2.2半导体激光器课件

合集下载

半导体激光器(一)PPT课件

半导体激光器(一)PPT课件



1 P ( E ) 费米能级 ——用于描述半导体中各能级被电子占据的状态,在费米能级,被电子占据 E Ef 和空穴占据的概率相同。在本征半导体中, 1 exp[ ] KT 位于禁带中央;N型半导体中 增大;在P型半导体中 减小。
Ef
Ef
Ef
P 区
PN 结空 间电 场区
N 区
+ + + + ++
• • • • •
是 阈值增益系数; ln( 1 ) R1 R2 是谐振腔内激活物质的损耗系数; th 2L 为谐振腔长度 th 激光振荡的相位条件为: 或
L
L q

2n
L
2 nL

半导体激光器的基本结构
• 同质结 • 单异质结(LH) • 双异质结(DH)
双异质结(DH)LD的结构
E2
初态
hf12
E1
hf12
E2
终态
hf12
E1
hf12
(c)受激辐射
(a)受激吸收
能级与电子跃迁示意图
(b)自发辐射
粒子数反转分布
设在单位物质中低能级电子数和高能级电子数分别为 N1 和N2物质在正常状态下N1>N2,受激吸收与受激辐射的速率 分别比例于N1和N2且比例系数相等,此时光通过该物质时, 光强会衰减,物质为吸收物质。若N2>N1,受激吸收小于受 激辐射,光通过该物质时,光强会放大,该物质成为激活 物质。N2>N1的分布与正常状态相反,故称为粒子数反转分 布。
光与物质相互作用的三种基本方式
• 自发辐射——无外界激励而高能级电子自发跃迁到低能级, 同时释放出光子。 • 受激辐射——高能级电子受到外来光作用,被迫跃迁到低 能级,同时释放出光子,且产生的新光子与外来激励光子 同频同方向,为相干光。 • 受激吸收——低能级电子在外来光作用下吸收光能量而跃 迁到高能级。

半导体激光器ppt课件

半导体激光器ppt课件
Ⅱ、与同质结激光器相比,异质结激光器具有以下优点: 1)阈值电流低,同时阈值电流随温度的变化小; 2)由于界面处的折射率差异,光子被限制在作用区内; 3)能实现室温下的连续振荡。
应用:
半导体激光器应用十分广泛,主要分布在军事、生产和医疗方面:
军事:Ⅰ)激光引信。半导体激光器是唯一能够用于弹上引信的激光器。 Ⅱ)激光制导。它使导弹在激光射束中飞行直至摧毁目标。 Ⅲ)激光测距。主要用于反坦克武器以及航空、航天等领域。 Ⅳ)激光雷达。高功率半导体激光器已用于激光雷达系统
目录
CONTENTS
1 基本介绍及发展 2 基本原理及构成
3 主要特性
4 分类、应用及发展前景
基本介绍及发展
高能态电子束>低能态电子束
高能态
低能

同频同相
的光发射
同频同相光 谐振腔内多次往返
放大
激光
激光:通过一定的激励方 式,实现非平衡载流子的 粒子数反转,使得高能态 电子束大于低能态电子束, 当处于粒子数反转状态的 大量电子与空穴复合时, 便产生激光。
激光具有很好的方向性和 单色性。用途十分广泛
高功率半导体激光器
① 、1962年9月16日,通用电气公司的罗伯特·霍尔 (Robert Hall) 带领的研究小组展示了砷化镓(GaAs)半导体的红外发射, 首个半 导体激光器的诞生。 ②、70年代,美国贝尔实验室研制出异质结半导体激光器,通过对光 场和载流限制,从而研制出可在室温下连续运转且寿命较长的激光器。 ③、80年代,随着技术提升,出现了量子陷和超晶格等新型半导体激 光器结构; 1983年,波长800nm的单个输出功率已超过100mW,到 了1989年,0.1mm条宽的则达到3.7W的连续输出,转换效率达39%。 ④、90年代在泵浦固体激光器技术推动下,高功率半导体激光器出现 突破进展。。1992年,美国人又把指标提高到一个新水平:1cm线阵 连续波输出功率达121W,转换效率为45%。

