8第八章-边界层理论基础和绕流运动

合集下载

流体力学第八章(20160228)

流体力学第八章(20160228)
2
8.3 边界层的动量积分方程
利用动量定理,建立了边界层的动量 代入并整理边界层的动量积分方程— 积分方程。 PCD PAB PAC Fx —卡门动量积分方程 d d 2 dp 单位宽度,则单位时间通过AB、CD、 dy dy 0 u u u dx 0 x dx 0 x dx AC 各个面上的动量分别为 边界层的动量积分方程的求解 P u dy
0



AB
边界层的动量积分方程有5个未知量, 流场速度:由势流方程求解;压强: 作用在ABCD上的外力。忽略质量力, 由伯努利方程求解;边界层厚度:动 只有表面力, 量方程求解;边界层内流速:边界层 内流速分布关系式;边界层内切应力: p 1 p dxd 0dx 边界层内切应力分布关系式。 F x dx
P AB dx u xdy P CD P AB 0 x x u xdy dx P AC u 0 0 x


0
x


u dy dx

0 2 x
d u0 dx


0
d u xdy dx


0
u 2 xdy
第八章 边界层理论基础和绕流运动
王浩 1251934
本章概论
8.1 边界层的基本概念
8.2 边界层微分方程普朗特边界层方程 8.3 边界层的动量积分方程
8.4 平板上的层流边界层
8.5 平板上的湍流边界层
8.6 边界层的分离现象和卡门涡街
8.7 绕流运动
8.1 边界层的基本概念
8.1.1边界层的提出

dp 0 dx

流体力学教案第8章边界层理论

流体力学教案第8章边界层理论

第八章 边界层理论§8—1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。

对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。

速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。

若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。

对于非粘性流场,则可按理想流体来处理。

则N-S 方程可由欧拉方程代替,从而使问题大为简化。

Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。

由vVl==粘性力惯性力Re ,则在这些流动中,惯性力〉〉粘性力,所以可略去粘性力。

但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。

所以,在这一薄层中,两者均不能略去。

这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现.a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。

b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。

层内,粘性流,主要速度降在此,有旋流动.c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。

d .按流动状态,边界层又分为层流边界层和紊流边界层。

由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。

所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,边图8-2空气沿平板边界层速度分布外部区域边界层界层外的流动是无旋的势流.边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。

(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。

第8章 边界层理论基础及绕流运动

第8章 边界层理论基础及绕流运动

ux
∂ux ∂x
+ uy
∂ux ∂y
=

1 ρ
∂p ∂x
+
ν
∂ 2u x ∂y 2
∂ux ∂x
+
∂uy ∂y
=
0
边界条件: y =∞(或y = δ),ux = U0 y = 0,ux = 0, uy = 0
其中 U0 = U0(x) =边界层外界限上外部流动的流速 且 p = p(x) = 边界层外界限上外部流动的压强
=
1 2
δ
∫ ∫ δ2 =
δ 0
ux u0
⎜⎜⎝⎛1 −
ux u0
⎟⎟⎠⎞dy
=
δ
1η(1− η)dη = 1 δ
0
6
∫ ∫ ( ) δ3 =
δ 0
ux u0
⎜⎜⎝⎛1 −
ux 2 u0 2
⎟⎟⎠⎞dy
=
δ
1η 1− η2
0
dη = 1 δ 4
10
8.2 边界层微分方程
——利用边界层的性质对粘性流体基本方程(纳维-斯托克斯方 程)的简化。
⎟⎠⎞
=
−δ
dp dx
− τ0
其中: dp/dx和u0应由外部流动求出 → 三个未知量:τ0、δ、ux
应用动量积分方程求解边界层问题的步骤: (1) 补充 ux (x, y)、τ0(δ)关系式,积分方程转变为δ的常微分方程
(2)求解方程 → δ(x) →τ0(x) → 总阻力→ 计算位移厚度等其他 参数。
∫ ∫∫ ∑ 积分形式的动量方程
∂ ∂t
ρurdV
cv
+
cs
ρurundA

