统计学第七版课后题答案分析复旦大学

合集下载

统计学课后习题答案(全)

统计学课后习题答案(全)

<<统计学>>课后习题参考答案第四章1. 计划完成相对指标==⨯++%100%51%81102.9% 2. 计划完成相对指标=%9.97%100%41%61=⨯-- 3.4.5.解:(1)计划完成相对指标=%56.115%1004513131214=⨯+++(2)从第四年二季度开始连续四季的产量之和为:10+11+12+14=47天完成任务。

个月零该产品总共提前天完成的天数已提前完成任务,提前该产品到第五年第一季1510459010144514121110∴=--+++=6.解:计划完成相对指标=%75.126%100%1.0102005354703252795402301564=⨯⨯⨯++++++(2)156+230+540+279+325+470=2000(万吨) 所以正好提前半年完成计划。

7.8.略第五章 平均指标与标志变异指标1.甲X =.309343332313029282726=++++++++乙X =44.319403836343230282520=++++++++ AD 甲=}22.29303430333032303130303029302830273026=-+-+-+-+-+-+-+-+-AD 乙=}06.594044.313844.313644.313444.313244.313044.312844.312544.3120=-+-+-+-+-+-+-+-+-R 甲=34-26=8 R 乙=40-20=20σ甲 =9)3334()3033()3032()3031()3030()3029()3028()3027()3026(222222222-+-+-+-+-+-+-+-+-=2.58 σ乙=9)44.3140()44.3138()44.3136()44.3134()44.3132()44.3130()44.3128()44.3125()44.3120(222222222-+-+-+-+-+-+-+-+-=6.06V 甲=1003058.2⨯%=8.6% V 乙=%3.19%10044.3106.6=⨯ 所以甲组的平均产量代表性大一些. 2.解:计算过程如下表:甲X =.)(5.101780元= 乙X =(元)9708077600= 3.解:计算过程如下表:甲X =.4.11980=(件) 乙X =8.120809660=(件) σ甲=06.98075.6568=(件) σ乙=81.10809355=(件) V 甲=1004.11906.9⨯%=7.58% V 乙=%94.8%1008.12081.10=⨯ 所以甲厂工人的平均产量的代表性要高些.4. 解:()()94.761018102457047.7610121871871870775121873595128518757653550=⨯-+==⨯-+--+==++++⨯+⨯+⨯+⨯+⨯=e M M X 5.解:(1)上期的平均计划完成程度为:()()第六章元解解度为下期的平均计划完成程tH V P X P P P P /3.2884102950943.5062900255.3212800604.43210943.506255.321604.432:.7%1.32%1009067.0291.0291.0%67.901%67.90%67.90%67.90%10030028300:.6%37.103%1031400%1011200%107810%110961400120081096:)2(%67.99%1001500100070080%951500%1001000%108700%1108044=⨯⎪⎭⎫ ⎝⎛++⨯++==⨯==-⨯====⨯-==++++++=⨯+++⨯+⨯+⨯+⨯σ1.()())(7.788%67.41500:2000%67.41500600:.6)(6.62126907106557306806702650600269071061527106556552655730620273068060026806706402670650:2)(7.62327107006907206806202680610271070062527006906452690720640272068062026806206002620680:)1(:.5%63.79%10026206005802580257646245002435:.4%85.105%100%113385%102350%97463%120485%105412%112410%98368%106350%105310%110324%102306%101303385350463485412410368350310324306303::.3872232122221030980329809002290010201210208402284067022670600.2104万吨年该县粮食产量为平均增长速度解元工人的月平均工资为乙工区上半年建筑安装元工人的月平均工资为甲工区上半年建筑安装解解度为全年月平均计划完成程解=+⨯=-==++++++⨯++⨯++⨯++⨯++⨯++⨯+=++++++⨯++⨯++⨯++⨯++⨯++⨯+=⨯++++++==⨯++++++++++++++++++++++=+++++⨯++⨯++⨯++⨯++⨯++⨯+=C a 7解:计算过程如下表:)(94.6653.444.45:1994:3.46025844.4594092万元年的地方财政支出额为则直线趋势方程为=⨯++=======∑∑∑bta y t tyb ny a二次曲线方程为:y = 0.0108x 2 + 4.1918x + 24.143(过程略) 指数曲线方程为:y = 26.996e 0.0978x8.解:计算过程如下表:9.解:(1)同季平均法求季节比率的过程如下表:(2)趋势剔除法测定的季节变动如下表:第七章 统计指数()()()()01001011111175000124000081138.44%5000012350008750002540000182138.03%500002535000181075000940000390.98%127500084000022750002540000425qqzpk q z q zq p q p q z kq z p q k p q⨯+⨯===⨯+⨯⨯+⨯===⨯+⨯⨯+⨯===⨯+⨯⨯+⨯==∑∑∑∑∑∑∑∑111111110102.12%75000184000015602.108.8%1200360110%105%pp q p q k p q p q p p=⨯+⨯====+∑∑∑∑11111560.135.65%1150135.65%124.68%108.8%.120%1800115%90096%6003.114.27%330042003300111.38%114.27%.pqpq qpqpq p qp q k p qk k k q q p q p q k q p q pkk k======⨯+⨯+⨯=======∑∑∑∑∑∑ 110101001013200005.100%128%250000128%123.1%14%320000307692.3104%307692.325000057692.3320000307692.312307.pq pqq PpK K K p qp q K p q p qq p q =⨯====+===-=-=-=-=∑∑∑∑∑∑1解:K 零售量变动对零售额变动影响的绝对值为:(万元)零售物价变动对零售总额变动影响的绝对值为:p 1110010000107350000120%120%180000110%110%116%116%17.6%107.6%350000291666.67120%180000163636.36.110%1pq pq q q pq pq q q K q K q p q Kq p q K p q p q ==+===+==+==+========⨯=∑∑∑∑∑∑∑∑城1城农城农1农1城城城1农农农城城城(万元)6.解:已知p ,,p ,,K ,K p 则p K 0010111101001116%291666.67338333.33107.6%163636.36176072.72350000180000103.03%338333.33176072.723%q pp q p q p q q q k p q p q p q ⨯==⨯=⨯=++====++∴∑∑∑∑∑∑∑∑农农农11城农城农K p p 该地区城乡价格上涨了。