半导体激光器的原理及其应用PPT

半导体激光器的原理及其应用PPT
可靠性
高功率半导体激光器的可靠性是关键问题之一,需要解决长 时间运行下的热效应、光束质量变化和器件失效等问题。研 究和发展高效散热技术、光束控制技术和寿命预测技术是提 高可靠性的重要途径。
多波长与调谐技术
多波长
多波长半导体激光器在通信、光谱分析和传感等领域具有重要应用。实现多波长输出的关键在于利用 增益耦合或波导耦合等技术,将不同波长的光场限制在相同的谐振腔内,以实现波长的稳定和可控。
跃迁过程
在半导体中,电子从价带跃迁到导带是通过吸收或释放光子的方 式实现的。当电子从导带回到价带时,会释放出能量,这个能量 以光子的形式辐射出来。
载流子输运与动态过程
载流子输运
在半导体中,电子和空穴的输运受到 散射和扩散机制的影响。散射机制包 括声学散射和光学散射等,扩散机制 则是由浓度梯度引起的。
80%
表面处理
利用半导体激光器的热效应,对 金属、塑料等材料表面进行硬化 、熔融、刻蚀等处理,提高材料 性能和外观质量。
生物医疗与科学仪器
医学诊断
半导体激光器在光谱分析、荧 光检测等领域有广泛应用,可 用于医学诊断和药物分析。
生物成像
利用半导体激光器的相干性和 单色性,实现光学成像和干涉 测量,在生物学、医学、物理 学等领域有广泛应用。
详细描述
在光纤通信中,半导体激光器 作为信号源,通过调制产生的 光信号在光纤中传输,实现信 息的快速、远距离传输。
应用优势
半导体激光器具有体积小、功 耗低、调制速度快、可靠性高 等优点,适用于大规模、高容 量的光纤通信系统。
发展趋势
随着5G、物联网等技术的发展 ,光纤通信的需求不断增加, 半导体激光器的性能和可靠性 也在不断提升。
光谱分析
半导体激光器作为光源,可用 于光谱分析技术,检测物质成 分和结构,广泛应用于环境监 测、化学分析等领域。

半导体激光器工作原理及基本结构PPT课件

半导体激光器工作原理及基本结构PPT课件
• 一定波长的受激光辐射在谐振腔内形成振荡的条件: 腔长=半波长的整数倍 L=m(λ/2n)
第5页/共15页
增益和阈值电流
• 增益:在注入电流的作用下,激活区受激辐射不断增强。 • 损耗:受激辐射在谐振腔中来回反射时的能量损耗。包括载流子吸收、缺
陷散射及端面透射损耗等。 • 阈值电流:增益等于损耗时的注入电流。
在材料设计时,考虑将p区和n区重掺杂等工艺,使得辐射 光严格在pn结平面内传播,单色性较好,强度也较大,这种 光辐射叫做受激光辐射。
第4页/共15页
法布里-珀罗谐振腔 (形成相干光)
• 垂直于结面的两个平行的晶体解理面形成法布里-珀罗谐振腔 ,两个解理 面是谐振腔的反射镜面。在两个端面上分别镀上高反膜和增透膜,可以提 高激射效率.
2. 有源区工作时产生的热量能通过周围四个方向的无源区传 递而逸散,提高器件的散热性能;
3. 有源区尺寸减小了,提高材料均匀的可能性; 4. 器件的可靠性提高、效率提高、远场特性改善。
第10页/共15页
条形结构类型
从对平行于结平面方向的载流子和光波限制情况可分为增益波导条形激光器(普通条形)和折射 率波导条形激光器(掩埋条形、脊形波导)。
第3页/共15页
自发光辐射和受激光辐射
• 自发光辐射(发光二极管)
当给器件加正向偏压时,n区向p区注入电子,p区向n区注 入空穴,在激活区电子和空穴自发地复合形成电子-空穴对, 将多余的能量以光子的形式释放出来,所发射的光子相位和 方向各不相同,这种辐射叫做自发辐射。
• 受激光辐射(半导体激光器)
第13页/共15页
弱折射率波导条形激光器(脊形波导)
特点:在侧向对光波的有一定限制作用,在条形有源区上方腐蚀出一个脊(宽度大约 3~4um),腐蚀深度大概1.5~2um, 腐蚀一部分上限制层。由于腐蚀深度较深,在侧向 形成一定的折射率台阶,对侧向光波有较弱的限制作用。

