变压器励磁涌流

合集下载

各类变压器励磁涌流的特征

各类变压器励磁涌流的特征

各类变压器励磁涌流的特征电力变压器励磁涌流电力变压器励磁涌流是变压器通电时,铁芯中发生磁通变化而产生的瞬时电流。

其特征受变压器类型、容量和连接方式等因素的影响。

双绕组变压器空载绕组励磁涌流:变压器空载通电时,电感性电流急剧增加,形成励磁涌流。

其波形为衰减振荡波,持续时间较短。

负荷绕组励磁涌流:变压器负荷通电时,由于负载侧电流急剧变化,原边绕组也会产生励磁涌流,但幅值小于空载励磁涌流。

三绕组变压器主绕组励磁涌流:与双绕组变压器空载励磁涌流类似,但由于多了一个绕组,涌流幅值和持续时间可能更长。

调节绕组励磁涌流:变压器调节绕组通电时,会产生较小的励磁涌流,幅值和持续时间远低于主绕组励磁涌流。

自耦变压器自耦变压器励磁涌流:自耦变压器的励磁涌流特征比较特殊,由于存在磁耦合,励磁涌流幅值会随耦合系数变化而变化。

相移变压器相移变压器励磁涌流:相移变压器励磁涌流的波形与普通变压器不同,由于变压器内存在励磁电流相移,导致励磁涌流具有不对称波形。

励磁涌流的的影响断路器跳闸:励磁涌流过大时,会引起断路器误动作,导致变压器断电。

绝缘损坏:励磁涌流产生的过电压会损坏变压器绝缘,导致短路或失效。

设备损坏:励磁涌流通过其他设备时,可能造成设备损坏或影响运行稳定性。

励磁涌流的抑制涌流限制电阻器:在变压器原边绕组串联涌流限制电阻器,限制励磁涌流的幅值。

电抗器:在变压器原边绕组串联电抗器,增加电路感抗,抑制励磁涌流的上升速度。

预磁合:变压器通电前,对铁芯进行预磁合,使铁芯处于非饱和状态,降低励磁涌流的幅值。

Y-△起动:对于三绕组变压器,采用Y-△起动方式,降低励磁涌流的冲击性。

理解和控制励磁涌流对于确保变压器和电力系统的安全稳定运行至关重要。

通过合理的选择和采取适当的抑制措施,可以有效减轻励磁涌流的影响,确保变压器安全可靠地运行。

变压器产生励磁涌流的原因

变压器产生励磁涌流的原因

变压器产生励磁涌流的原因1. 你知道吗,变压器产生励磁涌流的一个原因就是铁芯的饱和呀!就好比一个人吃撑了,再也吃不下更多东西一样,铁芯饱和了就会导致电流一下子涌出来。

比如说,家里的电器突然都打开,变压器就可能出现这种情况呢!2. 嘿,变压器产生励磁涌流还可能是因为合闸瞬间的电压突变呀!这就好像你跑步的时候突然被人推了一把,速度一下子就变快了。

