边界层理论基础
13边界层理论基础

以应用与平板边界层时,可简化为:
0 d 2
U
2 0
dx
‹#1›8
13-5 平板上层流边界的计算
应用平板的动量方程来求解平板上的层流边界层时,必 须已知边界层内流速分布。
假设 在整个边界层内沿法线方向为直线变化,如下图。
1.层流边界层内的流速分布公式
ux
2
y
y
2
U0
dx
dt
Mdt
U
0
q x
dx
M x
dxdt
U 0
q x
dxdt
‹#1›6
在讨论作用在控制体ABCD上的冲量.
作用在断面AB上的动水压力的冲量为:
I AB p dt
作用在断面CD上的动水压力的冲量为:
ICD
p
p x
dx
‹#1›1
第二,方程组第一式中惯性项与粘性项既然均不能省略,
那么它们应有相同的数量级, 1
1
~
~
l U 0l Ret
式中:雷诺数 Re t
U 0l
由此可以得出结论:边界层的厚度与所绕流物体长
度的比值的数量级是以该物体长度表示的雷诺数平方根
的倒数。
第三,方程组中p为已知,未知数仅为 ux , uy 所以是可解 的。该方程组也可以应用于曲率比较小的曲面边界层,
维埃-司托克斯方程只有在边界条件极简单的情况下 才能求解,有些复杂的问题只能采用近似解法求解。对于 雷诺数很大时,许多问题惯性项和粘性项两者均不能略去。 1904年普兰特对于雷诺数很大的情况进行了研究,首先创 立了边界层理论,对解决高雷诺数粘滞液体的问题提供了 理论分析的可能,流体力学的发展从此进入了新的阶段。
第四章 边界层理论基础 边界层理论由普朗特1904年 ( Prantdl)提出,用于处理高 Re 数的流动问题。边界层理

y u0 u0
u0
x=0
u0 x
壁面附近速度梯度较大的流体层称为边界层。边界 层外,速度梯度接近于零的区称为外流区或主流区。
二、边界层的形成过程
层流边界层和湍流边界层
y 层流边界层 过 湍流边界层
在板前缘附近,边界层 内流速较低,为层流边界 层;而后逐渐过渡为湍流 u0
u0 u0
渡 区
u0
湍流 核心
在距壁面前缘 x 处,取 y
u0
一微元控制体
2
dV=δdx(1)
将动量守恒原理应用 δ
于微元控制体dV,得
ΣF d(mu) dθ
1
0
dx
x 方向:
ΣFx
d (mux ) dθ
(1)
3 δ dδ
4 x
一、边界层积分动量方程的推导
1-2截面:流入
δ
m1 ρuxdy(1)
0
δ
J1
ρu
2 x
dy(1)
边界层外为理想流体的势流,可用 Bernolli方程 描述。在流动的同一水平高度上,有
p ρu02 常数
2
dp dx
ρu0
du0 dx
0
u0
dp 0
dx
边界层内:p y 0
y p1
p3 δ
0
dp 0 dx
p2
p4
x
二、普朗特边界层方程的解
ux
ux x
uy
ux y
ν 2ux y 2
流函数
O(1)
(4)y :在边界层的范围内,y 由 0→δ,y O(δ)
(5)uy:由连续性方程
ux uy 0 x y
ux O(1) , x
04第四章 边界层理论基础

