(完整word版)蜗轮蜗杆设计

合集下载

蜗轮蜗杆设计

蜗轮蜗杆设计

蜗杆传动设计例1:某轧钢车间需设计一台普通圆柱蜗杆减速器,已知蜗杆轴输入功率P1=10Kw,转速n1=1450r/min,传动比i=20,要求使用10年,每年工作300日,每日工作16h,每小时载荷时间15 min,每小时启动次数为20~50次。

启动载荷较大,并有较大冲击,工作环境温度35~40o c。

解:1、选择材料和加工精度蜗杆选20CrMnTi,芯部调质,表面渗碳淬火,>45HRC;蜗轮选ZCuSn10Pb1,金属模制造;加工精度8级。

2、初选几何参数查表13-4-4,在13-287页。

当i=20时,Z1取2; Z2= Z1i=20×2=40 3、计算蜗杆轴传递的转矩T1粗算传动效率η见13-300页。

普通圆柱蜗杆传动:η=(100-3.5 i )%=(100-3.5 20)%=0.843蜗杆轴传递的转矩T1公式按表13-4-12,在13-296页。

P1 10T1=9550 =9550 = 65.86N.mn1 1450P1------蜗杆轴输入功率:Kw。

n1------蜗杆转速:r/min。

4、计算蜗轮轴传递的转矩T2公式按表13-4-12,在13-296页。

T2= T1×i×η=65.86×20×0.843=1110N.m5、确定许用接触应力σHP查表13-4-13续表,在13-297页。

当蜗轮材料为锡青铜时:σHP=σHbP×Z VS×Z NσHbP------N=107时蜗轮材料的许用接触应力。

N/mm2Z VS------滑动速度影响系数。

Z N------寿命系数。

查表13-4-14,在13-297页。

得:σHbP=220N/mm2由图13-4-10,在13-300页,查得滑动速度Vs=8.53m/S采用浸油润滑,由图13-4-2,在13-298页。

求得Z VS=0.86由图13-4-4,在13-298页。

蜗轮蜗杆传动设计

蜗轮蜗杆传动设计

蜗轮蜗杆传动设计
一、设计原理:
二、设计步骤:
1.确定传动参数:包括传动比、转速比、传递功率等。

传动比决定了蜗轮齿数和蜗杆的螺纹走向,转速比决定了蜗轮和蜗杆的转速。

传递功率则决定了蜗轮和蜗杆的材料和尺寸。

2.选择合适的蜗轮和蜗杆材料:蜗轮和蜗杆一般选择高强度和耐磨损的材料,如合金钢、铸铁等。

3.计算蜗轮和蜗杆的尺寸:根据传动参数和材料性能,计算蜗轮和蜗杆的齿数、模数、齿宽等。

4.计算传动效率:传动效率是指输入输出转矩之比,根据蜗轮和蜗杆的齿数、螺距、入射角等参数计算传动效率。

5.进行设计验证和优化:通过有限元分析、实验验证等方法对蜗轮蜗杆传动进行验证和优化。

三、设计注意事项:
1.蜗轮蜗杆传动的啮合精度要求高,齿轮和螺距的误差不能超过一定范围,否则会导致传动效率下降和噪音增加。

2.蜗轮和蜗杆的材料选择要根据传递功率和工作环境来确定,要保证材料的强度和耐磨损性能。

3.蜗杆的螺纹走向要和蜗轮的齿数匹配,以保证蜗轮能够完全啮合在蜗杆上。

4.设计时要考虑传动效率和传动噪音,通过选用合适的齿轮参数和优化传动结构来提高传动效率和降低噪音。

5.在设计过程中要进行强度校核,包括弯曲强度、齿面接触应力、表面损伤强度等,以保证传动的安全可靠性。

总结:蜗轮蜗杆传动是一种常用的传动方式,设计蜗轮蜗杆传动需要确定传动参数、选择材料、计算尺寸、计算效率、验证优化等步骤,同时要注意啮合精度、材料选择、螺纹走向、传动效率和强度校核等问题。

通过合理的设计和优化,可以实现高效、可靠的蜗轮蜗杆传动。

蜗轮蜗杆传动设计.共28页文档

蜗轮蜗杆传动设计.共28页文档
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育;而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
蜗轮蜗杆传动设计.
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

