)或兆帕(Megapascal,MPa)。
弯曲应力会导致材料产生弯曲变形。
对于均匀材料的简单弯曲梁,弯曲应力在横截面上是不均匀的,最大的弯曲应力通常出现在横截面的最外层纤维,而中性轴上的应力为零。
了解弯曲应力是设计和分析工程结构、梁、梁板等零件的重要因素。
在工程实践中,通常需要考虑弯曲应力来确保结构的安全性和稳定性。
材料力学-弯曲应力

对于宽为b高为h的矩形截面:
W
bh3 12
bh2
h
6
2
对于直径为d的圆形截面:
W d 4 64 d 3
d
32
2
限定最大弯曲正应力不得超过许用应力,于是强度条件为:
max
M max W
设σt 表示拉应力,σc 表示压应力,则:
t max t
cmax c
塑性材料, [σt]= [σc]= [σ];
所以由(1)式:
A
d
A
A E
y
d
A
E
A y d
A
E
Sz
0
由(2)式:
说明中性轴过形心
A z
d
A
A zE
y
d
A
E
A
yz d
A
E
I yz
0
由于y轴是对称轴,此 式自然满足。
由(3)式:
A
y
d
A
A
yE
y
d
A
E
A
y2
d
A
E
Iz
M
1 M
EI z
1 为梁轴线变形后的曲率 ;
由变形几何关系得到 y
由物理关系得到
bh2 2b3 W
63
故: b 121.6 mm
h 2b 243.2 mm
选取截面为: 125 250 mm 2
e.g.3 已知:l=1.2m,[σ]=170MPa, 18号工字钢,不计自重。
求:P 的最大许可值。
P A
解:作弯矩图, 由图可得:
M
| M |max Pl 1.2P N m
材料力学第六章弯曲应力

但相应的最大弯矩值变为
Fl ql2
M max
4
8
375 kN m 13 kN m 388 kN m
而危险截面上的最大正应力变为
max
388103 N m 2342106 m3
165.7106
Pa
165.7
MPa
显然,梁的自重引起的最大正应力仅为
165.7 160 MPa 5.7 MPa
<2>. 相邻横向线mm和nn,在梁弯曲后仍为直线,只是
相对旋转了一个角度,且与弧线aa和bb保持正交。
根据表面变形情况,并设想梁的侧面上的横向线mm和 nn是梁的横截面与侧表面的交线,可作出如下推论(假设):
平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面, 只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。
力的值max为
max
M ym a x Iz
M
Iz ymax
M Wz
式中,Wz为截面的几何性质,称为弯曲截面系数(对Z轴)
(section modulus in bending),其单位为m3。
b
h d
o
z
o
z
y
y
中性轴 z 不是横截面的对称轴时(参见图c),其横截面 上最大拉应力值和最大压应力值为
A
r
(b)
M z
y d A E
A
r
y2 d A EI z M
A
r
(c)
由于式(a),(b)中的
E
r
不可能等于零,因而该两式要求:
1. 横截面对于中性轴 z 的静矩等于零,A y d A 0 ;显
材料力学第5章弯曲应力

Iz
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1
弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z
弯曲应力-材料力学

弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
§5.3 横力弯曲的正应力
纯弯曲正应力 My
IZ
弹性力学精确分析表明, 当跨度 l 与横截面高度 h 之 比 l / h > 5 (细长梁)时, 纯弯曲正应力公式对于横力 弯曲近似成立。
横力弯曲最大正应力
max
M max ymax IZ
13
强度条件
弯曲正应力强度条件
1.弯矩最大的截面上 σmax在 2.离中性轴最远处
5
§5.1 纯弯曲
凹入一侧纤维缩短 突出一侧纤维伸长 中间一层纤维长 度不变
--中性层
中间层与横截面 的交线
--中性轴
6
§5.2 纯弯曲时的正应力
一、变形几何关系
7
§5.2 纯弯曲时的正应力 y
二、物理关系:
当
时
p
z
E
E y
x 可确定横截面上的应力分布
y
问题:中性层( y 的起点)在哪里? 1 怎 样算?
截面为bh=30 60mm2 的矩形
求:(1)截面竖放时距离中性层20mm 处的正应力和最大正应力max; (2) 截面横放时的最大正应力max
b
解: M Fa 5103 0.18 900Nm
竖放时
横放时
IZ
bh3 12
30 603 12
54cm4
y 20mm : M y 33.3MPa
8
§5.2 纯弯曲时的正应力 E E y
平衡条件找答案
三、平衡条件:
z
xM
dA dA
Y 0;
Z 0; mx 0;
自动满足
y
X 0
dA A
yE
E dA
A
ydA
A
E
Sz 0
E 0
Sz yC A 0
yC 0
中性轴通过形心 (y z 为形心主惯性轴)
9
my 0
19
例题
q=60kN/m
120
4. C 截面曲率半径ρ
A
1m
FAY
C
l = 3m
B
x
180
K
30 C 截面弯矩
z
MC 60kN m
FBY
y
C 截面惯性矩
FS 90kN
M ql2 / 8 67.5kN m
x 90kN
IZ 5.832105 m4 1M EI
C
EIZ MC
200109 5.832105 60 103
IZ
m ax
M IZ
ymax
900 0.03 54 108
50MPa
IZ
hb3 12
60 303 12
13.5cm4
max
M IZ
ymax
900 0.015 13.5 108
100MPa 2 max16
例题
已知:E=200GPa,
q=60kN/m
A
1m
FAY
C
l = 3m
1.C 截面上K点正应力
5.832105 m4
K
MC yK IZ
60103 (180 30) 103 2
5.832 105
x
61.7 106 Pa 61.7MPa(压应力)
17
例题
2. C 截面最大正应力
q=60kN/m
120
C 截面弯矩
A
1m
FAY
C
l = 3m
FS 90kN
B
x
180
K
30
z
MC 60kN m
主要公式:
变形几何关系 y
物理关系 E
E y
静力学关系
1 M
EIZ
My
IZ
为曲率半径
1
为梁弯曲变形后的曲率
11
§5.2 纯弯曲时的正应力
弯曲正应力公式适用范围
弯曲正应力
My
IZ
•横截面惯性积 Iyz =0
•弹性变形阶段 ( p )
•细长梁的纯弯曲或横力弯曲(近似使用)
194.4m
x
20
例题
图示为机车轮轴的简图。试校核轮轴的强度。已知
d1 160mm d2 130mm,a 0.267m,b 0.16m,F 62.5kN,
材料的许用应力 60MPa.
分析:
max
M
y max max Iz ?
max M max
Wz
? 弯矩 M 最大的截面
FBY
y
C 截面惯性矩
IZ 5.832105 m4
x
90kN
M ql2 / 8 67.5kN m
x
Cmax
M C ymax IZ
60 103 180 103
2 5.832 105
92.55106 Pa 92.55MPa
18
例题
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
z dA E
A
E
z
A
y dA
Iyz
0
最终内力合成
Iz :惯性矩
mz M
y dA E
A
A
y2dA
E
Iz
M
1M
EIZ
E E y
M y
Iz
正应力分布图 My
IZ
M
注意事项:M,y与都有正负号. 通常用其绝对值代入公式,用变形确 定正应力的正负(拉、压)。
10
§5.2 纯弯曲时的正应力
第五章 弯曲应力
1
回顾
内力
应力
F
A
T
IP
M
?
?
FAy
FS
2
纯弯曲
§5.1 纯弯曲
梁段CD上,只有弯矩,没有剪力--纯弯曲
梁段AC和BD上,既有弯矩,又有剪力--横力弯曲
3
§5.1 纯弯曲
弯曲变形 实验现象
4
§5.1 纯弯曲
平面假设:横截面变形后保持为平面,只是绕
截面内某一轴线偏转了一个角度。
M ql2 / 8 67.5kN m
B
x
FBY
x 90kN
x
180
120
3. 全梁最大正应力
30 最大弯矩
K
z M max 67.5kN m
y
截面惯性矩
Iz 5.832105 m4
max
M max ymax IZ
67.5103 180 103
2 5.832 105
104.17 106 Pa 104.17MPa
σmax
M max ymax Iz
M max
W
σ
WZ
IZ y max
抗弯截面系数
注意:1.变截面梁要综合考虑 M 与 Iz
2.脆性材料抗拉和抗压性能不同,二方面都要考虑
t,max t c,max c
14
常见截面的 IZ 和 WZ
空心矩形截面
IZ y面
d 4
IZ 64
WZ
d 3
32
空心圆截面 矩形截面
IZ
D4
64
(1
4)
WZ
D3
32
(1
4)
bh3 IZ 12
bh2 WZ 6
IZ
b0h03 12
bh3 12
WZ
( b0 h03 12
bh3 12
)
/(h0 / 15
2)
例题
y
a
F
Fa
20
h
例 图示简支梁
已知: a =180mm , F =5kN,
120
2.C 截面上最大正应力
180
B
x
K
30
3.全梁上最大正应力 z
4.C 截面的曲率半径ρ
FBY
y
FS 90kN
M ql2 / 8 67.5kN m
解:1. 求支反力 FAy 90kN FBy 90kN
MC 901 6010.5 60kN m
x 90kN
IZ
bh3 12
0.12 0.183 12