d ρ ∫ (ux − u0 )ux dy = τ s dx 0
δ
(5—14) ) ——卡门边界层积分动量方程 卡门边界层积分动量方程
适用于层流、湍流,精度取决于 适用于层流、湍流,精度取决于ux=f(x,y) 可预先假定一个速度分布方程,如: x = a + by + cy 2 可预先假定一个速度分布方程, u 代入,求得近似解。 代入,求得近似解。
δ
0
δ
第三节 边界层积分动量方程
一、边界层积分动量方程的推导
方向流动: 只考虑 x 方向流动: d dp ρ ∫ ( u x − u0 )u x d y = τ s + l d x dx 0
作数量级分析时,有 ∂p =0 即边 作数量级分析时, 界层压力p在 方向近似不变 方向近似不变, 界层压力 在y方向近似不变,等于边界 层外面流体的压力,边界层外按理想流 层外面流体的压力, 体处理。 体处理。
∂ 2uy ∂ 2uy 1 ∂p ux + uy =− +v + 2 2 ∂x ∂y ∂y ρ ∂y ∂x
经化简后, 经化简后,得:
(4- 5a)
∂uy
∂uy
(4 - 5b)
1 ∂p ∂ 2ux ∂ux ∂ux ux + uy =− +v 2 ρ ∂x ∂x ∂y ∂y ∂ux ∂uy + =0 ∂x ∂y
d δ dux (4 - 21) ρ ∫ ux (u0 − ux )dy = µ y =0 0 dx dy 次方为例: 以3次方为例: ux = a + by + cy2 + dy3 次方为例 B.C. y = 0, ux = 0 3 2 d ux ux 3 y 1 y y = 0, =0 ⇒ = ⋅ − ⋅ (4 - 22) 2 dy u0 2 δ 2 δ
第8章 边界层理论基础及绕流运动

ux
∂ux ∂x
+ uy
∂ux ∂y
=
−
1 ρ
∂p ∂x
+
ν
∂ 2u x ∂y 2
∂ux ∂x
+
∂uy ∂y
=
0
边界条件: y =∞(或y = δ),ux = U0 y = 0,ux = 0, uy = 0
其中 U0 = U0(x) =边界层外界限上外部流动的流速 且 p = p(x) = 边界层外界限上外部流动的压强
=
1 2
δ
∫ ∫ δ2 =
δ 0
ux u0
⎜⎜⎝⎛1 −
ux u0
⎟⎟⎠⎞dy
=
δ
1η(1− η)dη = 1 δ
0
6
∫ ∫ ( ) δ3 =
δ 0
ux u0
⎜⎜⎝⎛1 −
ux 2 u0 2
⎟⎟⎠⎞dy
=
δ
1η 1− η2
0
dη = 1 δ 4
10
8.2 边界层微分方程
——利用边界层的性质对粘性流体基本方程(纳维-斯托克斯方 程)的简化。
⎟⎠⎞
=
−δ
dp dx
− τ0
其中: dp/dx和u0应由外部流动求出 → 三个未知量:τ0、δ、ux
应用动量积分方程求解边界层问题的步骤: (1) 补充 ux (x, y)、τ0(δ)关系式,积分方程转变为δ的常微分方程
(2)求解方程 → δ(x) →τ0(x) → 总阻力→ 计算位移厚度等其他 参数。
∫ ∫∫ ∑ 积分形式的动量方程
∂ ∂t
ρurdV
cv
+
cs
ρurundA
边界层理论知识讲解

例11-1 本例说明例上1表1-111-1的用法。
(1) 欲求边界层内点(x,y)的速度Vx(x,y)
可将x及y的值代入
1 2
y
U x
中得出η值,由
此值从上表中找出相应的
1 2
(
)
=vx/U
则
vx(x,
y)U1()
2
设 U=25 km/h,ν=0.15cm2/s, x=3m,y=5mm,
求:Vx=?
10. 绕流物体的阻力 11.减少粘性阻力的方法
形状阻力
2
§11-1 边界层的概念
N-S方程理论上完备但求解困难。解决(求解) 工程实际问题大多局限于小雷诺数流动问题。
高Re时(量级在106~109的范围),粘性力与惯 性力相比是很小的。
1904年,L.Prandtl指出,对于粘性很小的流 体(如空气、水),粘性对流动的影响仅限于贴 近固体表面的一个薄层内,这一薄层以外,粘性 完全可以忽略。
可得
2 .5 2 x 50 .1 5 1 0 4 3 00 ..01 12 28 8mm 1 .2 8 c m
U
6 .9 5
27
(3)求板面上的切应力0 解: 由牛顿内摩擦定律
0 v y x y 0 y 2 2 y 01 4UU x(0)
按照表11-1,φ″(0)可近似表达为:
(0) (0.1) (0) 1.328
二、动量损失厚度
33
这一动量损失为:
K IK II0 U 2dy(U 20 U 2dy) 0 U 2dy[U 20 (1U vx)dy0 vx2dy]0 vx(Uvx)dy
可用理想流体的速度U流过某层厚度为θ的截面
U20 vx(Uvx)dy
边界层理论