(完整word版)蜗杆传动教案.doc

(完整word版)蜗杆传动教案.doc

公开课教案授课章节模块四蜗杆传动授课教师钱志芳名称任务一分析蜗轮减速器的运动开课范围市级授课2011.12.8 授课授课课时 1时间多媒体室任务驱动地点类型知识目标:1、了解蜗杆传动的原理;2、了解蜗杆传动的组成;教学目标3、了解蜗杆的特点;教学重点4、掌握蜗杆传动中蜗杆、蜗轮螺旋线方向的判断及蜗轮回转方向的判定。

能力目标:发挥学生的动手实践能力,培养学生分析问题、解决问题的能力。

情感目标:养成认真细致的学习习惯和刻苦钻研的精神,培养团队协作精神。

1、蜗杆、蜗轮螺旋线方向的判断;2、蜗轮回转方向的判定。

教学难点1、蜗杆、蜗轮螺旋线方向的判断;2、蜗轮回转方向的判定。

教学环节教学内容教师活动学生活动复习内容:齿轮传动的类型有哪些?课件演示学生回答教师引导导入新课:复习导入减速器传动机构中,平行轴间的传动用圆柱齿轮传动,相交轴间的传动用圆锥齿轮传动,那空间两交错轴间的运动是用什么来传递运动的呢?教学环节教学内容教师活动学生活动学习任务一:认识蜗杆传动1、组成:蜗杆和蜗轮组成。

看拆开的减学生观看2、原理:主要用于传递空间交错两轴间的速器听课、笔记运动和动力,通常两轴夹角是 90°,蜗杆演示 PPT为主动件,蜗轮为从动件。

3、特点:传动比大,结构紧凑;传动平稳,噪声小;有自锁性,可防止负载反转。

模型演示学习任务二:判断蜗轮和蜗杆的螺旋线方向蜗杆蜗轮有左旋和右旋,一般为右旋,并且演示PPT听课、笔记一对啮合的蜗杆、蜗轮旋向相同。

任务引领右手法则:手心对着自己,四个手指顺着蜗杆或蜗轮轴线方向摆正,若齿向与右手拇指指向一致,则该蜗杆或蜗轮为右旋,反之为左旋。

学习任务三:蜗轮回转方向的判断演示 PPT听课,和老师一左、右手法则:当蜗杆是左旋(或右旋)时,双手演示起演示伸出右手(或左手)半握拳,使四指顺着蜗杆的回转方向,蜗轮在啮合处的回转方向与大拇指指向相反。

任务一:在作业纸上完成填空题。

课前准备好小组分组练习任务二:作业纸完成工作纸在作业纸上画出相应的螺旋线方向,并判断课上教师巡小组评分蜗轮蜗杆的螺旋线方向。

蜗轮蜗杆设计

蜗轮蜗杆设计

蜗轮蜗杆设计(2)设计原则:根据给定的中心距及传动比(或按照结构及设计的要求自定中心距和传动比)然后从蜗杆传动中心距标准值系列表中选取中心距的标准系列值,然后从经验公式先估算相关参数值,估算后在参考标准值系列表,确定标准值。

1计算传动比上式中:δp 为脉冲当量,β为步距角,L 为滚珠丝杠导程。

2初选几何参数参照蜗轮蜗杆参数推荐值表[1],i =4时,选z 1=6;则z 2= i z 1=24; 3蜗轮输出转矩T 21955021i P T n η=[2]123ηηηη=[3] tan =1tan +γηγρ()[3] =arctan ρμ[4]=μμ[5]式中:P 1, n 1分别为蜗杆轴输入功率,转速。

η1为螺旋副啮合效率;η2为轴承效率,滚动轴承时取0.990.9952η≈;η3为搅油及溅油效率,0.960.993η≈;μ为啮合摩擦系数;η0为标准圆盘滚子试件摩擦系数;R z 为设计蜗杆的齿面粗糙度;R z0为标准圆盘试件的表面粗糙度;代入数据得η=0。

76 根据所选电机得P 1=8kW,n 1=800r/min所以30.7649550290.322300T Nm ⨯⨯==4载荷系数123456K K K K K K K =[6]上式中:K 为载荷系数;K 1为动载荷系数,当蜗轮圆周速度23m /s v ≤时K 1取1。

