边界层理论
流体流动的边界层理论与应用

流体流动的边界层理论与应用引言流体流动是自然界中普遍存在的现象,广泛应用于各个领域,如航空航天、机械工程、气象学等。
边界层是流体流动中十分重要的概念,它描述了流动的边缘区域,包括流动的速度梯度和压力变化。
边界层理论和应用研究的目的是为了更好地理解流体流动的本质和优化相关应用。
边界层理论的基本原理边界层理论是描述流体流动的边缘区域的理论框架。
它的基本原理包括以下几个方面:粘性边界层理论中的基本假设之一是流体具有一定的粘性。
粘性导致了流体的内摩擦力和黏滞性。
在流体流动中,粘性扮演着重要的角色,影响了流动的速度分布和边界层的厚度。
动量守恒边界层的形成是由于流体在固体表面附近的动量交换。
边界层理论基于动量守恒原理,描述了流体速度的变化情况。
边界层内的速度梯度决定了局部的动量传输。
能量守恒边界层理论还基于能量守恒原理,描述了流体流动中的热传输现象。
热量可以通过边界层传递,影响流体的温度分布。
边界层理论的应用边界层理论在各个领域都有广泛的应用,以下列举了其中几个典型的应用:空气动力学在航空航天工程中,边界层理论被广泛用于研究飞行器的气动性能。
通过分析边界层的厚度和速度分布,可以评估飞行器的阻力和升力特性,并进行优化设计。
涡街流量计涡街流量计是一种常用的流量测量仪器,利用边界层理论原理实现流量的测量。
通过将流体引导到一个弯曲的管道内,使流体形成旋涡,并通过测量旋涡的频率来计算流体的流量。
边界层控制边界层控制是一种改变流动边界层结构的技术,通过控制或改变边界层内的速度分布和压力变化,可以实现对流体流动的操控。
边界层控制在飞行器设计和汽车空气动力学中有着重要的应用,可以减少阻力、增加升力以及改善气动性能。
污染扩散在大气科学中,边界层理论被用于研究大气中污染物的扩散和传输现象。
通过分析边界层内的流动特性,可以预测污染物的传播范围和浓度分布,为环境管理和污染控制提供科学依据。
结论流体流动的边界层理论是研究流体流动基本原理和应用的重要工具。
第四章 边界层理论

普兰德首先发现,当Re较 大时,边界层的厚度<<x。 可以通过比较数量级简化 方程。
普兰德边界层方程
通过数量级比较得到的简化方程:
普兰德边 界层方程
u x u x 1 dP 2u x ux uy x y dx y 2 u x u y 0 x y
【例】沿平壁层流边界层的计算
温度为20℃的空气在常压下以5m/s的速度流过一块宽1 m的平板壁 面。试计算距平板前缘0.5m处的边界层厚度及进入边界层内的质量 流率,并计算这一段平板壁面的曳力系数与承受的摩擦曳力。假设 临界雷诺数Rexc=5×105。 解:
(1)判断边界层流型:20oC空气, 1.81105 Pa.s 1.205kg / m3 Re0.5 1.664 105 5 1050.5处的边界层为层流边界层
4.2曳力系数和范宁摩擦因数
圆柱体在流体中的运动:
Fd ' CD
u0
2
2
D
Fd’-流体对圆柱体所施加的总曳力(drag force) u0-圆柱体的运动速度 CD-曳力系数(drag coefficient) D-圆柱体的直径 球体或其他形状的物体在流体中的运动 u0 2 2 Fd Fd CD A CD 2 u0 2 A A-物体在垂直于它的运动方向的平面上的投影面积 流体在圆管中流动所受到的摩擦阻力,习惯上采用范宁摩擦因数: τs-流体流过管壁的剪应力 2 s f= f-Fanning friction factor ub2 ub-流体的主体流速
递过程和质量传递过程有着密切的关系。
边界层概念
Prandtl(1904)提出边界层概念,把统一 的流场,划分成两个区域,边界层和外 流区;其流体流动(沿流动方向和沿与 流动方向垂直的方向)有不同的特点。 边界层:流体速度分布明显受到固体壁 面影响的区域。 边界层的形成: 壁面处流体的“不滑脱”no-slip 流体的“内摩擦”作用 边界层厚度δ U=00.99 U0
边界层理论在流体力学中的应用

边界层理论在流体力学中的应用引言流体力学研究的是流体在受力作用下的运动规律和性质。
在理论研究和工程应用中,边界层理论是流体力学的一个重要组成部分。
边界层理论描述了流体在靠近壁面的区域内,流动速度、压力、温度等物理量的变化规律。
本文将介绍边界层理论在流体力学中的应用,包括边界层的定义、边界层分析的方法以及边界层理论在实际工程中的应用案例。
1. 边界层的定义边界层是指流体靠近壁面的区域,其性质与远离壁面的流体存在明显差异。