边界层理论边界层理论始于20世纪50年代,是一种以社会学中的社会心理学为基础的理论。
由于受到社会中的文化差异的影响,社会的边界层不同于一般的社会结构,它是一种身份认同和社会化过程的实质性结构。
其主要内容包括边界层的组成、功能、社会定位和边界层的调整等。
边界层理论主要聚焦于社会层次之间的关系,侧重考察如何管控不同社会层次之间的实证关系,揭示边界层的特征和机理,也为不同社会层次的社会活动提供了一种新的研究框架。
边界层理论告诉我们,每一个社会都由不同的社会层次组成,而每一个社会层次都有它自己的特点,例如在国家层次,就存在不同国家之间的文化差异和经济利益分配差异;在社会机构层次,就存在社会经济地位差异等。
边界层是社会层次之间连接的桥梁,在不同层次上,边界层有着不同的功能。
首先,边界层能够承载社会分类信息,从而使每个社会层次的身份认同更加清晰,例如在民族层次上,边界层有着民族特征,即民族分类的功能,而在宗教层次上,边界层有着宗教的认同,也就是运用边界层的宗教特征来区分每一个宗教信仰。
其次,当边界层作用于不同社会层次之间时,它还具有一种吸引力,它能够将不同社会层次之间的交流促进,以此来实现平等和融合。
这种吸引力可以表现为模仿或认可他人的行为,获得他人的认可和关注,以此来拓展自身的社会地位,最终可以实现融合或社会化。
最后,边界层理论还提供了一些有效的措施来加强边界层的建设,首先,政策立法应该重视社会层次之间的不平等问题,加强社会层次之间的调整,如政府可以以财政补贴的形式来实现资源分配的公平,减少社会层次之间的不公平。
其次,政府需要加强文化教育,确保建立一种同理心的文化氛围,减少不同社会层次之间的文化冲突,从而让边界层的建设更加有效。
社会的发展和进步,不仅需要不同社会层次之间的动力,而且也需要有效的边界层,只有社会的边界层得到加强和完善,才能有效地联系不同的社会层次,推动社会的发展。
边界层理论给我们提出了一种新的观点,用于解读不同社会层次之间的联系,进而让边界层更加有效地联结不同的社会层次,从而为社会发展提供了全新的基础。
《水力学》课件——第九章 边界层理论基础

位移厚度 1
因为有了边界层,使通
y
过断面的流量比理想流体
流动时减少了
(U ux ) d y
0
δ
0.99U ux
把这些流量折合成理想
流体流动通过一个厚度 1
δ
的流量,这个厚度就叫做
1
位移厚度。
根据定义
u
1 = (1
0
x )d y U
y
0.99U
边界层使来流的流线
向外排挤了位移厚度的
δ
ux
距离,所以位移厚度也
u x (U
0
根据定义
u
2=
x (1 0U
ux) d y u x)d y U
显然, 2< 1
§9—4 平板边界层动量积分方程
对平板绕流的如图区域应用动量方程,进口断面选在平板前缘 处,出口断面离前缘距离为x,出口断面厚度为当地边界层厚度 δ(x),进口断面厚度取为出口断面的δ(x)-δ1(x),这样通过进 口断面和出口断面的流量是相等的,必有一条流线可以连接两 个断面的厚度,用它作为区域的上边界。
一侧摩擦力
Cf =
摩阻系数
1
D
= 1.328 el
U 2 (bl)
R 1/2
2
二.平板紊流边界层
平板紊流边界层兼有 壁面紊流和自由紊流的
① 粘性底层 0 < y+ < 5 ② 过渡区 5 < y+ < 70
性质,在边界层的外 区,流动特性与圆管紊 流有所不同。
③ 紊流区
+>
<
④ 不稳定区
y 0.4
由于平板首部转捩点前必有一段层流边界层,所以不存在全 程为紊流的边界层,只能是混合边界层。按全程为紊流边界层 的摩擦阻力计算应作修正。
第九章 边界层理论基础