像工厂里机器启动的瞬间,不就可能引发这样的情况嘛!3. 哇哦,绕组的电感也会让变压器产生励磁涌流呢!这就好像是道路上的一个弯道,会让车流的速度和方向发生变化。

比如大型电机启动时,不就类似这种情况嘛!4. 哎呀呀,变压器的剩磁也能引起励磁涌流呀!这就跟你心里一直记着一件事一样,会产生影响呢。

像有时候停电后再来电,就可能出现这样的问题哟!5. 嘿呀,合闸角也对励磁涌流有影响呢!这不就跟你进门的时机一样嘛,如果时机不对,可能就会有不一样的结果。

就像在特定的时刻合闸,就可能导致励磁涌流增大呢!6. 哇,变压器的铁芯材质也有关系哦!这就好像不同材质的锅,做饭的效果不一样。

比如铁芯材质不太好的变压器,就更容易出现励磁涌流啦!7. 你想想看,变压器的匝数也能让它产生励磁涌流呀!就像一群人排队,人数不一样效果也不同。

匝数不合理的时候,可不就容易有这个问题嘛!8. 哎呀,系统的阻抗也会影响变压器的励磁涌流呢!这就好像路上的阻碍,会改变车流的情况。

当系统阻抗小的时候,励磁涌流可能就会比较大呢!9. 嘿,变压器自身的特性也能导致励磁涌流呢!就如同每个人都有自己的脾气一样。

有些变压器就是容易出现这种情况呀!10. 哇塞,外部的干扰因素也会让变压器产生励磁涌流呢!这就好比平静的水面被扔了一块石头,会泛起涟漪。

像附近有大的电磁干扰时,不就可能这样嘛!我觉得啊,了解这些原因对于我们更好地使用和维护变压器真是太重要啦!。

变压器励磁涌流原理

变压器励磁涌流原理

变压器励磁涌流原理1. 引言变压器是电力系统中常见的电力传输和配电设备,它的基本原理是利用电磁感应现象将交流电能从一个电路传递到另一个电路。

在变压器的正常运行中,励磁涌流是一个重要的现象,对变压器的运行稳定性和效率产生重要影响。

本文将详细解释与变压器励磁涌流原理相关的基本原理。

2. 变压器的基本结构和工作原理变压器由两个或多个线圈(称为主线圈和副线圈)和一个铁芯组成。

主线圈连接到电源,副线圈连接到负载。

铁芯是由高导磁率的铁材料制成,主要用于集中磁通并减小磁通损耗。

变压器的工作原理可以用以下几个步骤来描述: 1. 当主线圈中通入交流电时,产生的交变磁场穿过铁芯,并感应在副线圈中产生电动势。

2. 由于副线圈的存在,电流开始流动,形成副线圈中的磁场。

3. 根据法拉第电磁感应定律,副线圈中的磁场会感应回主线圈中产生电动势。

4. 如果副线圈上有负载,电流会从副线圈流向负载,完成能量传递。

3. 励磁涌流的定义和原因励磁涌流是指在变压器的励磁过程中,出现的瞬态电流。

这种电流是由于铁芯的饱和和磁滞现象引起的。

励磁涌流会导致变压器的损耗增加、温升升高,甚至引起振荡和不稳定的运行。

励磁涌流的主要原因是铁芯的磁滞和饱和效应。

在变压器中,铁芯的磁化曲线是非线性的,当磁通密度较低时,磁化曲线近似为直线,但当磁通密度较高时,磁化曲线出现饱和和磁滞现象。

在励磁过程中,磁通密度会不断变化,导致磁芯中的磁滞和饱和效应。

4. 励磁涌流的影响因素励磁涌流的大小和变压器的设计参数、运行条件以及电源特性等因素密切相关。

以下是一些主要影响因素的解释:4.1 铁芯特性铁芯的导磁率和磁滞特性是影响励磁涌流的重要因素。

导磁率越高,磁化过程中的涌流效应越小。

而磁滞特性越明显,励磁涌流越大。

4.2 变压器参数变压器的额定容量和变比也会影响励磁涌流的大小。

一般来说,容量越大,励磁涌流越大;变比越高,励磁涌流越小。

4.3 电源特性电源的电压波形和频率对励磁涌流有很大影响。

单相变压器励磁涌流有何危害?

单相变压器励磁涌流有何危害?