《半导体激光器》课件

《半导体激光器》课件

激光器的原理和结构
三层异质结构
由P型层、N型层和增益区组 成,形成电荷分布不均衡。
激发电子跃迁
通过半导体材料注入载流子, 使电子跃迁并辐射出激光。
反射和增强
利用反射镜将光不断反射, 形成受激辐射和光放大。
半导体激光器的分类
基于材料
可见光范围:GaN、InGaN、 AlGaInP
基于结构
激光二极管、垂直腔面发射激 光器(VCSEL)、边缘发射激光 器
半导体激光器将继续追求更高功率输出
新材料和结构
2
和更短波长的发展。
新型半导体材料和结构设计将推动半导
体激光器的进一步发展。
3
光电子集成
半导体激光器将与其他光电子器件集成, 进一步拓展应用领域。
总结和展望
半导体激光器的发展已经取得了显著的成就,但仍有许多待解决的挑战。我们期待看到半导体激光器在更多领 域发挥重要作用,并推动科技进步和社会发展。
1 小尺寸、易集成
半导体激光器的微小尺寸 使其在集成电路和微型设 备中具有广泛应用。
2 低功耗、高效率
相较于其他激光器,半导 体激光器具有更低的功耗 和更高的能量转换效率。
3 快速开关、调制
半导体激光器具有快速调 制和切换特性,适用于光 通信和传感器等领域。
半导体激光器的发展趋势
1
更高功率和更短波长
基于应用
光通信、激光打印、医疗、工 业加工、激光雷达等
半导体激光器的应用

光通信
作为信息传输的关键技术,广泛 应用于光纤通信和无线光通信领 域。
医疗
各种激光治疗设备,如激光手术 刀和激光美容仪,受到医疗界的 青睐。
工业加工
激光切割、激光焊接和激光打标 等应用,提高了工业加工的效率 和精度。

半导体激光器讲解ppt课件

半导体激光器讲解ppt课件

正反馈(驻波);
fq 谐振频率, q 谐振波长, q 纵模
f q
c
q

q
c 2nL
12
§2.半导体中光的发射和激射原理(续)
频带加宽:增益介质的增益-频率特性;
13
§2.半导体中光的发射和激射原理(续)
横模TEMmn :激光振荡垂直于腔轴方向,平面波 偏离轴向传播时产生的横向电磁场模式。
受激辐射:E2能态的电子处于不稳定状态,向下 进入亚稳态,外来光子会激励电子向下跃迁到基 态E1,受激辐射一个光子(位相相同)。
9
§2.半导体中光的发射和激射原理(续)
粒子数反转(光放大的必要条件):仅当激发态 的电子数大于基态中的电子数时,受激辐射超过 吸收,要利用“泵浦(激励)”方法。
有源区:实现粒子数反转,对光具有放大作用的 区域。
Eg=h
4
§2.半导体中光的发射和激射原理(续)
本征半导体(I型):杂质、缺陷极少的纯净、 完整的半导体。
电子半导体(N型):通过掺杂使电子数目大 大地多于空穴数目的半导体。(GaAs-Te)
空穴半导体(P型):通过掺杂使空穴数目大 大地多于电子数目的半导体。(GaAs-Zn)
在纯净的Ⅲ-Ⅴ族化合物中掺杂Ⅵ族元素(N 型),或掺杂Ⅱ族元素(P型)
掺杂:eVDEg为轻掺杂, eVDEg为重掺杂。
在平衡状态下,P区和N区有统一的Ef。
正电压向V→漂移运动→抵消一部分势垒(V-VD) →破坏平衡→ P区和N区的Ef分离(准费米能级)。
7
§2.半导体中光的发射和激射原理(续)
(Ef)N以下的能级,电子占据的可能性大于1/2, (Ef)P以上的能级,空穴占据的可能性大于1/2。

第3章 半导体激光器材料PPT课件

2、气体激光器:结构简单、造价低,操作方便, 介质均匀光束质量好且能长时间稳定工作 He-Ne激光器简介:最早(1961)制成且应用最广泛。 激光波长为632.8纳米(氖原子发出),采用电激励。 高压电源使气体放电,氦激发,能量传递给氖,四 能级系统 3、 液体激光器:输出波长连续可调,覆盖面宽 4、半导体激光器:体积、质量小,寿命长,结构简单而 坚固
激光核聚变
这是激光核聚变靶室,在靶室内十束激光同时聚向一个产生 核聚变反应的小燃料样品上,引发核聚变。
激光焊接
高能激光(能产生约5500 oC的高温)把大 块硬质材料焊接在一起
用激光使脱落的视网膜再复位
(目前已是常规的医学手术)
用脉冲的染料激光(波长585nm)处理皮肤色素
处理前
处理后Leabharlann 激光光纤通讯受激辐射光子
特点: 受激辐射产生的光子与入射光子是完全相干的;
受激辐射中,光子成倍增长,产生了光放大。
激光的产生过程
激光是受激辐射的光,但实际中还存在自发辐射
和吸收, 且粒子数正常分布是:Nexp E/(kT )