0;K 2为啮合质量系数,查表得0.95;K 3为小时载荷率系数,查表得0。

78;K 4为环境温度系数,查表得1.09;K 5为工作情况系数,查表得1。

0;K 6为风扇系数,查表得0.92。

代入数据得:10.950.78 1.0910.920.74K =⨯⨯⨯⨯⨯=5计算m 和q7]代入数据:14.65≥==查表取16.443= m =6。

3 q =186主要几何尺寸18 6.3113.41d qm ==⨯= 6.324151.222m d z ==⨯=7蜗杆传动强度及刚度验算 确定许用接触应力σHp采用锡青铜蜗轮:Hp Hbp z z s n σσ=[8]分别查滑动速度曲线表,滑动速度影响系数表及寿命系数得2220/Hbp N mm σ= 0.96z s =0.78z n =所以22200.960.78165/Hp N mm σ=⨯⨯=3603600.00511.264p i L δβ⨯===⨯0.5(2)0.5 6.3(18240)132.322a m q x z =++=⨯⨯++=确定许用接触应力σHH σ=9]代入数据得:2134.57/H mm N σ=== 可见134.57165HHP σσ=<=,所以接触强度足够。

蜗轮蜗杆设计计算书

蜗轮蜗杆设计计算书

112.859 = 12.5399蜗轮蜗杆设计计算书基本参数:中心距:a=270mm蜗杆轴面模数(蜗轮端面模数):m=9蜗杆头数:Z i =1蜗轮齿数:Z 2=47蜗杆分度圆直径:d i =© 112.859mm蜗轮分度圆直径:d2= © 427mm蜗杆顶圆修形后直径:© 130mm圆柱蜗杆传动几何计算:蜗杆轴面模数(蜗轮端面模数):9传动比:i =匹=生二47 =47匕 Z i 1蜗杆直径系数(蜗杆特性系数):d 1 q - m x变位系数:x= — -0.5(q +Z 2 )=空0 -0.5(12.5399 +47 )= 0.23005 m x 9 蜗杆分度圆柱上螺旋线升角:Z 1二 arctg —1 二 arctg- 4 33'34"q 12.5399 蜗杆节圆柱上螺旋线升角:(7 \ f 1 yy = arctg ——1— =arctg ------------------------------ \= 42355"2 + 2x , >12.5399 + 2 x 0.23005 丿蜗杆轴面齿形角(阿基米德螺线蜗杆)::一20蜗杆(蜗轮)法面齿形角::n = arctg tg : cos = arctg tg 20 cos4 33'34" =19 56'30"径向间隙:c=0.2mx=0.2 9=1.8蜗杆、蜗轮齿顶咼:h a1=mp9h a2=(1+x)m x=(1+0.23005) X 9=11.07045 蜗杆、蜗轮齿根高:h f1 =1.2m x=1.2 X 9=10.8h f2 =(1.2-x)m x=(1.2-0.23005) X 9=8.72955 蜗杆、蜗轮分度圆直径:d i=112.859mmd2=423mm蜗杆、蜗轮节圆直径:d w1=(q+2x)m x=(12.5399+2 X 0.23005 ) X 9=117d w2=cb=423蜗杆、蜗轮顶圆直径:d a1= (q+2) m=(12.5399+2) X 9=130.8591d a2=(Z2+2+2x)m<=(47+2+2X 0.23005) X 9=445.1409蜗杆、蜗轮齿根圆直径:d f1 =(q-2.4)m x=(12.5399-2.4) X 9=91.2591d f2 =(Z2+2x-2.4)m x=(47+2 X 0.23005-2.4) X 9=405.5409 蜗杆轴向齿距:p x= n m= n 9=28.2743蜗杆沿分度圆柱上的轴向齿厚:当采用加厚蜗轮时:s1=0.5 n m x-0.2m x tg a =14.1372-0.2 X 9 X tg20= 13.4820蜗杆沿分度圆上的法向齿厚:s n1 〜S1COS Y =14.1372cos 4 3334" =14.0924蜗杆分度圆法向弦齿高:h;二m x = 9蜗杆螺纹部分长度:L=蜗轮最大外圆直径:ckmax W d a2+2m x=445.1409+2 X 9=463.1409 蜗轮轮缘宽度:b=0.75d a1=0.75 