统计学第七版课后答案

统计学第七版课后答案

统计学第七版课后答案【篇一:大学统计学第七章练习题及答案】练习题7.1 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。

(1)样本均值的抽样标准差?等于多少?(2)在95%的置信水平下,边际误差是多少?解:⑴已知??5,n?40,?25样本均值的抽样标准差???n?540??0.79 4⑵已知??5,n?40,?25,??,1???95% 4?z?2?z0.025?1.96边际误差7.2 某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差;(2)在95%的置信水平下,求边际误差;(3)如果样本均值为120元,求总体均值?的95%的置信区间。

解.已知.根据查表得z?/2=1.96(1)标准误差:e?z??n?1.96*?1.55 4???n?1549?2.14(2).已知z?/2=1.96所以边际误差=z?/2*sn?1.96*1549=4.2(3)置信区间:?z?2sn?120?1549?1.96??115.8,124.2?7.3 从一个总体中随机抽取n?100的随机样本,得到?104560,假定总体标准差??85414,构建总体均值?的95%的置信区间。

z??1.96z??96*85414n?1.?16741.144?z.?104560?16741.144?87818.856n??z?.?104560?16741.144?121301.144n置信区间:(87818.856,121301.144)7.4 从总体中抽取一个n?100的简单随机样本,得到?81,s?12。