存在哪些因素可能引起单相变压器励磁涌流?
单相变压器在电力系统中扮演着至关重要的角色,主要用于调整电压适应不同的电力需求,保证电能的有效传输。

然而,在实际操作中,变压器可能会产生励磁涌流现象,严重时影响自身甚至电力系统的稳定性。

总结起来,单相变压器励磁涌流主要受以下4个方面影响:
一、铁芯引起磁路饱和
单相变压器的铁芯是用来增强磁通量,提高变压器的效率。

铁芯由高磁导率材料制成,在正常操作条件下,可以有效地传导磁通量。

一旦,当铁芯达到其磁通量饱和点时,再增加电流输入将导致磁通量的非线性剧增,此时铁芯的磁导率急剧下降,进一步导致电流的异常波动,从而励磁涌流的产生。

二、合闸时的电压相位
正常情况下,合闸应在电压过零点进行,以避免瞬时磁饱和和励磁涌流的发生。

然而,在实际操作中很难保证总是在最佳相位角合闸,特别是在电压接近峰值时合闸,会立即引起严重的磁饱和并产生大量励磁涌流。

三、铁芯的剩磁
在变压器断电后,铁芯中残留的磁通未被完全复位,再次通电时,这个剩余磁通会与新产生的磁通叠加,可能导致总磁通超出饱和点,从而激发较大的励磁涌流。

四、铁芯的材料
不同的铁芯材料会导致其磁饱和点、磁导率等特性不同。

采用低饱和磁通密度的材料容易诱发励磁涌流。

五、供电系统的影响
供电系统中电压波动较大或存在较多的谐波成分,都可能加剧变压器在合闸时的励磁涌流现象。

今天了解了哪些因素可能引起单相变压器励磁涌流,可以有效规避变压器励磁涌流的发生。

时间有限,今天就到这里。

想要了解更多变压器励磁涌流知识与治理方法,欢迎留言。

希望能够带给大家帮助,期待我们下期再见!。

变压器励磁涌流原理

变压器励磁涌流原理

变压器励磁涌流原理
变压器励磁涌流是指在刚开始接通变压器时,由于电感元件励磁过程中磁感应强度逐渐增大的关系,导致变压器中的电流迅速增加,形成一个短暂的高峰电流。

励磁涌流的主要原因有以下几点:
1. 电感元件的电流变化滞后于电压变化。

由于电感元件的特性,当电压突然改变时,电感元件中的电流并不会立即改变,而是需要一定的时间来达到稳态。

在这个过程中,电流会迅速增加,导致励磁涌流。

2. 初级绕组和次级绕组之间的电容效应。

变压器的初级绕组和次级绕组之间会存在一定的电容效应。

当变压器接通时,由于电容的充电过程,会导致涌流的产生。

3. 磁芯饱和和磁滞。

在刚开始接通变压器时,由于磁感应强度逐渐增大,磁芯中会出现饱和和磁滞现象。

这些现象会导致磁路中的电流迅速变大,从而产生涌流。

励磁涌流对变压器和电网造成的影响主要有以下几点:
1. 过大的励磁涌流会导致变压器绕组和瓷套的过热,甚至引发绝缘击穿,导致设备损坏。

2. 励磁涌流还会对电网造成短暂的过电压,对其他设备和线路造成影响。

为了减小励磁涌流的影响,可以采取以下措施:
1. 使用励磁变压器。

励磁变压器是在主变压器旁边并列连接一个励磁变压器,通过调节励磁变压器的励磁电流来抑制励磁涌流。

2. 采用软起动方式。

通过逐步升高初始电压,使得励磁涌流逐步增加,避免突然产生过大的涌流。

3. 提前预热变压器。

在正式接入电网之前,可以对变压器进行预热,使其达到临界电压之后再投入运行,从而减小励磁涌流的影响。

变压器励磁涌流产生机理及抑制措施

变压器励磁涌流产生机理及抑制措施

展望
随着电力电子技术的发展,可 以预见变压器励磁涌流的研究 将更加深入,未来可能会发现
更加有效的抑制措施。
随着智能电网的建设,电力系 统的运行方式将更加灵活,变 压器励磁涌流的问题也将得到
更加有效的解决。
同时,随着人们对电力系统运 行效率的关注度不断提高,变 压器励磁涌流的研究也将更加 注重环保和节能方面的问题。
04
案例分析
案例一
01
02
03
事故概述
某500kV变压器在空载合 闸时,由于励磁涌流过大 导致保护误动,造成停电 事故。
事故原因
合闸瞬间,变压器铁芯饱 和,励磁电流急剧增加, 导致保护装置误判为短路 故障。
改进措施
优化变压器空载合闸控制 策略,采用快速合闸技术 ,减少励磁涌流的影响。
案例二
事故概述
励磁涌流的大小与变压器铁芯的材质、结构、加工工艺以及变压器运行时的工况 等因素有关。
变压器励磁涌流的危害
励磁涌流会危及变压器的安全运行,可能导致变压器的损坏 甚至爆炸。
励磁涌流还可能导致电力系统的谐波污染,对电力系统的稳 定性和可靠性造成影响。
变压器励磁涌流的特点
励磁涌流具有很大的峰值和冲击力,其大小可能超过变压器额定电流的几倍甚至 几十倍。
感谢您的观看
THANKS
减小变压器铁心饱和程度
通过改进变压器结构设计,采用高磁通密度材料,提高铁心最大允许工作磁 密等措施,降低变压器铁心的饱和程度,从而抑制励磁涌流的产生。
增加变压器空载合闸阻抗
通过改变变压器外部接线或增设串联电阻等方式,增加变压器空载合闸阻抗 ,降低合闸瞬间的电压变化率,从而减小励磁涌流的产生。
继电保护抑制措施
配置差动保护装置