流体力学教案第8章边界层理论

流体力学教案第8章边界层理论

第八章 边界层理论§8-1 边界层的基本概念实际流体和理想流体的本质区别就是前者具有粘性。

对层流而言,单位面积摩擦力的大小yud d μτ=,可以看出,对于确定的流体的等温流场,摩擦力的大小与速度梯度有关,其比例函数即动力粘度。

速度梯度yud d 大,粘性力也大,此时的流场称为粘性流场。

若速度梯度yud d 很小,则粘性力可以忽略,称为非粘性流场。

对于非粘性流场,则可按理想流体来处理。

则N-S 方程可由欧拉方程代替,从而使问题大为简化。

Vlv l lV v A y u V l tVl t u mρρμρρ======2223d d d d 粘性力惯性力当空气、蒸汽,水等小粘度的流体与其它物体作高速相对运动时,一般雷诺数很大。

由vVl==粘性力惯性力Re ,则在这些流动中,惯性力>>粘性力,所以可略去粘性力。

但在紧靠物体壁面存在一流体薄层,粘性力却与惯性力为同一数量级。

所以,在这一薄层中,两者均不能略去。

这一薄层就叫边界层,或叫速度边界层,由普朗特在1904年发现。

a .流体流过固体壁面,紧贴壁面处速度从零迅速增至主流速度,这一流体薄层,就叫边界层或速度边界层。

b .整个流场分为两部分 层外,0=∂∂yu,粘性忽略,无旋流动。

层内,粘性流,主要速度降在此,有旋流动。

c .由边界层外边界上∞=V u %99,来定义δ,δ为边界层厚度。

d .按流动状态,边界层又分为层流边界层和紊流边界层。

由于在边界层内,流体在物体表面法线方向(即yu∂∂)速度梯度很大,所以,边界层内的流体具有相当大的旋涡强度;而在层外,由于速度梯度很小。

所以,即使对于粘度很大的流体,粘性力也很小,故可忽略不计,所以可认为,图8-2空气沿平板边界层速度分布外部区域边界层边界层外的流动是无旋的势流。

边界层的基本特征有: (1)1<<Lδ⇒薄层性质,其中L 为物体的长度;沿流方向↑↑→δx 。

(2) 层内yu∂∂很大, 边界层内存在层流和紊流两种流态。

第八章 绕流运动

第八章 绕流运动

2、形状阻力:
流体绕经物体时,物体受到流体所给予的阻力主要包括两部分 即摩擦阻力和形状阻力(或称压差阻力,尾涡阻力),这两部分之和称 绕流阻力。其中的形状阻力大小取决于漩涡区的大小,即分离点的 位置。
分离点后移,漩涡区减小,则形状阻力减少,摩擦阻力增大;在高 Re时形状阻力比摩擦阻力大许多。因此,工程上减少了形状阻力便 减少了绕流阻力。
c 取不同值,得不同的势函数等值线,称为等势线 c 同理
c 取不同值,得不同的流函数等值线,即流线
对比二函数与流速的关系
ux x y
二式交叉相乘
uy y x
等势线与流线正交
0 x x y y


0
2 ux dy dx

微元体三个面上的平均压强
固体壁面对流体的切力
p pCD p dx x 1 p pAC p dx 2 x
TBD 0dx
pAB p
各表面力在 x 方向的合力
p 1 p p dx d + p dx ds sin 0dx Fsx p x 2 x
汇流流动与源流相反,势函数与流函数则均取负值 Q 称为源(汇)流强度
□ 8.3.3 环流(势涡) 速度环量
y
r θ
2 ru
分速度
ur 0 u 2 r
势函数
x
ur dr u rd 2
流函数
ur rd udr ln r 2
z
将速度势函数带入不可压缩流体的连续性方程:
ux u y uz 0 x y z
2 2 2 2 2 0 2 x y z