(1)构建?的90%的置信区间。

(2)构建?的95%的置信区间。

(3)构建?的99%的置信区间。

解;由题意知n?100, ?81,s?12.(1)置信水平为1???90%,则z??1.645. 2由公式?zs??81?1.645?122n??81?1.974即81?1.974??79.026,82.974?,则?的90%的置信区间为79.026~82.974(2)置信水平为1???95%, z??1.96 2由公式得?z??s2n=81?1.96?12100?81?2.352即81?2.352=(78.648,83.352),则?的95%的置信区间为78.648~83.352(3)置信水平为1???99%,则z??2.576.2s12由公式?z??=?81?2.576?0962n?81?3.即81?3.1则?的99%的置信区间为7.5 利用下面的信息,构建总体均值的置信区间。

《统计学》教材各章参考答案

《统计学》教材各章参考答案

各章思考与练习参考答案第一章导论(一)单项选择题1.D 2.C 3.B 4.D 5.D 6.D 7.B 8.A 9.B 10.A (二)多项选择题:1.ABCD 2.CD 3.AD 4.BCDE 5.ABDE(三)判断题:1.×2.×3.×4.√5.×(四)简答题:答案略(五)综合题答案略第二章统计调查(一)单项选择题:1.C 2.C 3.B 4.C 5.C 6.A 7.B 8.C 9.C 10.B (二)多项选择题:1.ACD 2.ABC 3.ABCD 4.ABC 5.ACD6.ABCD 7.ABDE 8.BCE 9.ABE 10.CD(三)判断题:1.×2.×3.×4.√5.×(四)名词解释:答案略㈤(五)简答题:答案略第三章统计整理(一)单项选择题:1.C 2.B 3.C 4.B 5.B 6.A 7.B 8.C 9.B 10.B (二)多项选择题:1.AB 2.BD 3.ACD 4.AD 5.BCD6.BD 7.ABC 8.AC 9.ABC 10.CD(三)判断题:1.×2.√3.×4.×5.×(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:2可见,组距1000元的分布数列,更为合理。

(2)对选中的分布数列,计算频率、较小制累计次数、较大制累计次数、组中值:(3)略第四章总量指标与相对指标(一)单项选择题:1.C 2.B 3.A 4.B 5.C 6.B 7.B 8.C 9.B 10.D(二)多项选择题:1.ABCD 2.CE 3.ABCDE 4.BCE 5.ABCD(三)判断题:1.X 2.X 3.X 4.√5.X(四)名词解释:答案略(五)简答题:答案略(六)计算题:1.解:该企业集团实现利润比去年增长百分比 =110%/(1+7%)-1=2.80%2.解:(1)2011年的进出口贸易差额=12178-9559=2619(亿元)(顺差)2011年进出口总额的发展速度=21737/17607×100%=123.46%(2)2011年进出口额比例相对数=9559/12178×100%=78.49%2011年出口额结构相对数=12178/21737×100%=56.02%(3)该地区进出口贸易发展速度较快,出现贸易顺差。

统计学课后习题答案(全章节)剖析

统计学课后习题答案(全章节)剖析

第二章、练习题及解答2.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688 要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图。

灯泡的使用寿命频数分布表3.某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 97 88 123 115 119 138 112 146 113 126 要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。

(2)制作茎叶图,并与直方图进行比较。

解:(1)频数分布表(2)茎叶图第三章、练习题及解答1. 已知下表资料:试根据频数和频率资料,分别计算工人平均日产量。

解:根据频数计算工人平均日产量:687034.35200xf x f===∑∑(件) 根据频率计算工人平均日产量:34.35fx xf==∑∑(件)结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。