X 130.859仁98.1443蜗轮齿项圆弧半径:r a2=0.5d f1+0.2m=0.5 X 91.2591+0.2 X 9=47.42955 蜗轮齿根圆弧半径:r f2=0.5d a1+0.2m=0.5 X 130.8591+0.2 X 9=67.22955理论蜗杆外径:130.8591实际蜗杆外径:130理论蜗杆沿分度圆柱上的轴向齿厚:S1=14.1372如果按实际蜗杆外径再往下走9mm后的轴向齿厚:s 1' = (130.8591-130) X tg20 °+S1=14.4499基本参数:d1 q - m x 134.65= 12.2409 11中心距:a=360mm 蜗杆轴面模数(蜗轮端面模数):m=11蜗杆头数:乙=1蜗轮齿数:Z2=53蜗杆分度圆直径:d i=© 134.65mm蜗轮分度圆直径:d2= © 584.955mm蜗杆顶圆修形后直径:©155.1mm圆柱蜗杆传动几何计算:蜗杆轴面模数(蜗轮端面模数):11传动比:,比=生二53 =53n2 Z1 1蜗杆直径系数(蜗杆特性系数):变位系数:x =旦—0.5(q +Z2卜360—0.5(12.2409 +53)=0.1068 m x 11 蜗杆分度圆柱上螺旋线升角:Z 1=arctg 1 = arctg 4 40'13"q 12.2409蜗杆节圆柱上螺旋线升角:_ ■' Z 、( 1 、和=arctg —1— = arctg ------------------------------- [ = 4 "35'26'iq +2x 丿112.2409+ 2 汉0.1068 丿蜗杆轴面齿形角(阿基米德螺线蜗杆)::一20蜗杆(蜗轮)法面齿形角::-n二arctg tg : cos 二arctg tg 20 cos4 4013" = 19 56'20" 径向间隙:c =0.2m x =0.2 1仁 2.2蜗杆、蜗轮齿顶高:h ai=n x Fl1h a2=(1+x)m x=(1+0.1068) x 11=12.1748蜗杆、蜗轮齿根高:h f1 =1.22=1.2 x 11 = 13.2h f2=(1.2-x)m x=(1.2-0.1068) x 11=12.0252蜗杆、蜗轮分度圆直径:d1=134.65mmd2=584.955mm蜗杆、蜗轮节圆直径:d w1=(q+2x)m x=(12.2409+2 x 0.1068 ) x 11=137d w2=d2=584.955蜗杆、蜗轮顶圆直径:d a1= (q+2) m=(12.2409+2) x 11 = 156.6499d a2=(Z2+2+2x)m<=(53+2+2x 0.1068) x 11=607.3496蜗杆、蜗轮齿根圆直径:d f1 =(q-2.4)m x=(12.2409-2.4) x 11 = 108.2499d f2 =(Z2+2x-2.4)m x=(53+2 x 0.1068-2.4) x 11=558.9496 蜗杆轴向齿距:p x= n m=n 11=34.5575蜗杆沿分度圆柱上的轴向齿厚:s 1=0.5 n m x=0.5 x 34.5575=17.2788s1=0.5s1 当采用加厚蜗轮时:n m-0.2m xtg a =17.2788-0.2 x 11 x tg20 = 16.478 蜗杆沿分度圆上的法向齿厚:s ni ~ S i cos Y =17.2788cos 4 40'13' =17.2214 蜗杆分度圆法向弦齿高:h : =mx "1蜗杆螺纹部分长度:L=蜗轮最大外圆直径:cLmax W d a2+2m=607.3496+2 x 11=629.3496 蜗轮轮缘宽度:b=0.75d a1=0.75 x 156.6499=117.4874 蜗轮齿项圆弧半径:r a2=0.5d f1+0.2m x =0.5 x 108.2499+0.2 x 11=110.4499 蜗轮齿根圆弧半径:r f2=0.5d a1+0.2m x =0.5 x 156.6499+0.2 x 11=80.5250 理论蜗杆外径:156.6499实际蜗杆外径:155.1理论蜗杆沿分度圆柱上的轴向齿厚:S 1=17.2788如果按实际蜗杆外径再往下走11m 诟的轴向齿厚: =(156.6499-155.1) x tg20 +s1 = 17.8429。