第8章 边界层理论_1

第8章 边界层理论_1
u v 0 x y u u 2u u v n 2 x y y y 0, u v 0 y , u U
dp e 0 dx

u y F F ( ) U d
f ( ) F ( )d
2. 边界层厚度估计 (Standard Boundary Layer Thickness)
名义厚度定义:u=0.99Ue 处的y 值d (x) 。
边界层内惯性力与粘性力之比属同量级:
u 2 2 2 U L U L d d x ~ 0 0 Re L ~ 1 2 2 n L u n U 0 d L n 2 y y u
2v 2v v v 1 p u v n 2 2 x y y x y
pe 1 U e2 const 2
dpe dU e U e dx dx
u v 0 x y dU e u u 2u u v Ue n 2 x y dx y
第8章 边界层理论
(Boundary Layer Theory)
—— Flow Over Immersed Bodies Background: 粘性绕流的流动特征与粘性阻力, 阻力产生与减阻。
L. Prandtl: a German (1904), ———近代流体力学的奠基人。
ห้องสมุดไป่ตู้
边界层与阻力
—— Flow Over Immersed Bodies
(3)边界层内压力沿壁面法向不变,等于外部势流压力:
p 0 y
p pe
y d
u (4)边界层内速度分布具有渐进性:
u 0.99U e , y
0

边界层理论基础

边界层理论基础

第二节
数量级分析:
y ~ , x ~ l
边界层的微分方程式
u x U 0 2u x U 0 u x U 0 2u x U 0 ~ , 2 ~ 2 , ~ , 2 ~ 2 y y x l x l u y u x u y u x 与 具有同一个数量级 x y x y
第十三章
边界层理论基础
第一节 边界层的概念 第二节 边界层的微分方程
第三节 边界层厚度、排挤厚度、动量损失厚 度 及能量损失厚度
第四节 边界层的动量方程式 第五节 平板上层流边界层的计算 第六节 平板上紊流边界层的计算 第七节 边界层分离现象及绕流阻力
第二节
边界层的微分方程式
讨论恒定二元流情况,在无限空间中水平放置的平板, 不考虑质量力的作用。这样,对不可压缩液体的纳维-斯托 克斯微分方程式及连续性方程式可写作。
第二章
边界层理论基础
第一节
边界层的概念
第二节 边界层的微分方程
第三节 边界层厚度、排挤厚度、动量损失厚 及能量损失厚度 第四节 边界层的动量方程式
第五节 平板上层流边界层的计算 第六节 平板上紊流边界层的计算 第七节 边界层分离现象及绕流阻力
前 言
纳维-斯托克斯方程的讨论
纳维-斯托克斯方程式只有在边界条件极简 单的情况下才能求解,有些复杂的问题只能采 用近似解法求解。近似解法一般是根据具体 情况略去纳维-斯托克斯方程式中的一些次要 项来进行求解。
第三节 边界层厚度、排挤厚度、动量损失厚 度及能量损失厚度 3.2 流量损失厚度(排挤厚度)
实际液体流经固体壁面时,由于固体边界对水流的阻滞作 用,使边界层内通过的流量比理想液体情况下在同一范围内所 通过的流量要小。 由于实际液体受固体边界的影响将使在δ 范围的流量与理想液体时相比减小了U0 δ1, δ1叫做流量损失厚 度,也常叫排挤厚度。