统计学课后习题答案第七章相关分析与回归分析报告

统计学课后习题答案第七章相关分析与回归分析报告

统计学课后习题答案第七章相关分析与回归分析报告第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系?A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值围是A.-1≤r≤1B.-1≤r≤0C.0≤r≤1D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为-0.89,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:A.y=6+0.24xB.y=6000+24xC.y=24000+6xD.y=24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=85-5.6x,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加5.6元D.产量为1千件时,单位成本为79.4元E.产量每增加1千件,单位成本平均减少5.6元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为A.0B.-1C.1D.0.5E.-0.59.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.∑(y-y c )=最小值B.∑(y-y c )=0C.∑(y-y c )2=最小值D.∑(y-y c )2=0E.∑(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy yx ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数E.y c是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在B.y的所有理论值同它的平均值一致C.x和y是函数关系D.x与y不相关E.x与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。

统计学原理第七版课后答案

统计学原理第七版课后答案

统计学原理第七版课后答案1. 样本与总体。

1.1 什么是样本?什么是总体?样本是指从总体中抽取出来的一部分个体或观测值,而总体则是指研究对象的全体个体或观测值的集合。

在统计学中,我们通常通过对样本进行统计分析来推断总体的特征。

1.2 为什么要使用样本?使用样本可以节约时间和成本,同时也可以减小调查的难度。

通过对样本的分析,我们可以得出对总体的推断,从而更加高效地进行统计研究。

2. 描述统计与推断统计。

2.1 描述统计和推断统计有什么区别?描述统计是通过对样本数据的整理、分析和总结,来描述数据的基本特征和规律。

而推断统计则是通过对样本数据的分析,来推断总体的特征和规律。

2.2 描述统计和推断统计各自的应用场景是什么?描述统计主要用于对已有数据进行整理和总结,以便更好地理解数据的特征;而推断统计则主要用于从样本数据中推断总体的特征,以便对总体进行更深入的研究和分析。

3. 概率分布。

3.1 什么是概率分布?概率分布是指描述随机变量可能取值的概率规律的数学函数。

常见的概率分布包括正态分布、泊松分布、均匀分布等。

3.2 为什么要研究概率分布?研究概率分布可以帮助我们更好地理解随机变量的性质和规律,从而为后续的统计推断和分析提供基础。

4. 参数估计与假设检验。

4.1 参数估计和假设检验的基本思想是什么?参数估计的基本思想是通过样本数据对总体参数进行估计,从而对总体的特征进行推断;而假设检验的基本思想是在已知总体参数的情况下,通过样本数据来检验总体参数的假设。