蜗轮蜗杆设计

蜗轮蜗杆设计

蜗轮蜗杆传动蜗杆传动是用来传递空间交错轴之间的运动和动力的。

最常用的是轴交角∑=90°的减速传动。

蜗杆传动能得到很大的单级传动比,在传递动力时,传动比一般为5~80,常用15~50;在分度机构中传动比可达300,若只传递运动,传动比可达1000。

蜗轮蜗杆传动工作平稳无噪音。

蜗杆反行程能自锁。

重点学习内容本章中阿基米德蜗杆传动的失效形式、设计参数、受力分析、材料选择、强度计算、传动效率等为重点学习内容。

对热平衡计算、润滑方法、蜗杆蜗轮结构等也应一、蜗杆传动的类型圆柱蜗杆传动环面蜗杆传动锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆(ZA蜗杆)渐开线蜗杆(ZI蜗杆)法向直廓蜗杆(ZN蜗杆)锥面包络蜗杆(ZK蜗杆)与上述各类蜗杆配对的蜗轮齿廓,完全随蜗杆的齿廓而异。

蜗轮一般是在滚齿机上用滚刀或飞刀加工的。

为了保证蜗杆和蜗轮能正确啮合,切削蜗轮的滚刀齿廓,应与蜗杆的齿廓一致;深切时的中心距,也应与蜗杆传动的中心距相同。

圆柱蜗杆传动1、通圆柱蜗杆传动(1)阿基米德蜗杆这种蜗杆,在垂直于蜗杆轴线的平面(即端面)上,齿廓为阿基米德螺旋线,在包含轴线的平面上的齿廓(即轴向齿廓)为直线,其齿形角α0=20°。

它可在车床上用直线刀刃的单刀(当导程角γ≤3°时)或双刀(当γ>3°时)车削加工。

安装刀具时,切削刃的顶面必须通过蜗杆的轴线。

这种蜗杆磨削困难,当导程角较大时加工不便。

(2)渐开线蜗杆渐开线蜗杆(ZI蜗杆)蜗杆齿面为渐开螺旋面,端面齿廓为渐开线。

加工时,车刀刀刃平面与基圆相切。

可以磨削,易保证加工精度。

一般用于蜗杆头数较多,转速较高和较精密的传动。

(3)法向直廓蜗杆这种蜗杆的端面齿廓为延伸渐开线,法面(N-N)齿廓为直线。

ZN蜗杆也是用直线刀刃的单刀或双刀在车床上车削加工。

车削时车刀刀刃平面置于螺旋线的法面上,加工简单,可用砂轮磨削,常用于多头精密蜗杆传动。

蜗杆蜗轮设计范文

蜗杆蜗轮设计范文

蜗杆蜗轮设计范文蜗杆蜗轮是一种常用的传动结构,它由蜗杆和蜗轮两部分组成,可实现大功率、大扭矩的传动。

蜗杆蜗轮设计的目标是在满足传动要求的前提下,尽可能提高传动效率、降低传动误差和噪声,并保证传动的可靠性和耐久性。

首先,蜗杆蜗轮设计要考虑传动的要求,包括传动比、转速要求、扭矩要求等。

传动比是指蜗杆每转动一圈,蜗轮转动的圈数,通常为整数。

在确定传动比之后,可以通过计算蜗杆的蜗轮直径判断是否实现传动要求。

蜗杆的材料选择非常重要,常见的材料有铸铁、合金钢等。

材料的选择要考虑到蜗杆的工作状况和工作环境,包括工作温度、工作负荷、工作速度等。

合适的材料可以保证蜗杆的强度和耐磨性,同时降低传动误差和噪声。

在蜗轮设计中,关键是确定蜗轮的齿数和齿轮模数。

通常情况下,蜗轮的齿数较大,齿面较短,齿轮模数较小,这样可以提高传动效率。

齿数的选择要考虑到蜗轮的制造工艺和使用要求,同时也要考虑到齿面的强度和耐磨性。

除了以上基本设计要求外,还需要注意蜗杆蜗轮传动的润滑和冷却。

蜗杆和蜗轮之间的接触面积较大,摩擦产生的热量较多。

为了保证传动的可靠性和耐久性,需要进行润滑和冷却,可以采用油浸润滑或油池润滑的方式,通过选择合适的润滑油和冷却介质来实现。

此外,蜗杆蜗轮设计中还需要考虑到轴承和密封问题。

蜗杆和蜗轮在传动过程中会产生较大的径向力和轴向力,需要选择合适的轴承来承受这些力,并保证传动的稳定性和精度。

同时,还需要选择合适的密封件来防止液体或灰尘进入传动装置,以保证其正常工作。

综上所述,蜗杆蜗轮设计要考虑传动的要求、材料选择、齿数和齿轮模数的确定、润滑和冷却、轴承和密封等问题。

通过合理的设计和选择,可以实现蜗杆蜗轮传动的高效、低误差和可靠工作,满足工程应用的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蜗轮蜗杆设计摘要蜗杆传动从属齿轮传动,在现代工业中应用非常广泛。