杭州电子科技大学2023年《882工程流体力学》考研专业课考试大纲

杭州电子科技大学2023年《882工程流体力学》考研专业课考试大纲

杭州电子科技大学全国硕士研究生招生考试业务课考试大纲考试科目名称:工程流体力学科目代码:882第一章绪论1-1 工程流体力学的学科任务1-2 连续介质假设,流体的主要物理性质1-3 作用在流体上的力1-4 工程流体力学的研究方法第二章流体静力学2-1 流体静压强特性2-2 流体的平衡微分方程及积分式、等压面方程2-3 流体静力学基本方程及物理意义和几何意义,压强的计算单位和表示方法,静压强的分布图、测压计原理2-4 液体的相对平衡2-5 作用在平面上的液体总压力表示方法2-6 作用在曲面上的液体总压力计算,虚、实压力体区别2-7 阿基米德原理,浮力和潜体及浮体的稳定性第三章流体运动学3-1 描述流体运动的两种方法及其特点,迹线、流线、脉线的表示3-2 描述流体运动的一些基本概念3-3 流体运动的类型3-4 流体运动的连续性方程的表示3-5 流体微元运动的基本形式及与速度变化的关系3-6 无涡流和有涡流,速度势和速度环量第四章理想流体动力学和平面势流4-1 理想流体的运动微分方程—欧拉运动微分方程,伯努利方程及其条件4-2 理想流体元流的伯努利方程及其物理、几何意义,皮托管原理4-3 恒定平面势流,速度势和流函数的性质及其两者的关系第五章实际流体动力学基础5-l实际流体的运动微分方程——纳维一斯托克斯方程,流体质点的应力状态及压应力的特性5-2 实际流体元流的伯努利方程及其物理、几何意义5-3 实际流体总流的伯努利方程及应用条件,文丘里管工作原理,有能量输入和输出的伯努利方程5-5 总流的动量方程及其应用条件和方法第六章量纲分析和相似原理6-l 量纲分析,量纲和单位,量纲和谐原理种类和区别6-2 流动相似原理6-3 相似准则6-5 模型试验第七章流动阻力和能量损失7-1 流体的两种流动形态——层流和湍流,流态的判别准则7-2 恒定均匀流基本方程,沿程损失的普遍表示式7-3 层流沿程损失的分析和计算,圆管层流的沿程损失系数7-4 湍流理论基础,湍流的脉动和时均法,湍流附面层分区的判别标准7-5 湍流沿程损失的分析和计算7-6 局部损失的分析和计算第八章边界层理论基础和绕流运动8-1 边界层的基本概念8-3 边界层的动量积分方程8-4 平板上的边界层8-5 边界层的分离现象和卡门涡街8-6 绕流运动参考书目:工程流体力学(水力学)(第2版)(上册),闻德荪,高等学校教材,第三版,2010年。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 边界层理论基础和绕流运动8—1 设有一静止光滑平板宽b =1m ,长L =1m ,顺流放置在均匀流u =1m/s 的水流中,如图所示,平板长边与水流方向一致,水温t =20℃。

试按层流边界层求边界层厚度的最大值δmax 和平板两侧所受的总摩擦阻力F f 。

解:20℃水的运动粘度ν=1.003⨯10-6 m 2/s 密度3998.2/kg m ρ=6119970091.00310ν-⨯===⨯L uLRe 因为 56310997009310⨯<=<⨯L Re按层流边界层计算。

max 1/25.4470.0055m Re L L δ===3f 1/21.46 1.4610-===⨯L C Re 223998.2122 1.461011N 1.46N 22f ff u F C A ρ-⨯==⨯⨯⨯⨯⨯= 8—2 设有极薄的静止正方形光滑平板,边长为a ,顺流按水平和铅垂方向分别置放于二维恒定均速u 的水流中,试问:按层流边界层计算,平板两种置放分别所受的总摩擦阻力是否相等,为什么?解:因为两种置放情况的物理模型和数学模型及其分析、推导所得计算公式是相同的,所以两种情况平板所受的总摩擦阻力相等。