一般来说,边界层的厚度相对较小,但对流体运动和传热传质过程有着重要影响。
边界层理论的研究对象主要是属于牛顿流体的不可压缩流体情况。
2. 边界层分析的方法边界层分析是研究边界层的关键方法之一,常用的方法包括速度边界层分析和能量边界层分析。
2.1 速度边界层分析速度边界层分析主要考虑流体在边界层内的速度分布情况。
一般来说,边界层靠近壁面时流速接近零,随着距离壁面的增加逐渐增大。
根据速度剖面的特征,可以将边界层划分为无滑移层、过渡层和主层三个区域。
•无滑移层:靠近壁面的区域,流体速度接近壁面速度,可以视为无滑移状态。
•过渡层:在无滑移层之上的区域,流体速度逐渐增大,但流体分子之间还存在相对滑移。
•主层:在过渡层之上的区域,流体速度增大趋势基本保持不变。
2.2 能量边界层分析能量边界层分析主要研究流体在边界层内的温度和压力变化情况。
在无滑移层内,温度和压力基本保持不变;在过渡层和主层内,存在温度和压力的变化。
3. 边界层理论在实际工程中的应用案例边界层理论在实际工程中有着广泛的应用,下面将介绍一些典型的案例。
3.1 汽车空气动力学研究汽车行驶时会与周围空气发生相互作用,而边界层理论可以帮助研究汽车在高速行驶时的空气动力学特性。
通过分析边界层的速度和压力分布,可以优化汽车外形和设计,减小空气阻力,提高燃油经济性。
3.2 航空气动力学研究在航空工程中,边界层理论被广泛应用于飞机机翼和机身的设计和改进。
边界层理论

1•边界层理论概述 (1)1.1边界层理论的形成与发展 (1)1.1.1边界层理论的提出 (1)1.1 边界层理论存在的问题 (2)1.2边界层理论的发展 (2)2边界层理论的引入 (3)3边界层基础理论 (4)3.1边界层理论的概念 (4)3.2边界层的主要特征 (6)3.3边界层分离 (7)3.4层流边界层和紊流边界层 (9)3.5边界层厚度 (10)3.5.1排挤厚度 (11)3.5.2动量损失厚度 (11)3.5.2能量损失厚度 (12)4边界层理论的应用 (14)4.1边界层理论在低比转速离心泵叶片设计中的应用 (14)4.2边界层理论在高超声速飞行器气动热工程算法中的应用 (14)4.3基于边界层理论的叶轮的仿真 (15)参考文献 (17)1.边界层理论概述1.1边界层理论的形成与发展1.1.1边界层理论的提出经典的流体力学是在水利建设、造船、外弹道等技术的推动下发展起来的,它的中心问题是要阐明物体在流体中运动时所受的阻力。
虽然很早人们就知道,当粘性小的流体(像水、空气等)在运动,特别是速度较高时,粘性直接对阻力的贡献是不大的。
但是,以无粘性假设为基础的经典流体力学,在阐述这个问题时,却得出了与事实不符的“ D'Alembert之谜”。
在19世纪末叶,从不连续的运动出发,Kirchhoff ,Helmholtz,Rayleigh等人的尝试也都失败了。
经典流体力学在阻力问题上失败的原因,在于忽视了流体的粘性这一重要因素。
诚然,在速度较高、粘性小的情况下,对一般物体来说,粘性阻力仅占一小部分;然而阻力存在的根源却是粘性。
一般,根据来源的不同,阻力可分为两类:粘性阻力和压差阻力。
粘性阻力是由于作用在表面切向的应力而形成的,它的大小取决于粘性系数和表面积;压差阻力是由于物体前后的压差而引起的,它的大小则取决于物体的截面积和压力的损耗。
当理想流体流过物体时,它能沿物体表面滑过(物体是平滑的);这样,压力从前缘驻点的极大值,沿物体表面连续变化,到了尾部驻点便又恢复到原来的数值。
边界层理论

边界层理论边界层理论始于20世纪50年代,是一种以社会学中的社会心理学为基础的理论。
由于受到社会中的文化差异的影响,社会的边界层不同于一般的社会结构,它是一种身份认同和社会化过程的实质性结构。
其主要内容包括边界层的组成、功能、社会定位和边界层的调整等。
边界层理论主要聚焦于社会层次之间的关系,侧重考察如何管控不同社会层次之间的实证关系,揭示边界层的特征和机理,也为不同社会层次的社会活动提供了一种新的研究框架。
边界层理论告诉我们,每一个社会都由不同的社会层次组成,而每一个社会层次都有它自己的特点,例如在国家层次,就存在不同国家之间的文化差异和经济利益分配差异;在社会机构层次,就存在社会经济地位差异等。
边界层是社会层次之间连接的桥梁,在不同层次上,边界层有着不同的功能。
首先,边界层能够承载社会分类信息,从而使每个社会层次的身份认同更加清晰,例如在民族层次上,边界层有着民族特征,即民族分类的功能,而在宗教层次上,边界层有着宗教的认同,也就是运用边界层的宗教特征来区分每一个宗教信仰。