E4
N2 N1
exp({E2
E1)/kT}
量 E3
粒子数反转状态
E2
E2
为E1了有效地产生激光,要改变E这1 种分布,形成粒子数反
普罗霍罗夫
巴索夫 汤斯
1964年诺贝尔物理学奖一半授予美国马萨诸塞州坎布里奇的 麻省理工学院的汤斯(Charles H.Townes, 1915一),另一 半授予苏联莫斯科苏联科学院列别捷夫物理研究所的巴索夫 (Nikolny G.Basov,1922一)和普罗霍罗夫( Aleksandr M. Prokhorov, 1916--),以表彰他们从事量子电子学 方面的基础工作,这些工作导致了基于微波激射器和激光原 理制成的振荡器和放大器。

半导体激光器分类

半导体激光器分类1. 引言半导体激光器是一种将电能转换为激光辐射的装置。

它在现代科技中有着广泛的应用,如通信、医疗、材料加工等领域。

半导体激光器的种类繁多,不同类型的激光器具有不同的特性和应用场景。

本文将对半导体激光器进行分类,并介绍每一类激光器的原理、特点以及应用。

2. 分类方法根据不同的特性和工作原理,可以将半导体激光器分为以下几类:2.1 按材料分类•GaAs(镓砷化镓)激光器:利用GaAs材料制成的半导体激光器,常见于通信领域;•InP(磷化铟)激光器:利用InP材料制成的半导体激光器,在高速通信和生物医学领域有广泛应用;•GaN(氮化镓)激光器:利用GaN材料制成的半导体激光器,具有高功率和高效率的特点,适用于照明和显示等领域。

2.2 按工作方式分类•可见光激光器:产生可见光的半导体激光器,常见的有红光、绿光和蓝光激光器;•红外激光器:产生红外线的半导体激光器,广泛应用于通信、遥感和材料加工等领域;•紫外激光器:产生紫外线的半导体激光器,在生物医学、材料加工和科学研究中有重要应用。

2.3 按结构分类•Fabry-Perot(FP)激光器:最简单的结构,由两个反射镜组成,适用于一般性应用;•Distributed Feedback(DFB)激光器:在FP结构基础上引入了周期性衍射栅,具有单模输出特性,常用于通信系统;•Vertical-Cavity Surface-Emitting Laser(VCSEL)激光器:垂直腔面发射激光器,在通信和传感领域得到广泛应用。

3. 激光器原理及特点3.1 GaAs激光器GaAs激光器以GaAs材料为基底,通过电子与空穴的复合辐射发出激光。

它具有结构简单、工作稳定、功耗低等特点。

由于其较低的能隙,主要适用于红外通信和光存储领域。

3.2 InP激光器InP激光器是一种高性能的半导体激光器,具有较高的输出功率和调制带宽。

它常用于高速通信、生物医学成像等领域。

半导体激光器 ppt课件



1
p(E)1expE( Ef )
(3.3)
kT
式中,k为波兹曼常数,T为热力学温度。Ef 称为费米能 级,用来描述半导体中各能级被电子占据的状态。
在费米能级,被电子占据和空穴占据的概率相同。
一般状态下,本征半导体的电子和空穴是成对出现的,用Ef 位于禁带中央来表示,见图3.2(a)。
在本征半导体中掺入施主杂质,称为N型半导体,见图3.2(b)。
半导体激光器(Laser Diode 即LD)
6.3.1 半导体激光器工作原理和基本结构 一、半导体激光器的工作原理
受激辐射和粒子数反转分布 PN结的能带和电子分布 激光振荡和光学谐振腔 二、半导体激光器基本结构 6.3.2 半导体激光器的主要特性 一、发射波长和光谱特性 二、激光束的空间分布 三、转换效率和输出光功率特性 四、 频率特性 五、 6.3.3 分布反馈激光器 一、 工作原理 二、DFB激光器的优点
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
(a)
(b)
(c)
图 3.2
(a) 本征半导体; (b) N型半导体; (c) P型半导体
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
在热平衡状态下(a,) 能量为E的能级(b)被电子占据的概(c率) 为费米分
如果N1>N2,即受激吸收大于受激辐射。当光通过这种物 质时,光强按指数衰减, 这种物质称为吸收物质。