变压器的励磁涌流产生原因及特点

变压器的励磁涌流产生原因及特点

变压器的励磁涌流产生原因及特点
产生原因:
1.铁芯非线性特性:在励磁过程中,铁芯会经历从饱和到非饱和的过程,而在饱和和非饱和状态下,铁芯的磁导率存在较大的差异。

当励磁电
流突变时,铁芯的饱和状态发生变化,导致磁通密度的非线性变化,进而
产生励磁涌流。

2.电压突变:在电压突变的瞬间,变压器的磁通密度变化较大,导致
涌流现象的出现。

特点:
1.波动范围大:励磁涌流的幅值会随着励磁电流的大小和励磁电源特
性的不同而变化。

通常情况下,励磁涌流的波动幅值会比较大,但是短暂,并且随着时间的推移会逐渐回归正常工作状态。

2.涌流时间短:励磁涌流一般持续的时间比较短暂,通常在数十毫秒
到数百毫秒之间。

3.作用范围广:励磁涌流会对整个变压器回路产生影响,不仅会造成
励磁线圈中的涌流,也会对次级绕组和电网产生影响。

4.会影响电机和负载设备:励磁涌流在电机和负载设备上产生的过电
压和过电流可能会导致电机和负载设备的损坏。

5.会引起设备振动和噪声:励磁涌流会引起变压器的振动和噪声,对
设备和周围环境造成不良影响。

励磁涌流对变压器和电网的影响是不可忽视的,因此在实际应用中需
要采取一些措施来限制和减小励磁涌流的影响,例如采用特殊的励磁变压
器、引入励磁涌流限制电抗器等。

此外,合理调整变压器的设计和励磁电源的参数也能有效减小励磁涌流的幅值和时间。

变压器励磁涌流特点及措施

变压器励磁涌流特点及措施

变压器励磁涌流特点及措施变压器励磁涌流,这个名字听上去就有点儿高深莫测,对吧?简单来说,励磁涌流就是在变压器接通电源的时候,瞬间产生的一种电流。

这股电流就像一阵狂风,来得快去得也快,但可别小看它,搞不好会给变压器带来不少麻烦。

这种情况尤其在变压器初次启动的时候,简直就像是在开一场电流的派对,喧闹得很。

想象一下,你一打开电源,变压器就像被打了兴奋剂似的,电流猛地蹿上去,瞬间达到了很高的水平。

这种现象发生的原因,其实是因为变压器内部的铁芯在电流的作用下,产生了磁场,这个磁场又带动了电流的流动。

就好比你在喝饮料的时候,气泡一下子涌上来,真是让人措手不及。

不过,这种强烈的涌流其实是短暂的,过不了多久就会回归到正常水平。

但在这短短的瞬间,它可能会带来设备的过热、老化,甚至损坏,想想都让人心惊。

面对这样的涌流,咱们应该怎么办呢?预防是关键,绝对不能掉以轻心。

在设计变压器的时候,就得考虑到这个问题,采用一些保护措施。

比如,选用合适的保护装置,像是限流器和保护继电器,这些可都是可以帮助咱们控制涌流的好帮手。

就像是在家里遇到突如其来的大雨,提前准备好雨具总是比临时慌忙找伞强多了。

还有一种常见的做法,就是设置一个合理的启动程序。

比如,逐步加压,慢慢来,而不是一下子给它来个“电量满格”。