4.2 参数估计和假设检验的应用范围有哪些?参数估计和假设检验在统计学中有着广泛的应用,包括医学、经济学、社会学等各个领域。

5. 方差分析。

5.1 什么是方差分析?方差分析是一种用于比较两个或多个总体均值是否相等的统计方法,常用于实验设计和数据分析中。

5.2 方差分析的原理是什么?方差分析的原理是通过比较组内变异和组间变异的大小,来判断总体均值是否存在显著差异。

统计学课后习题答案第七章相关分析与回归分析

统计学课后习题答案第七章相关分析与回归分析

统计学课后习题答案第七章相关分析与回归分析第七章相关分析与回归分析⼀、单项选择题1、相关分析就是研究变量之间得A、数量关系B、变动关系C、因果关系D、相互关系得密切程度2、在相关分析中要求相关得两个变量A、都就是随机变量B、⾃变量就是随机变量C、都不就是随机变量D、因变量就是随机变量3、下列现象之间得关系哪⼀个属于相关关系?A、播种量与粮⾷收获量之间关系B、圆半径与圆周长之间关系C、圆半径与圆⾯积之间关系D、单位产品成本与总成本之间关系4、正相关得特点就是A、两个变量之间得变化⽅向相反B、两个变量⼀增⼀减C、两个变量之间得变化⽅向⼀致D、两个变量⼀减⼀增5、相关关系得主要特点就是两个变量之间A、存在着确定得依存关系B、存在着不完全确定得关系C、存在着严重得依存关系D、存在着严格得对应关系6、当⾃变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A、直线相关关系B、负相关关系C、曲线相关关系在着A、正相关关系B、直线相关关系C、负相关关系D、曲线相关关系8、当变量X值增加时,变量Y值都随之增加,则变量X与Y之间存在着A、直线相关关系B、负相关关系C、曲线相关关系D、正相关关系9、判定现象之间相关关系密切程度得最主要⽅法就是A.对现象进⾏定性分析 B、计算相关系数C、编制相关表D、绘制相关图10、相关分析对资料得要求就是A.⾃变量不就是随机得,因变量就是随机得B、两个变量均不就是随机得C、⾃变量就是随机得,因变量不就是随机得D、两个变量均为随机得11、相关系数A、既适⽤于直线相关,⼜适⽤于曲线相关B、只适⽤于直线相关C、既不适⽤于直线相关,⼜不适⽤于曲线相关D、只适⽤于曲线相关12、两个变量之间得相关关系称为A、单相关B、复相关C、不相关D、负相关13、相关系数得取值范围就是A、-1≤r≤1B、-1≤r≤0C、0≤r≤114、两变量之间相关程度越强,则相关系数A、愈趋近于1B、愈趋近于0C、愈⼤于1D、愈⼩于115、两变量之间相关程度越弱,则相关系数A、愈趋近于1B、愈趋近于0C、愈⼤于1D、愈⼩于116、相关系数越接近于-1,表明两变量间A、没有相关关系B、有曲线相关关系C、负相关关系越强D、负相关关系越弱17、当相关系数r=0时,A.现象之间完全⽆关 B、相关程度较⼩B.现象之间完全相关 D、⽆直线相关关系18、假设产品产量与产品单位成本之间得相关系数为-0、89,则说明这两个变量之间存在A、⾼度相关B、中度相关C、低度相关D、显著相关19、从变量之间相关得⽅向瞧可分为A、正相关与负相关B、直线相关与曲线相关C、单相关与复相关D、完全相关与⽆相关20、从变量之间相关得表现形式瞧可分为A、正相关与负相关B、直线相关与曲线相关C、单相关与复相关D、完全相关与⽆相关21、物价上涨,销售量下降,则物价与销售量之间属于B、负相关C、正相关D、⽆法判断22、配合回归直线最合理得⽅法就是A、随⼿画线法B、半数平均法C、最⼩平⽅法D、指数平滑法23、在回归直线⽅程y=a+bx中b表⽰A、当x增加⼀个单位时,y增加a得数量B、当y增加⼀个单位时,x增加b得数量C、当x增加⼀个单位时,y得平均增加量D、当y增加⼀个单位时, x得平均增加量24、计算估计标准误差得依据就是A、因变量得数列B、因变量得总变差C、因变量得回归变差D、因变量得剩余变差25、估计标准误差就是反映A、平均数代表性得指标B、相关关系程度得指标C、回归直线得代表性指标D、序时平均数代表性指标26、在回归分析中,要求对应得两个变量A、都就是随机变量B、不就是对等关系C、就是对等关系D、都不就是随机变量27、年劳动⽣产率(千元)与⼯⼈⼯资(元)之间存在回归⽅程y=10+70x,这意味着年劳动⽣产率每提⾼⼀千元时,⼯⼈⼯资平均A、增加70元B、减少70元C、增加80元D、减少80元固定成本6000元,则总⽣产成本对产量得⼀元线性回归⽅程为:A、y=6+0、24xB、y=6000+24xC、y=24000+6xD、y=24+6000x29、⽤来反映因变量估计值代表性⾼低得指标称作A、相关系数B、回