蜗轮蜗杆包含两个部分:蜗杆和蜗轮,其齿形大多数由直线、平面或者平面上的曲线经过一次或两次展成运动形成。

由于蜗轮蜗杆结构性特点,它用于传递空间两相错轴间的运动和动力。

蜗杆传动机构多数情况下蜗杆为主动件,蜗轮为被动件。

蜗杆传动具有传动比大、体积小、运转平稳、噪音小等特点。

在机床制造业中,普通圆柱蜗杆传动的应用尤为普遍,并且几乎成了一般低速传动工作台和连续分度机构的唯一传动形式;冶金工业轧机压下机构都采用大型蜗杆传动;煤矿设备中的各种类型的绞车及采煤机组牵引传动;起重运输业中各种提升设备及无轨电车等都采用蜗杆传动。

其他,在精密仪器设备、军工、宇宙观测仪器中,蜗杆传动常用作分度机构、操纵机构、计算机构、测距机构等等,大型天文望远镜、雷达等也离不开蜗杆传动。

关键词:蜗轮蜗杆目录第一章蜗杆传动的类型和特点 (88)1.1 蜗杆传动的类型 (88)1。

2 蜗杆传动的特点 (89)第二章蜗轮传动的基本参数和几何尺寸计算 (90)2。

1 蜗杆传动的基本参数 (90)2。

2 蜗杆传动的几何尺寸计算 (93)第三章蜗轮传动的失效形式、设计准则、材料和结构 (95)3。

1 蜗杆传动的失效形式和设计准则 (95)3。

2 蜗杆、蜗轮的材料和结构 (96)第四章蜗轮传动的强度计算 (98)4。

1蜗杆传动的受力分析 (98)4.2 蜗轮齿面接触疲劳强度计算 (99)4。

3 蜗轮轮齿的齿根弯曲疲劳强度计算 (100)第五章蜗轮传动的效率、润滑和热平衡计算 (101)5.1蜗杆传动的效率 (101)5.2 蜗杆传动的润滑 (101)5.3 蜗杆传动的热平衡计算 (104)结论 (106)致谢 (107)参考文献 (108)第一章 蜗杆传动的类型和特点蜗杆传动由蜗杆、蜗轮和机架组成,用来传递空间两交错轴的运动和动力。

如图1-1所示。

通常两轴交错角为90°,蜗杆为主动件.1.1 蜗杆传动的类型如图1—2所示,根据蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动(图a),环面蜗杆传动(图b ),和锥面蜗杆传动(图c)。

圆柱蜗杆传动,按蜗杆轴面齿型又可分为普通蜗杆传动和圆弧齿圆柱蜗杆传动。

普通蜗杆传动多用直母线刀刃的车刀在车床上切制,可分为阿基米德蜗杆(ZA 型)、渐开蜗杆(ZI 型)和法面直齿廓蜗杆(ZH 型)等几种。

如图1-3所示,车制阿基米德蜗杆时刀刃顶平面通过蜗杆轴线。

该蜗杆轴向齿廓为直线,端面齿廓为阿基米德螺旋线。

阿基米德蜗杆易车削难磨削,通常在无需磨削加工情况下被采用,广泛用于转速较低的场合。

如图1—4所示,车制渐开线蜗杆时,刀刃顶平面与基圆柱相切,两把刀具分别切出左、右侧螺旋面.该蜗杆轴向齿廓为外凸曲线,端面齿廓为渐开线.渐开线蜗杆可在专用机床上磨削,制造精度较高,可用于转速较高功率较大的传动。