8—3 设有一静止光滑平板,如图所示,边长1m,上宽0.88m,下宽0.38m,顺流铅垂放置在均匀流速u =0.6m/s 的水流中,水温t =15℃。

试求作用在平板两侧的总摩擦阻力F f 。

注:若为层流边界层,C f 按式(8—24)计算。

解:由表1—1查得,15℃时水的密度ρ=999.13/kg m ,运动粘度ν=1.139×10-6m 2/s 。

首先判别流态,计算平板上宽雷诺数560.60.884635655101.13910ν-⨯===<⨯⨯L uLRe ,按层流边界层计算。

设z 轴铅垂向上,平板宽度x 为0.38+0.5z ,阻力系数C f 按式(8-24)计算,即12f 60.6(0.380.5)1.328 1.13910--⨯+⎡⎤==⨯⎢⎥⨯⎣⎦z C1521.328 5.2677810(0.380.5)z -轾=创?犏臌总摩擦阻力F f 按式(8—20)计算,f f12012(0.380.5)d 2F C u z z r =?ò11522 1.328 5.2677810(0.380.5)z -轾=创创+犏臌ò题8-1图21999.10.6(0.380.5)d 2z z 创创+ 1120.658(0.380.5)d z z =?ò。

因0.380.5x z =+,所以d 0.5d x z = ,或d 2d =z x 。

代入上式得0.88130.8822f 0.380.3820.6582 1.3163=⨯⨯=⨯⎰F x dx x0.88(0.830.23)N 0.528N =?=8—4 油的动力粘度μ=50×10-3Pa ·s ,密度r =990kg/m 3,流速u =0.3m/s ,流过一水平放置的静止光滑平板。

试求距离平板始端150mm 处的边界层厚度δ以及边界层厚度为50mm 处距离平板始端的距离L 。

解:(1)30.39900.158915010x u x Re r m -创===´,为层流边界层。

5.4770.028m d ==?(2)0.05m d =时,假设仍为层流边界层0.05===0.495m L =30.39900.49529405010L Re -创==´,为层流边界层。

0.05m d ==8—5 试按光滑平板上的湍流边界层计算习题8—1中平板上边界层厚度的最大值maxd 和平板两侧所受的总摩擦阻力F f 。

解:max 150.3810.024m Re L Ld ===3f 150.074= 4.6710LC Re -==? ()2f f f =22u F C A r 两侧23998.212 4.671011N4.66N 2-´=创创?max d 、F f 值均大于习题8—1按层流边界层计算所得的值。

8—6 空气的温度t =0℃,流速u =30m/s ,在一个标准大气压下,流过一水平放置的(静止)光滑平板。

已知距平板始端4m 处的某点流速u x =27m/s ,试求该点距平板的垂直距离y 。

解:t =0℃时,空气的动力粘度μ=1.71×10-5Pa ·s ,密度31.293kg/m r =。

51.29330490736841.7110x ux Re r m -创===´,在5731010´范围内。

按湍流边界层计算150.3810.3810.062m xx Re d ==?17x y u u d骣÷ç=÷ç÷ç桫 77270.062m 0.03m 30x u y ud 骣骣÷÷çç=??÷÷çç÷÷çç桫桫8—7 有一宽b =2.5m ,长L =30m 的光滑平板潜没在静水中,以5m/s 的速度等速拖曳,平板长边与运动方向一致,水温为20℃,试求光滑平板的总摩擦阻力F f 。

解:t =20℃时,水的运动粘度n =1.003×10-6m 2/s ,密度998.2r =kg/m 3。

65301.00310o L U L Re n -´===´149551346>107,按湍流边界层计算。

()fm 2.580.4550.002lg L C Re == 220fm f 998.25220.002 2.530N 3743.25N 22U F C A r ´==创创=总8—8 空气的温度t =40℃,流速U 0=60m/s ,流过一长L =6m ,宽b =2m 的光滑平板, 平板长边与流速方向一致。