半导体激光器ppt课件

半导体激光器
目录
半导体激光器简介
半导体激光器工作原理
半导体激光器的分类
半导体激光器的应用
• 半导激光器简介:
• 半导体激光器是以一 定的半导体材料做工 作物质而产生激光的 器件。.
• 半导体激光(Semiconductor laser)在1962年被 成功激发,在1970年实现室温下连续输出。后来 经过改良,开发出双异质接合型激光及条纹型构 造的激光二极管(Laser diode)等,广泛使用于 光纤通信、光盘、激光打印机、激光扫描器、激 光指示器(激光笔),是目前生产量最大的激光 器。
• (7)动态单模激光器
• (9)量子阱激光器
(8)分布反馈激光器
(10)表面发射激光器
• (11)微腔激光器
半导体激光器的应用
•军事领域
•如激光制导跟踪、激光雷 达、激光引信、激光测距、 激光通信电源、激光模拟 武器、激光瞄准告警、激 光通信和激光陀螺等。目 前世界上的发达国家都非 常重视大功率半导体激光 器的研制及其在军事上的 应用。
•印刷业和医学领域
•如CD播放器,DVD系统和高密度光存储器可见光面发射激光器在光 盘、打印机、显示器中都有着很重要的应用,特别是红光、绿光和蓝 光面发射激光器的应用更广泛蓝绿光半导体激光器用于水下通信、激 光打印、高密度信息读写、深水探测及应用于大屏幕彩色显示和高清 晰度彩色电视机中。
供应平板刻绘机
The end,thank you!
半导体激光雷达 半 导 体 激 光 武 器 模 拟
半导体激光瞄准和告警
半导体激光测距
半导体激光引信
半导体激光制导跟踪
军用光纤陀螺
•光纤通信系统
半导体激光器可以作为光纤通信的光源和指示器以及通过大规模集成电 路平面工艺组成光电子系统。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

增益曲线
损耗
一个纵模只有在其增益大于或等于损耗时,才能成为工 作模式,即在该频率上形成激光输出。
有2个以上纵模激振的激光器,称为多纵模激光器。通 过在光腔中加入色散元件等方法,可以使激光器只有一个模 式激振,这样的激光器称为单纵模激光器。
v
§2.2.2 半导体激光器的结构
§2.2.2 半导体激光器的结构
绝缘介质 P-InGaAsP
P-InP N-InP N+-InP衬底 InGaAsP
图2.2.2-2 增益导引型半导体激光器
二、折射率导引型半导体激光器
通过在侧向采用类似异质结的设计而形成的波导,引 入折射率差,也可以解决在侧向的光限制问题,这种激光 器称为折射率导引型半导体激光器。
接点 SiO2 P-InP SiO2
价带 Lx
E2V
(2) 提供光的反馈 ——解理面 晶体中易于劈裂的平面称为“解理面”。凡显露在晶体外 表的晶面往往是一些解理面。
其中最简单的是法布 里——珀罗腔
注入电流
解理面
有源区
解理面
L
R1
增益介质 z=L
R2
z=0
图2.2.1-1 激光二极管的谐振腔
(3) 满足激光器的阈值条件 只有当增益等于或大于总损耗时,才能建立起稳定的振 荡,这一增益称为阈值增益。为达到阈值增益所要求的注入 电流称为阈值电流。 I
半导体激光器的工作原理
基本条件:
1. 有源区载流子反转分布 2. 谐振腔:使受激辐射多次 反馈,形成振荡 3. 满足阈值条件,使增益>损 耗,有足够的注入电流。
§2.2.1 光学谐振腔与激光器的阈值条件
• 激光器稳定工作的必要条件 :
(1) 粒子数反转产生增益
粒子数反转(population inversion)是产生激光的前 提。一个原子可以在不同的能级之间跃迁。在通常情况下, 因为热力学的平衡态服从波尔兹曼分布律,使得处于基态 (最低能级)的原子数远远多于处于激发态(较高能级) 的原子数,这种情况得不到激光。为了形成足够的激发辐 射,得到激光,就必须用一定的方法去激发原子群体,使 亚稳态上的原子数目超过基态上的。该过程称为粒子数的 反转。
832 830 828 826 824
~5%
• 异质结对载流子的限 制作用 • 异质结对光场的限制 作用 • 异质结的高注入比
图 2.2.1-2 DH激光器工作原理 (a) 双异质结构; (c) 折射率分布; (b) 能带; (d) 光功率分布
获得粒子数反转分布
半导体激光器研究前沿
夹于宽带隙半导体(如GaAlAs)中间的窄带隙半导体 (如GaAs)起着载流子(电子和空穴)陷阱的作用,一般的 半导体激光器其有源层厚度约为100~200nm,但随着有源层 厚度的减小,如5~10nm,载流子在垂直于有源层方向上出 现量子效应,即出现量子化分立能级,称之为量子阱激光器。
导带
这种激光器发光效率更高,电 流阈值更小,出射光单色性更好。
E3C E2C E1C
ΔEC
垂直于有源层方向上运动的载 hv Eg(GaAlAs) 流子动能可量子化成分立的能级, Eg(GaAs) 这类似于一维势阱的量子力学问题, E1V E1V E2V 因而这类激光器叫做量子阱激光器。 ΔEV
E3V
N-InP
InGaAsP有源层
N+-InP衬底
图2.2.2-3 折射率导引型半导体激光器
几种典型的折射率导引激光器
§2.2.3 半导体激光器的特性
一、光谱特性
图2.2.3-1为GaAIAs双异质结激光器的光谱特性。 驱动电流增大 → →
832 830 828 826 824
832 830 828 826 824
最简单的半导体激光器由一个薄有源层(厚度约 0.1μm)、P型和N型限制层构成,如图2.2.2-1所示。
电流 金属接触 100μm P型 N型 有源层 300μm 200μm 解理面
图2.2.2-1 大面积半导体激光器
这样的激光器面积大,称为大面积激光器。 为解决侧向辐射和光限制问题,实际的激光器采 用了增益导引型和折射率导引型结构。
§2.2