边界层厚度沿流体流动方向是增加的,由于边界层内流体
质点受到黏性力的作用,流动速度降低,所以要达到外部势 流速度,边界层厚度必然逐渐增加。 由 于 边 界 层 很 薄 , 可 以 近 似 认 为 边 界 层 中 各 截 面 上 的 压强等于同一截面上边界层外边界上的压强值。
在边界层内,黏性力与惯性力同一数量级。
普朗特ludwigprandtl1875年2月4日出生于德国的弗莱辛1953年8月15日卒于哥廷根现代力学的奠基人之一他创立了边界层理论薄翼理论升力线理论研究了超声速流动提出普朗特葛劳渥法则并与他的学生梅耶一起研究了膨胀波现象普朗特梅耶流动并首次提出超声速喷管设计方法
第九章 边界层理论基础
主要内容
边界层的概念及理论
2
第一节 边界层的基本概念
1904年,在德国举行的第三届国际数学家学会上,
德国著名的力学家普朗特第一次提出了边界层的概念。 他认为对于水和空气等黏度很小的流体,在大雷诺 数下绕物体流动时,黏性对流动的影响仅限于紧贴物体 壁面的薄层中,而在这一薄层外黏性影响很小,完全可 以忽略不计,这一薄层称为边界层。
边界条件
y 0 : u 0, v 0 u0 y : u 0.9911
普朗特的学生布拉修斯于1908年将普朗特边界层 方程应用于半无限长平板层流边界层精确解,得到:
精确解: 4.96xRex 近似解: 5.48xRex
y
u0 δ(x)
边界层 外边界
-1 2 -1 2
15
第三节 边界层分离
边界层分离现象:实际流体流过弯曲壁面时,经 常从某一点开始边界层脱离壁面,并产生漩涡, 这种现象也叫脱体现象。
工程上常用无量纲的压强系数表示物体表面 上任一点的压强,对圆柱体有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、从a到s流动加速,为顺压梯度区; 流体压能向动能转变,不发生边界层分离 2、从s到e流动减速, 为逆压梯度区; 动能只存在损耗,速度减小很快 3、在s点处出现粘滞 ,由于压力的升高产生 回流导致边界层分离,并形成尾涡。
结论:
粘性流体在压力降低区内流动(加速流动),决不会 出现边界层的分离,只有在压力升高区内流动(减速流 动),才有可能出现分离,形成漩涡。尤其是在主流减速 足够大的情况下,边界层的分离就一定会发生。
由于边界层厚度δ是坐标x的函数,所以Rex和Reδ之 间有一定关系,x越大,δ越大,Rex和Reδ均变大, 当雷诺数达到一定值时,层流边界经过一个过渡区 后,就转变为紊流边界层。
边界层分离
当流体绕流非流线型物体时,一般会出现下列 现象:物面上的边界层在某个位置开始脱离物面, 并在物面附近出现与主流方向相反的回流,流体力 学中称这种现象为边界层分离现象。
边界层特点:
1.边界层的厚度δ与物体的特征长度L相比是非常小 的,δ<<L,δ/L≈0,即边界层极薄。 2.边界层的厚度在平板上沿流动方向增加。因为随 着平板长度的增加,流速减小,为了满足连续条件, 边界层的厚度增大。 3.边界层中也存在着层流区、过渡区和紊流区。在 边界层的前部,由于边界层厚度δ较小,因此流速 梯度dux/duy很大,粘滞力τ=μdux/duy的作用力也就 很大,这时边界层的流动属于层流。 Rex=u0x/υ Re δ =uo δ /υ
猫眼现象
不良流线型体的绕流、卡门涡
流体绕流流线型物体时,一般不会发生边界层分离,但 是粘性流体绕流不良流线型物体时,都将产生边界层分离的 绕流脱体现象。当流体绕流圆柱体时,随着雷诺数的增大边 界层首先出现分离,分离点并不断的前移,当雷诺数大到一 定程度时,会形成两列几乎稳定的、非对称性的、交替脱落 的、旋转方向相反的旋涡,并随主流向下游运动,这就是卡 门涡街