a) b) c)图1-2蜗杆传动的类型图1—1蜗杆传动蜗杆传动类型很多,本章仅讨论目前应用最为广泛的阿基米德蜗杆传动。

1.2 蜗杆传动的特点(1)传动比大,结构紧凑。

单级传动比一般为10~40(<80),只传动运动时(如分度机构),传动比可达1000。

(2)传动平稳,噪声小。

由于蜗杆上的齿是连续的螺旋齿,蜗轮轮齿和蜗杆是逐渐进入啮合又逐渐退出啮合的,故传动平稳,噪声小。

(3) 有自锁性。

当蜗杆导程角小于当量摩擦角时,蜗轮不能带动蜗杆转动,呈自锁状态。

手动葫芦和浇铸机械常采用蜗杆传动满足自锁要求。

(4)传动效率低.蜗杆蜗轮啮合处有较大的相对滑动,摩擦剧烈、发热量大,故效率低。

一般η=0。

7~0.9,具有自锁性能的蜗杆效率仅0.4。

(5)蜗轮造价较高。

为了减摩和耐磨,蜗轮常用青铜制造,材料成本较高。

由上述特点可知:蜗杆传动适用于传动比大,传递功率不大,两轴空间交错的场合。

图1—3 阿基米德蜗杆图1-4渐开线蜗杆第二章 蜗轮传动的基本参数和几何尺寸计算图2—1所示阿基米德蜗杆传动,通过蜗杆轴线并垂直于蜗轮轴线的平面称为主平面(中间平面)。

在主平面上蜗轮与蜗杆的啮合相当于渐开线齿轮与齿条的啮合。

为了加工方便,规定主平面的几何参数为标准值.2.1 蜗杆传动的基本参数1.蜗杆头数z 1、蜗轮齿数z 2和传动比i蜗杆头数z 1,即为蜗杆螺旋线的数目。

蜗杆的头数一般取z 1=1~6.当传动比大于40或要求自锁时取z 1=1;当传动功率较大时,为提高传动效率取较大值,但蜗杆头数过多,加工精度难于保证。

蜗轮的齿数一般取z 2=27~80。

z 2过少将产生根切;z 2过大,蜗轮直径增大,与之相应的蜗杆长度增加,刚度减小。

蜗杆传动的传动比i 等于蜗杆与蜗轮转速之比.当蜗杆回转一周时,蜗轮被蜗杆推动转过z 1个齿(或z 1/z 2周),因此传动比为:1221z z n n i ==式中:n 1、n 2分别为蜗杆和蜗轮的转速(r/min)。

图2-1 阿基米德蜗杆传动的几何尺寸在蜗杆传动设计中,传动比的公称值按下列数值选取:5、7。

5、10、12。

5、15、20、25、30、40、50、60、70、80。

其中10、20、40、80为基本传动比应优先选用。

z 1、z 2可根据传动比i 按表2—2选取。

表2-1 z 1和z 2的推荐值i7~8 9~13 14~24 25~27 28~40 〉40 z 1 4 3~4 2~3 2~3 1~2 1 z 228~3227~5228~7250~8128~80>402。

模数m 和压力角α由于蜗杆传动在主平面内相当于渐开线齿轮与齿条的啮合,而主平面是蜗杆的轴向平面又是蜗轮的端面(见图2—2),与齿轮传动相同,为保证轮齿的正确啮合,蜗杆的轴向模数m a1应等于蜗轮的端面模数m t 2;蜗杆的轴向压力角1a α应等于蜗轮的端面压力角2t α;蜗杆分度圆导程角γ应等于蜗轮分度圆螺旋角β,且两者螺旋方向相同。

即:βγααα=====2121t a t a mm m3.蜗杆的分度圆直径d 1和导程角β如图2-3所示,将蜗杆分度圆柱展开,其螺旋线与端平面的夹角γ称为蜗杆的导程角。

可得:11111γd mz d p z tg a =π=(2-1) 式中:p a1为蜗杆轴向齿距(mm );d 1为蜗杆分度圆直径(mm )。

蜗杆的螺旋线与螺纹相似也分左旋和右旋,一般多为右旋。

对动力传动为提高效率应采用较大的γ值,即采用多头蜗杆;对要求具有自锁性能的传动,应采用γ〈033''︒的蜗杆传动,此时蜗杆的头数为1。

由式2-1得:mq tg z md =γ=11 (2-2) 式中:γ=tg z q 1称为蜗杆的直径系数,当m 一定时,q 值增大,则蜗杆直径d 1增大,蜗杆的刚度提高。

小模数蜗杆一般有较大的q 值,以使蜗杆有足够的刚度。

蜗杆与蜗轮正确啮合,加工蜗轮的滚刀直径和齿形参数必须与相应的蜗杆相同,为限制蜗轮滚刀的数量,d1亦标准化。

d1与m有一定的匹配如表所示。

表2—2 蜗杆基本参数(Σ= 90º)(摘自GB/T10085—88)注:①表中模数和分度圆直径仅列出了第一系列的较常用数据。

②括号内的数字尽可能不用。

4。

中心距a蜗杆传动中,当蜗杆节圆与蜗轮分度圆重合时称为标准传动,其中心距为: )(21a 21d d += (2—3)规定标准中心距为40、50、63、80、100、125、160、(180)、200、(225)、250、(280)、315、(355)、400、(450)、500.在蜗杆传动设计时中心距应按上述标准圆整。