归参数C、剩余变差D、估计标准误差⼆、多项选择题1、下列现象之间属于相关关系得有A、家庭收⼊与消费⽀出之间得关系B、农作物收获量与施肥量之间得关系C、圆得⾯积与圆得半径之间得关系D、⾝⾼与体重之间得关系E、年龄与⾎压之间得关系2、直线相关分析得特点就是A、相关系数有正负号B、两个变量就是对等关系C、只有⼀个相关系数D、因变量就是随机变量E、两个变量均就是随机变量3、从变量之间相互关系得表现形式瞧,相关关系可分为A、正相关B、负相关C、直线相关D、曲线相关E、单相关与复相关4、如果变量x与y之间没有线性相关关系,则A、相关系数r=0B、相关系数r=1C、估计标准误差等于0D、估计标准误差等于15、设单位产品成本(元)对产量(件)得⼀元线性回归⽅程为y=85-5、6x,则A.单位成本与产量之间存在着负相关B、单位成本与产量之间存在着正相关C、产量每增加1千件,单位成本平均增加5、6元D、产量为1千件时,单位成本为79、4元E、产量每增加1千件,单位成本平均减少5、6元6、根据变量之间相关关系得密切程度划分,可分为A、不相关B、完全相关C、不完全相关D、线性相关E、⾮线性相关7、判断现象之间有⽆相关关系得⽅法有A、对现象作定性分析B、编制相关表C、绘制相关图D 、计算相关系数E 、计算估计标准误差8、当现象之间完全相关得,相关系数为A 、0B 、-1C 、1D 、0、5E 、-0、59、相关系数r =0说明两个变量之间就是A 、可能完全不相关B 、可能就是曲线相关C 、肯定不线性相关D 、肯定不曲线相关E 、⾼度曲线相关10、下列现象属于正相关得有A.家庭收⼊愈多,其消费⽀出也愈多B 、流通费⽤率随商品销售额得增加⽽减少D 、⽣产单位产品耗⽤⼯时,随劳动⽣产率得提⾼⽽减少E 、⼯⼈劳动⽣产率越⾼,则创造得产值就越多11、直线回归分析得特点有A 、存在两个回归⽅程B 、回归系数有正负值C 、两个变量不对等关系D 、⾃变量就是给定得,因变量就是随机得E 、利⽤⼀个回归⽅程,两个变量可以相互计算12、直线回归⽅程中得两个变量A 、都就是随机变量B 、都就是给定得变量C 、必须确定哪个就是⾃变量,哪个就是因变量D 、⼀个就是随机变量,另⼀个就是给定变量E 、⼀个就是⾃变量,另⼀个就是因变量13、从现象间相互关系得⽅向划分,相关关系可以分为A 、直线相关B 、曲线相关C 、正相关D 、负相关E 、单相关14、估计标准误差就是A.说明平均数代表性得指标B 、说明回归直线代表性指标C 、因变量估计值可靠程度指标D 、指标值愈⼩,表明估计值愈可靠E 、指标值愈⼤,表明估计值愈可靠15、下列公式哪些就是计算相关系数得公式16、⽤最⼩平⽅法配合得回归直线,必须满⾜以下条件A 、∑(y-y c )=最⼩值B 、∑(y-y c )=0C 、∑(y-y c )2=最⼩值D 、∑(y-y c )2=0E 、∑(y-y c )2=最⼤值17、⽅程y c =a+bx)((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy y x ∑-∑?∑-∑∑?∑-∑=-∑?-∑--∑===--∑=σσA.这就是⼀个直线回归⽅程B、这就是⼀个以X为⾃变量得回归⽅程C、其中a就是估计得初始值D、其中b就是回归系数E、y c就是估计值18、直线回归⽅程y c=a+bx中得回归系数bA.能表明两变量间得变动程度B、不能表明两变量间得变动程度C、能说明两变量间得变动⽅向D、其数值⼤⼩不受计量单位得影响E、其数值⼤⼩受计量单位得影响19、相关系数与回归系数存在以下关系A.回归系数⼤于零则相关系数⼤于零B、回归系数⼩于零则相关系数⼩于零C、回归系数等于零则相关系数等于零D、回归系数⼤于零则相关系数⼩于零E、回归系数⼩于零则相关系数⼤于零20、配合直线回归⽅程得⽬得就是为了A.确定两个变量之间得变动关系 B、⽤因变量推算⾃变量C、⽤⾃变量推算因变量D、两个变量相互推算E、确定两个变量之间得相关程度21、若两个变量x与y之间得相关系数r=1,则A.观察值与理论值得离差不存在B、y得所有理论值同它得平均值⼀致C、x与y就是函数关系D、x与y不相关E、x与y就是完全正相关22、直线相关分析与直线回归分析得区别在于A.相关分析中两个变量都就是随机得;⽽回归分析中⾃变量就是给定得数值,因变量就是随机得B.回归分析中两个变量都就是随机得;⽽相关分析中⾃变量就是给定得数值,因变量就是随机得C、相关系数有正负号;⽽回归系数只能取正值E、相关分析中根据两个变量只能计算出⼀个相关系数;⽽回归分析中根据两个变量只能计算出⼀个回归系数三、填空题1、研究现象之间相关关系称作相关分析。

贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)-第四章至第六章【圣才出品】

贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)-第四章至第六章【圣才出品】

第4章数据的概括性度量4.1考点归纳【知识框架】【考点提示】(1)集中趋势、离散趋势的度量指标,包括每个指标的含义、计算公式、特点、意义、适用范围(选择题、简答题、计算题考点);(2)众数、中位数和平均数三个指标的特点和应用场合,偏态分布下三个指标的关系(选择题、简答题、计算题考点);(3)分布形状的测度指标:偏态系数和峰态系数的数值含义(选择题、简答题考点)。

(4)标准分数的计算公式及应用(选择题、简答题、计算题考点);(5)经验法则、切比雪夫不等式的具体应用(选择题考点)。

【核心考点】考点一:集中趋势的度量表4-1集中趋势度量指标【注意】不同偏态程度的分布中集中趋势度量指标的关系:①对称分布中,众数、中位数和平均数相等;②左偏分布中,数据存在极小值,拉动平均数向极小值一方靠,而众数和中位数不受极值的影响,有_x<M e<M o;③右偏分布中,数据存在极大值,必然拉动平均数向极大值一方靠,因此M o<M e<_x。

【知识拓展】不同的教材分位数的计算公式不同,除了表中的计算公式,一种比较精确的计算公式:下四分位数Q L的位置=(n+1)/4,上四分位数Q U的位置=(3n+1)/4。

【真题精选】假定标志值所对应的权数都缩小1/10,则算术平均数()。

[浙江财经大学2019研]A.不变B.无法判断C.缩小百分之一D.扩大十倍【答案】A【解析】假设标志值为x,其对应的权数为f,则算术平均数为_x=∑xf/∑f;若各权数都缩小1/10,则新的算术平均数为110110xf xf x x f f '===∑∑∑∑考点二:离散程度的度量数据的离散程度反映了各变量值远离其中心值的程度,离散程度越小,代表性就越好。

表4-2离散程度的度量指标【注意】①表中方差和标准差的计算公式均为样本数据的方差和标准差。

若为总体数据,则分母应为n。

②标准差系数,也称变异系数或离散系数。

③表中平均差、样本方差、样本标准差仅给出了未分组数据的计算公式,分组数据的计算公式实质是等于未分组数据的计算公式,会运用即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学第七版课后题答案分析复旦大学
1、什么是统计学:统计学是搜集、处理、分析、解释数据并从中得出结论的科学。

2、解释描述统计与推断统计:描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。

推断统计研究的是如何利用样本数据来推断总体特征的统计方法。

3、统计数据可分为哪几种类型,不同类型的数据各有什么特点:按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。

4、解释分类数据、顺序数据和数值型数据的含义:分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。

5、举例说明总体、样本、参数、统计量、变量这几个概念:总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。

6、变量可分为哪几类:变量可分为分类变量、顺序变量和数值型变量。

分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值
型变量是说明事物数字特征的一个名称,其取值是数值型数据。

7、举例说明离散型变量和连续型变量:离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。

相关文档
最新文档