其次,当边界层作用于不同社会层次之间时,它还具有一种吸引力,它能够将不同社会层次之间的交流促进,以此来实现平等和融合。
这种吸引力可以表现为模仿或认可他人的行为,获得他人的认可和关注,以此来拓展自身的社会地位,最终可以实现融合或社会化。
最后,边界层理论还提供了一些有效的措施来加强边界层的建设,首先,政策立法应该重视社会层次之间的不平等问题,加强社会层次之间的调整,如政府可以以财政补贴的形式来实现资源分配的公平,减少社会层次之间的不公平。
其次,政府需要加强文化教育,确保建立一种同理心的文化氛围,减少不同社会层次之间的文化冲突,从而让边界层的建设更加有效。
社会的发展和进步,不仅需要不同社会层次之间的动力,而且也需要有效的边界层,只有社会的边界层得到加强和完善,才能有效地联系不同的社会层次,推动社会的发展。
边界层理论给我们提出了一种新的观点,用于解读不同社会层次之间的联系,进而让边界层更加有效地联结不同的社会层次,从而为社会发展提供了全新的基础。
流体力学中的边界层理论

流体力学中的边界层理论流体力学是研究流体运动和相互作用的学科。
在流体力学中,边界层理论是一个重要的概念,它描述了流体靠近固体壁面时的流动特性。
本文将介绍流体力学中的边界层理论,从基本原理到应用实例,全面探讨这一理论的重要性和实际价值。
一、边界层现象的定义和意义在流体力学中,边界层是指流体流动中靠近固体表面的一层,其流动特性与远离边界的无限远处的流体不同。
边界层现象的产生和发展对于很多实际问题都具有重要意义。
例如,当空气流过汽车的外表面时,边界层的存在会对气流的分离和阻力产生影响。
准确理解和掌握边界层理论,对于优化设计和改善物体运动性能具有重要作用。
二、边界层理论的基本原理1. 平衡条件边界层理论的基本假设是边界层内的流动是定常流动和局部平衡的。
在这一假设下,可以利用物理量的守恒方程和牛顿运动定律来进行分析和计算。
2. 边界层方程边界层方程是描述边界层内流体运动的关键方程组。
它包括连续性方程、动量方程和能量方程。
这些方程考虑了流体内部各个物理量的平衡和变化,并通过求解边界层方程组可以得到流体在边界层内的运动状态。
3. 粘性效应粘性是边界层理论考虑的一个重要因素。
由于流体的粘性特性,边界层会出现剪切应力和速度剖面变化。
这些粘性效应对于固体表面的摩擦力和阻力产生重要影响,因此必须在边界层理论中加以考虑。
三、边界层理论的应用实例1. 空气动力学在航空航天工程中,边界层理论被广泛应用于翼型设计和气动力分析。
通过准确计算边界层内的流动特性,可以优化飞行器的升力和阻力性能,提高飞行效率。
2. 水力学在水力学领域,边界层理论被用于河流和水泥工程的设计和分析。
通过控制边界层内的水流运动,可以减小底摩擦阻力,提高水流的输送能力。
3. 汽车工程在汽车设计中,边界层理论被用于研究车体表面的空气流动。
通过优化车体形状和减小边界层厚度,可以降低空气阻力,提高汽车的燃油经济性。
四、结语流体力学中的边界层理论是研究流体流动与固体界面相互作用的重要理论框架。
边界层理论

6.95 5 10 1.965 4 0.15 10 3
3
从表12-1中,用内插法,查得
vx ' f ( ) 0.619 U
所以 Vx =0.619U=4.3m/s
(2)按上例条件,求x=3m处的边界层厚度δ
解:
按定义边界层外边界上速度 Vx=99%U
查表12-1,找出 由
v y ~
v 2v 1 y x ~ 1, ~ , 2 x y v y ~ , x 2v y ~ 2 x
v 1 x ~ y
2v 1 x ~ 2 2 y
化简后为
vx vx 2 vx 1 p vx vy x y x y 2 p 0 y v y vx 0 x y
由于f和η 均为无量纲量,且在方程及边界 条件中不显含ν 及U,故所得结果可以一劳永逸 地应用。 表12-1给出问题的数值解,其中
vx f ( ) U
'
就
是边界层内无量纲的速度分布。
例7.1
本例说明上表12-1的用法。
(1)
欲求边界层内点(x,y)的速度Vx(x,y)
U 可将x及y的值代入 y x 中得出η 值,由
LU 2
Re L
b
总摩擦阻力系数Cf由下式确定:
1.328 Cf 1 2 Re L 2 U bL
L
Rf
(12-21)
为按平板板长计算的雷诺数。算出 式中 Re Re
UL
摩擦阻力系数后,可确定平板层流边界层情况 下的摩擦阻力为:
1 2 R f C f U bL 2
(12-22)
1 p p p ( p dx)d ( p dx)( d ) 0 dx 2 x x p dx 0 dx x
工程流体力学 第六版 第7章 边界层理论

1
2
1+ ? 0
1
? ~ 即:y ,
2 y 2 y y y x
y2 x2 y x
y
x y
x
x
x 2 x 2x
y x2 y2
2
12
1
1ε
1ε
1 1
1
1 12
1
2
简化N-S方程:
x
x x
y
x y
1
p x
v(
2 x x 2
2 x y 2
)
1
11
ε
1
1
1 (2 12
1
7.1.1 边界层概念 7.1.2 边界层内的流态
7.1 边界层概念
边界层:(1904年,第三届国际数学家学会,普朗特第一次提出)
实际流体绕过物体流动时,由于流体粘性的影响在物 体表面附近形成沿面的法线方向速度变化很快的薄层。
常见绕流现象
飞机/汽车阻力、 炮弹/球体飞行、 建筑、叶片绕流...
y 无黏性区
Fsx
p x
(
δ 0
ρυxdy )dx
动量:e
x
(
0
x dy )dx
e 边界层外边界上的速度
平板: υ∞ 曲面:υe(x)
流出动量 -流入动量 =
x
( δ 0
ρυx2dy )dx
υe
x
(
δ 0
ρυxdy )dx
➢ x方向的表面力:
AB面: p
y A
p 1 p dx
dl 2 x
θ
C
d
BD面: τwdx
即:(
p y
0)
,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
* H
Cf w 1 2 u e 2
阻力系数: C D D
L 1 2 1 2 ue L w dx ue L 0 2 2
D ue2
Cf 2
d dx
CD
2 L
边界层的积分分析方法
猜测边界层速度型边界层 的积分分析方法u(y)
求解边界层厚度δ
求解位移厚度,动量厚度, 摩擦系数,阻力系数
(Blow-off)
楔形区域内的点汇流动
ue K x
m 1
f ' ' ' f '2 1 0
f (0) f ' (0) 0, f ' () 1
数值求解
OR
u 2 2 1 2 f ' 3 tanh tanh ue 3 2
1.81 10 5 kg /(m s )
假设特征速度和特征尺寸:
Re 3.38106
u u x y v v x y
u 50m / s, L 1m
边界层的积分分析方法
位移厚度:
动量厚度: 形状因子: 摩擦系数:
u 1 dy 0 ue u u 1 dy 0 u ue e
边界层理论
薄剪切层流动的特点
厚度很薄
强烈剪切 强烈动量,能量交换 (例如,平板边界层,自由混合层,尾迹流动,射
流,管流)
为什么要单独建立边界层方程
低Re
Du 2 Re p u Dt Du 1 2 p u Dt Re
1 2u 2u 2 1, for Re 1 2 Re x y
自由混合层
二维平面射流
x f ( )
1/ 2 1/ 3
y 1/ 2 2 / 3 3 x
(Schlichting, 1933)
f ' ( ) u 1/ 3 3x
1 / 2 v 2 / 3 ( f 2 f ' ) 3x
f ' ' ' ff ' ' f '2 0
在此边界条件下求解平板边界层动量方程: (Schlichting and Bussmann, 1943)
吸气:边界层变薄,壁面剪切增强。速 度谱线有很强的曲率,边界层很稳定, 延迟了向湍流的转捩 吹气:边界层变厚,速度谱线呈S形, 边界层不稳定,加快了向湍流的转捩
* vw 0.619 u / y 0 @ y 0
0 2,0 m : 绕半顶角为βπ/2的二维无限楔形体的流动
1, m 1 :
,m :
1 2 1 3
二维平面滞止点附近流动 三维轴对称平面滞止点附近流动 楔形区域内的点汇流动
, m 1 :
带壁面吹吸气的平板边界层流动
边界条件:
f ' (0) 0, f ' () 1, f (0) vw / ue / x vw * * Re x f (0) vw Suction-blowing parameter: vw ue
f j ' ' ' f j f j ' ' 0, j 1,2
ue 2 无穷远处: f () 1, f () ue1
' 1 ' 2
交界面处 f ' (0) 速度条件: 1 交界面处 应力条件:1
f 2' (0) 0, f1 (0) f 2 (0) 0
u1 u2 (0) 2 (0) f1'' (0) k 1/ 2 f 2'' (0), k ( 2 2 / 11 ) y y