2.2 蜗杆传动的几何尺寸计算表2—3 阿基米德蜗杆传动的几何尺寸计算第三章 蜗轮传动的失效形式、设计准则、材料和结构3。

1 蜗杆传动的失效形式和设计准则1.齿面相对滑动速度v s蜗杆传动中蜗杆的螺旋面和蜗轮齿面之间有较大的相对滑动。

滑动速度v s 沿蜗杆螺旋线的切线方向。

如图7—7所示,v 1为蜗杆的圆周速度,v 2为蜗轮的圆周速度,作速度三角形得:γcos 12221v v v v s =+= 较大的滑动速度v s ,对齿面的润滑情况、齿面的失效形式及传动效率都有很大的影响,其概略值如图3—1所示.2。

轮齿的失效形式和设计准则蜗杆传动的失效形式与齿轮传动相似,有轮齿折断、齿面点蚀、齿面磨损和胶合等,但由于蜗杆、蜗轮的齿廓间相对滑动速度较大、发热量大而效率低,因此传动的主要失效形式为胶合、磨损和点蚀。

由于蜗杆的齿是连续的螺旋线,且蜗杆的强度高于蜗轮,因而失效多发生在蜗轮轮齿上。

在闭式传动中,蜗轮的主要失效形式是胶合与点蚀;在开式传动中,主要失效形式是磨损.综上所述,蜗杆传动的设计准则为:闭式蜗杆传动按齿面接触疲劳强度设计,并校核齿根弯曲疲劳强度,为避免发生胶合失效还必须作热平衡计算;对开式蜗杆传动通常只需按齿根弯曲疲劳强度设计.实践证明,闭式蜗杆传动,当载荷平稳无冲击时,蜗轮轮齿因弯曲强度不足而失效的情况多发生于齿数z 2 〉80~100时,所以在齿数少于以上数值时,弯曲强度校核可不考虑。

图3-1蜗杆传动3。

2 蜗杆、蜗轮的材料和结构1.蜗杆、蜗轮的材料选择根据蜗杆传动的主要失效形式可知,蜗杆和蜗轮材料不仅要求有足够的强度,更重要的是要具有良好的减摩性、耐磨性和抗胶合能力。

蜗杆一般用碳钢或合金钢制造。

对高速重载传动常用15Cr 、20Cr 、20CrMnTi 等,经渗碳淬火,表面硬度56~62HRC ,须经磨削.对中速中载传动,蜗杆材料可用45、40Cr 、35SiMn 等,表面淬火,表面硬度45~55HRC ,须要磨削。

对速度不高,载荷不大的蜗杆,材料可用45钢调质或正火处理,调质硬度220~270HBS 。

蜗轮材料可参考相对滑动速度v s 来选择。

铸造锡青铜抗胶合性、耐磨性好,易加工,允许的滑动速度v s 高,但强度较低,价格较贵。

一般ZCuSn10P1允许滑动速度可25m/s, ZCuSn5Pb5Zn5常用于v s <12m/s 的场合.铸造铝青铜,如ZCuAl10Fe3,其减磨性和抗胶合性比锡青铜差,但强度高,价格便宜,一般用于v s ≤4m/s 的传动。

灰铸铁(HT150、HT200),用于v s ≤2m/s 的低速轻载传动中。

2.蜗杆、蜗轮的结构蜗杆常和轴做成一体,称为蜗杆轴,如图3-3所示(只有d f /d ≥1.7时才采用蜗杆齿圈套装在轴上的型式)。

车制蜗杆需有退刀槽,d=d f – (2~4)mm,故刚性较差(图a );铣削蜗杆无退图3-2滑动速度v s 的概略值a )b )图3-3蜗杆轴结构刀槽时d可大于d f (图b),刚性较好。

a) b)c) d)图3—4 蜗轮结构蜗轮结构分为整体式和组合式两种,如图3—4所示。

图a)所示的整体式蜗轮用于铸铁蜗轮及直径小于100mm的青铜蜗轮。

相关文档
最新文档