半导体激光器
2.2.1 光学谐振腔与激光器的阈值条件 2.2.2 半导体激光器的结构 2.2.3 半导体激应用
半导体激光器是以直接带隙半导体材料构成的PN结 或PIN结为工作物质的一种小型化激光器。其工作原理
是受激辐射,利用半导体物质在能带间跃迁发光,用半 导体晶体的解理面形成两个平行反射镜面作为反射镜, 组成谐振腔,使光振荡、反馈、产生光的辐射放大,输 出激光。 半导体激光工作物质有几十种,目前已制成激光器的 半导体材料有砷化稼(GaAs)、砷化铟(InAs)、氮化 镓(GaN)、锑化铟(InSb)、硫化镉(Cds)、蹄化 镉(CdTe)、硒化铅(PbSe)、啼化铅(PhTe)、铝 镓砷(A1xGaAs)、铟磷砷(In-PxAs)等。
半导体激光器粒子数反转分布的产生:
在PN结上施加正向电压,产生与内部电场相反方向的外 加电场,结果能带倾斜减小,扩散增强。电子运动方向与电 场方向相反,便使N区的电子向P区运动,P区的空穴向N区运 动,最后在PN结形成一个特殊的增益区。 增益区的导带有大量的电子,价带大量是空穴,在电子 和空穴扩散过程中,导带的电子可以跃迁到价带和空穴复合, 产生自发辐射光。这种光发射的范围宽、不集中、效率低。 要真正实现粒子数反转以发射激光,必须对载流子及发射光 施加附加的限制——双异质结的引入。
双异质结( DH : Double-Heterostructure ):就是由带 隙宽度及折射率都不同的两种半导体材料构成的PN结。
( a)
+
E
P
Ga1-x Al x As
P
GaAs
Ga1-y Al y As
N
-
电子
( b) 能 量
空穴 n 折 (c) 射 率 P ( d)
复合 异质势垒
• 异质结的作用:
一、增益导引型半导体激光器
解决光限制问题的一种简单方案是将注入电流限制在一 个窄条里,这样的激光器称为条形半导体激光器,其结构如 图2.2.2-2所示。将一绝缘层介质(SiO2)淀积在P层上,中间 敞开以注入电流。由于光限制是借助中间条形区的增益来实 现的,这样的激光器称为增益导引型半导体激光器。
相关文档
最新文档