du e 0 m 0, f f ( ) dx
ue x f ( )
u ue f ' y
ue v (f ' f ) x x
f ' ' ' 1 ff ' ' 0 2
: f ' 1
边界条件: 0 : f f ' 0
u ue , y
x
ue
uy uex
ˆ f (x ˆ, ) uex
Falkner-Skan变换
due u u 2u u v ue 2 x y dx y
due 2 2 3 ue 3 2 y xy x y dx y
2 2
2a 1/ 2 2 / 3 16 1/ 2 3 2 J u dy sech a 3 x d 9 a 3 x1 / 3
9J a 16
umax
2
1/ 3
J 1/ 3 0.8255 ( )1/ 6
无穷远处:
f ' () 0 f (0) f ' ' (0) 0
(对称性)
交界面处:
二维平面射流
f ( ) 2a tanh( a )
解析解:
f ' ( ) 2a 2sech2 (a )
确定系数a?
2
(Schlichting, 1933)
非常简单!
通过任一截面的总的动量通量J
高Re
2u 2u 1 2u 2u Re 1, x 2 y 2 1 Re x 2 y 2 ?
平板边界层
Re x 1
15摄氏度标准大气压下的空气:
1 1 Re x
v u
1.225 kg / m 3
u1 2u1 U0 2 x y
大概3L以后的下游完全发展的尾迹
无穷远处: u1 ( x,) 0
u1 交界面处: y
0
y 0
(对称性)
解析解:
u1 BU0 x
2a 2 9 1/ 3 3x 3 16
2/3
x 1/ 3
J
2/3
J 0.4543 x
2
1/ 3
双曲函数
(from Wikipedia)
二维平面射流
1/ 3 J 2 2 u umaxsech a umaxsech 0.2752 2 x2 y
(von Karman)动量积分方程
u v 0 x y
due u u 2u u v ue 2 x y dx y
du 1 u 2 (uv) ue e x y dx y
h
0
h due w u 2 dy ue vh ue dy 0 x dx
级数展开求解或 数值方法求解 (Blasius, 1908)
Blasius解
Blasius解
995 y f '0.995
5.3 x Re x
995
*
0
u * 1.721 1 u dy x / ue 0 1 f ' d 1.721 x / ue x Re e x
1 ˆ ( f f x f m(1 f ) (m 1) ff x ˆ f x ˆ f ) 2
2
ˆ due x m ue dx
相似解:
f f ( )
1 f m(1 f ) (m 1) ff 0 2
2
Blasius解(平板边界层)
定义
Width 2 y u 0.01u
max
x2 2 b 21.8 J
1/ 3
通过任一截面 的质量流率
udy 36Jx 1/ 3 3.302Jx 1/ 3 x1/ 3 m
二维尾迹流动
假设
u1 U 0 u U 0
du d 2 (ue ) *ue e w dx dx
d w due 2 ( H 2) dx ue ue dx
裹入(entrainment)方程
d d * vE udy [ u ( )] e 0 dx dx d d d d * (ue ) (ue u )dy (ue ) udy 0 dx dx dx dx 0
* Leabharlann 3, 2 5 ,H 15 2
边界层的积分分析方法
2 w u
d u dx y
y 0
x
5.5 Re x
*
x
1.83 0.73 0.73 1.46 , ,Cf , CD Re x x Re x Re x Re x
二维不可压层流边界层方程
猜测二次多项式形式的边界层速度型:
u * Ay *2 By * C (u * u / ue , y * y / )
需要满足的边界条件:
y * 0 : u* 0 * du* * y 1 : u 1, dy* 0
2 y y2 u ue 2
CD
1.328 4.1 Re L Re L
(郭永怀)
非平板边界层流动
相似解:
f f ( )
2
1 f m(1 f ) (m 1) ff 0 2
1/ 2
x due m ue Kx m ue dx
1/ 2
m 1 m 1 引入变换: Y , F 2 2
F ' ' ' FF' ' [1 ( F ' )2 ] 0