想象一下,像是在给小猫喂食,慢慢地让它适应,不然一下子喂太多,它可受不了。

逐步启动的好处就是能够有效降低涌流的强度,给设备一个缓冲期,减少冲击。

此外,定期维护也是不可或缺的环节。

就像我们的身体需要定期检查,变压器也需要定期检修。

检查铁芯的状态,看看有没有松动的情况,或是绝缘材料是否老化。

保持设备在最佳状态,能让我们在关键时刻减少涌流对设备的冲击。

当然了,理论归理论,实践才是王道。

有些情况下,即使做足了准备,涌流还是会出现。

这个时候,咱们就得冷静应对,快速启动保护措施,让设备安全度过这个“狂欢派对”。

有些高级一点的变压器,甚至会配备自动保护系统,一旦检测到涌流过大,立马就会切断电源,简直是个聪明的小家伙。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器上一合上额定电压与额定频率的电源时,在空载的变压器合闸间,处于过渡过程的非对称合闸空载电流叫激磁涌流,作用时间很短,逐渐衰减到稳态空载电流,涌流峰值按指数曲线衰减,其时间常数为合闸侧绕组电感量与电阻量之比。

小容量变压器在涌流时间常数较小,即很快过渡到稳态空载电流,而大容量变压器的涌流时间较大,要有一过程才过渡到稳态空载电流。

如果这个过程不导致变压器过流动作,一般没什么影响,如果导致变压器过流动作的话,一个可以适当增加过流动作电流,第二个重新投运一次。

当变压器空载投入和外部故障切除后电压恢复时、变压器可能出现数储很大的励磁电(又称为励磁涌流>。

这是因为在稳态工作情况下,铁心中的磁通应滞后于外加电压90°,如果空载合闸时,正好在电压瞬时值U=0时接通电路,则铁心中应该具有磁通-Φm。

但是由于铁心中的磁通不能突变,但此,将出现一个非周期分量的磁通+Φm。

这样在经过半个周期以后,铁心中的磁通就达到2Φm,。

如果铁心中还有剩兹通Φs,则总磁通将为2Φm +Φs,?吨,此时变压器的铁心严重饱和,励磁电流IL将剧烈增大,此电流就称为变压器的励磁涌流ILY.其数值最大可达额定电流的6—8倍,同时包含有大量的非周期分量和高次谐波分量,励磁涌流的大小和衰减时间,与外加电压的相位、铁心中剩磁的大小和方向、电源容量的大小、回路的阻抗以及变压器的容量的大小和铁心性质等都有关系。

例如,正好在电压瞬时值为最大时合闸,就不会出现励磁涌流,而只有正常时的励磁电流。

对三相变压器而言.无论在任何瞬间合闸,至少有两相要出现程度不同的励磁涌流
变压器线圈中,励磁电流和磁通的关系,由磁化特性决定,铁芯愈饱合,产生一定的磁通所需要的励磁电流愈大。

由于在正常情况下,铁芯中的磁通就已饱合,如在不利条件下合闸,铁芯中磁通密度最大值可达两倍的正常值,铁芯饱和将非常严重,使其导磁数减小,励磁电抗大大减小,因而励磁电流数值大增,由磁化特性决定的电流波形很尖,这个冲击电流可超过变压器额定电流的6--8倍。