设平板边界层由层流转变为湍流的条件为60crcr 10x U x Re n==。

试求平板两侧所受的总摩擦阻力F f (注:按混合边界层计算)。

解:t =40℃时,空气的运动粘度521.6810m /s n -=?,密度31.128kg/m r =。

60560621428571101.6810L U L Re n -´===>´,按混合边界层计算。

Re x cr =106,由表8-1可查得A=3300()fm 11550.0740.07433000.002352142857121428571L LA C Re Re =-=-= 220f fm 1.12860220.0023526N 114.5N 22U F C bLr ´=?创创=8—9 空气的温度为293K ,流速u =30m/s,在一个标准大气压下,流过一水平放置的光滑平板。

层流边界层转变为湍流边界层的临界雷诺数cr x Re 5510=?,试求(1)边界层流态转变处离平板始端距离x cr 和该处离平板垂直距离y =1mm 处的流速u x ;(2)离平板始端1m 处的边界层厚度和每米宽平板所需的总拖曳力F f 。

(按混合边界层计算)解:(1)t =293K 时,空气的动力粘度51.8110Pa s m -=醋,密度31.205kg/m r =。

cr cr =x Re ux rm55cr cr 510 1.8110m 0.25m 1.20530x Re x u m r -创?===´cr 1/2cr 5.4775.4770.00194m x x Re d ==? 2222300.001()(0.001)m/s 22.96m/s 20.0019420.00194x u y u y d d ´=-=-=´(2) 551.205301199********.8110L uL Re r m -创===>?´为湍流边界层。

1/5=0.3810.3810.0209m L x Re d =?f m 1/50.074170017000.003221997238L L C Re Re =-==22f fm 1.20530220.0032211N 3.49N 22u F C bL r ´==创创=8—10 设有一宽b =2.5m ,长L =30m 的粗糙平板潜没在静水中,以5m/s 的速度等速拖曳,平板宽边b 与运动方向一致,水温为20℃,平板当量粗糙度∆=0.3mm 。

试求粗糙平板的总摩擦阻力F f 。

解:由表1—1查得,水温t =20℃时,水的密度ρ= 998.2 kg/m 3,运动粘度ν=1.003×10-6m 2/s 。

5065 2.5124626125101.00310ν-⨯===>⨯⨯b U bRe ,为湍流边界层。

允许粗糙度∆'650100100 1.00310m 2.00610m 0.02mm 0.3mm /5U ν--⨯⨯≤==⨯≈<∆=>14×0.02=0.28mm ,粗糙平板,且可认为属于湍流边界层粗糙区。

层流边界层长度 56cr cr 0510 1.00310m 0.1m 5-⨯⨯⨯===x Re v x U与平板宽边b =2.5m 相比,可略去不计。

按湍流边界层粗糙区计算摩阻系数C f ,即2.5 2.5f 2.5(1.62lg1.89)(1.62lg 1.89)0.0003--=+=+∆b C 31013.5-⨯= 2320f f 2 5.1310998.25 2.5302N 22U F C A r -创创创== 9601.44N =8—11 球形尘粒密度s ρ= 2.5×103kg/m 3,在20℃的大气中等速自由沉降。

若空气阻力可按斯托克斯阻力公式计算,试求尘粒最大直径d max 和自由沉降速度u f 。

解:由表1-2查得空气的运动粘度ν=1.5×10-5m 2/s ,密度ρ=1.205 kg/m 3 。

50515.8410m58.4μm d -===?max 58.4μm d =2f 1()18s u d g r r nr=- 2510.000058418 1.510 1.205-=?创? (2.51000 1.205)9.8m/s 创-? f u 0.257m/s = 8—12 球形水滴在20℃的大气中等速自由沉降,若空气阻力可按斯托克斯阻力公式计算,试求水滴最大直径d max 和自由沉降速度u f 。

解:(1)由表1-2查得空气的运动粘度ν=1.5×10-5m 2/s ,密度ρ=1.205 kg/m 3 ,水的密度F ρ= 998.2kg/m 3。

相关文档
最新文档