所以,由于变压器电、磁能的转换,合闸瞬间电压的相角,铁芯的饱合程度等,决定了变压器合闸时,有励磁涌流,励磁涌流的大小,将受到铁芯剩磁与合闸电压相角的影响。

1 低压电网短路电流的特点
低压电网发生短路时,电网运行将由正常工作状态过渡到短路状态,其短路电流曲线如图1
所示。

短路过程分为暂态过程和稳态过程,暂态短路电流ik可分解为周期性ip和非周期性inp。

周期分量的幅值是不变的,它等于稳态短路电流I的幅值,非周期分量是不断衰减的。

短路发生后,大约经过0.01s,出现短路电流的最大瞬时值(电流峰值),我们称为短路冲击电流ish,其值可达稳态短路电流的1.4倍左右。

例如,当变压器短路电压为5%,高压侧为额定电压,
低压侧短路,则稳态短路电流可达额定电流的20倍;其冲击电流可达到额定电流的28倍左右。

冲击电流峰值在半个周波也就是10ms时段出现。

其值一般取;
ish=2.55 I ish=1.5 i
而在1000kVA及以下变压器低侧发生三相短路时,其值取;
ish=1.8 i ish=1.09 i
按照以上方式计算出的结果,在一般书中均有所刊载。

对短路电流的描述主要是为了探讨熔断器的熔体在短路过程中的特性,由图1可见。

(1)短路冲击电流发生在0.01s的时段,熔断器如能在此时段熔断,它的断开时间将是0.01s。

这是任何高压断路器无法比拟的,10kV断路器时间均≥0.06s。

(2)冲击电流是逐渐衰减的,如果熔断器不能在第一个周期的峰值熔断,则短路冲击电流将逐渐衰减。

动作时间将大于0.01s,而是按照熔断器的电流一时间特性曲线来决定其熔断时间。

(3)熔断器熔体熔断时间受到两个因素的影响;
①系统的短路容量;短路容量大,熔断时间快。

②熔断器熔体的选择;熔体电流小,熔断时间快。

2 变压器的激磁涌流对熔断器选择的影响
激磁涌流,又称空载合闸合流,是变压器在空载投入时,或者在外部故障切除后突然恢复电压时所产生的一个电流。

在这种情况下,由于变压器铁芯中的磁通不能突变,也就是磁通在加上电压的初瞬间(t=0)仍维持为零从而与三相电路突然短路时所发生物理过程相似。

铁芯中将同时产生两个磁通,一个是符合磁路欧姆定律的周期分量(与短路的ip相当),一个是符合电磁感应定律的非周期分量 np(与短路的inp相当)。

这两磁通分量在t=0时大小相等,极性相反,使合成磁通 =0。

经半个周期后,达到最大值。

(与短路的ish相当)这时铁芯严重饱和,激磁电流迅速增大,可达到额定电流的8~10倍,形成类似涌浪的电流。

此涌浪电流中含有数值很大的非周期分量,而且衰减较慢。

(与短路电流非周期分量相比)很显然熔断器
的熔体电流如果躲不过磁涌流,就可能在变压器空载投入时或电压突然恢复时熔断,发生误动作。

3 熔断器的特性
高压熔断器结构简单,具有良好的短路保护和过负荷保护功能。

它是人为地在电路中间设置的一个最薄弱的发热元件(熔体或熔丝)。

当流过熔体的电流超过一定数值时,熔体自身产生热量自动地将熔体熔断,达到断开电路的目的及保护电器设备不受到损害。

户内熔断器(限流熔断器)为单相高压电器设备,各种型号的限流熔断器的外形结构、灭弧原理都基本相同。

熔丝由单根或多根镀银的细铜丝并联绕成螺旋状,熔丝埋放在石英砂中。

当过载或短路时,熔丝熔断。

电弧出现在多条石英砂的缝隙中。

由于石英砂对电弧的强烈的去游离作用,每条缝隙中的金属蒸气少,冷却效果好,使电弧熄灭,在短路电流达到峰值之前已被断开,因此,这类熔断器具有很强的限流能力和短的开断时间。

熔断器的主要技术数据为:
(1)熔断器在规定的使用条件下,能可靠地分断最小开断电流(2.5~3倍熔体定额电流)至额定开断电流为31.5kA之间的任何故障电流。

(2)熔断器具有反时限的时间一电流特性,如图3所示,电流愈大,开断时间愈小,最短时间可达到0.01s(半个周期)。

4 保护变压器用熔断器的选择
采用环网柜作为变压器保护的负荷开关熔断器的方案,设计人员一般都不再进行繁琐的设计,以及对短路电流和继电保护的整定计算,选用制造厂提供的成套的设备即可。

制造厂一般按表1配置。

相关文档
最新文档