内燃机的工作原理
内燃机车基本工作原理理论

内燃机车基本工作原理理论
内燃机车是一种利用内燃机驱动的交通工具,其基本工作原理如下:
1. 压缩:内燃机车使用活塞进行压缩空气和燃料混合物。
活塞在气缸内往复运动,将气体压缩到一个极高的压力,使其达到可燃的状态。
2. 燃烧:混合物被点火,燃烧产生高温和高压气体。
点火可以通过火花塞来实现,当火花塞电极之间形成电火花时,混合物燃烧。
3. 膨胀:高温高压气体的膨胀推动活塞向下运动。
燃烧产生的气体迅速膨胀,推动活塞在气缸内做功,转化为机械能。
4. 排气:排气门打开,废气被排出。
排气门在活塞达到最低点时打开,废气通过排气门排出气缸,为下一次循环准备。
5. 往复运动:活塞循环上述4个过程,并通过连杆将动力传递给曲轴。
曲轴将往复运动转化为旋转运动,驱动车轮实现前进。
以上是内燃机车的基本工作原理,通过不断循环这些步骤,内燃机车可以产生动力驱动车辆运动。
内燃机原理内燃机的燃烧

曲轴
将活塞的直线运动转化为旋转 运动,并输出功率。
内燃机的应用和发展趋势
内燃机广泛应用于汽车、飞机、船舶等交通工具,同时也在发电和工业领域 中发挥着重要作用。未来的发展趋势包括电动化、节能技术和可再生能源的 应用。
总结和展望
内燃机作为一种高效、可靠的动力装置,在社会发展中起着重要作用。随着 技术的不断进步,内燃机将继续适应新的需求,并为我们的生活创造更多可 能。
循环过程和效率
四冲程循环
进气、压缩、爆发、排气的四个过程交替进行,形成循环。
热效率
内燃机的热效率是指输出的有用功与燃料输入的热能之间的比值。
提高效率
使用先进的喷射技术、增压系统和废气回收技术可以提高内燃机的效率。
Байду номын сангаас
主要部件的功能和结构
活塞
将高温高压气体的能量转化为 直线运动功。
缸盖
密闭燃烧室,承受燃烧过程的 高温高压。
3
点燃过程
燃料与空气混合后,在火花塞点火的 作用下燃烧,产生爆发力推动活塞。
高温高压气体
燃烧产生的高温高压气体通过扩容和 排气过程释放能量。
点燃方式和燃料种类
火花塞点火
使用火花塞将点火能量传递到 燃料混合物,引发燃烧反应。
燃料喷射系统
通过喷射器将燃料雾化并喷入 燃烧室,提高燃烧效率。
柴油喷嘴
使用高压喷嘴将柴油喷射到压 缩空气中,在高温高压下点燃。
内燃机原理内燃机的燃烧
内燃机是一种高效且广泛应用的发动机类型。它的燃烧过程和传热特性、循 环过程和效率都是实现动力转化的关键。
内燃机的工作原理
内燃机利用可燃物质在密闭燃烧室中的燃烧产生的高温高压气体推动活塞运 动,从而产生功率。
内燃机的工作原理

内燃机的工作原理内燃机是一种能够将燃料燃烧产生的热能转化为机械能的装置。
它是现代工业和交通运输中不可或缺的动力来源,广泛应用于汽车、飞机、船舶等各种交通工具,也被用于发电和工业生产中。
那么,内燃机是如何工作的呢?首先,我们来看内燃机的基本结构。
内燃机通常由气缸、活塞、曲轴、点火系统、供油系统等部件组成。
气缸是内燃机的主要工作部件,它是一个空心的金属筒体,用来容纳活塞和燃烧室。
活塞是一个能够在气缸内上下运动的金属零件,曲轴则通过连杆与活塞相连,将活塞的上下往复运动转化为旋转运动。
点火系统用来在燃烧室内点燃混合气,供油系统则负责向燃烧室提供燃料和空气混合气。
内燃机的工作原理可以简单概括为四个基本过程,进气、压缩、爆燃和排气。
首先是进气过程,活塞向下运动,气缸内的阀门打开,燃料和空气混合气被吸入气缸内。
接着是压缩过程,活塞向上运动,将混合气压缩至很高的压力。
然后是爆燃过程,点火系统点燃混合气,燃料燃烧产生高温高压气体,推动活塞向下运动。
最后是排气过程,活塞再次向上运动,将燃烧后的废气排出气缸。
内燃机的工作原理其实就是利用燃料燃烧产生的高温高压气体推动活塞运动,从而驱动曲轴旋转,最终输出机械能。
这种工作原理简单而高效,使得内燃机成为了现代社会中不可或缺的动力来源。
除了基本的四个工作过程外,内燃机还涉及燃烧、点火、供油等复杂的物理和化学过程。
燃烧是指燃料与空气在燃烧室内燃烧产生高温高压气体的过程,而点火系统则负责在适当的时机点燃混合气。
供油系统则要求在不同工况下提供适量的燃料和空气混合气,以保证内燃机的正常工作。
总的来说,内燃机的工作原理是一个复杂的物理和化学过程的综合体。
它的高效、高功率输出使得内燃机成为了现代社会不可或缺的动力来源,但同时也带来了环境污染和能源消耗等问题。
因此,未来的发展方向是提高内燃机的燃烧效率,减少排放,以及研发可再生能源替代燃料,以实现内燃机的可持续发展。
内燃机工作原理

内燃机工作特点是,燃料在气缸内燃烧,所产生的燃气直接推动活塞作功。
下面,以图示的汽油机为例加以说明。
开始,活塞向下移动,进气阀开启,排气阀关闭,汽油与空气的混合气进入气缸。
当活塞到达最低位置后,改变运动方向而向上移动,这时进排气阀关闭,缸内气体受到压缩。
压缩终了,电火花塞将燃料气点燃。
燃料燃烧所产生的燃气在缸内膨胀,向下推动活塞而作功。
当活塞再次上行时,进气阀关闭,排气阀打开,作功后的烟气排向大气。
重复上述压缩、燃烧,膨胀,排气等过程,周期循环,不断地将燃料的化学能转化为热能,进而转换为机械能。
内燃机工作原理简述内燃机(Internal combustion engine)是一种热机,它将液体或气体燃料与空气混合后,直接输入机器内部燃烧产生热能再转化为机械能。
内燃机具有体积小、质量小、便于移动、热效率高、起动性能好的特点。
但是内燃机一般使用石油燃料,同时排出的废气中含有害气体的成分较高。
往复活塞式内燃机的工作腔称作气缸,气缸内表面为圆柱形。
在气缸内作往复运动的活塞通过活塞销与连杆的一端铰接,连杆的另一端则与曲轴相连,构成曲柄连杆机构。
因此,当活塞在气缸内作往复运动时,连杆便推动曲轴旋转,或者相反。
同时,工作腔的容积也在不断的由最小变到最大,再由最大变到最小,如此循环不已。
气缸的顶端用气缸盖封闭。
在气缸盖上装有进气门和排气门,进、排气门是头朝下尾朝上倒挂在气缸顶端的。
通过进、排气门的开闭实现向气缸内充气和向气缸外排气。
进、排气门的开闭由凸轮轴控制。
凸轮轴由曲轴通过齿形带或齿轮或链条驱动。
进、排气门和凸轮轴以及其他一些零件共同组成配气机构。
通常称这种结构形式的配气机构为顶置气门配气机构。
现代汽车内燃机无一例外地都采用顶置气门配气机构。
构成气缸的零件称作气缸体,支承曲轴的零件称作曲轴箱,气缸体与曲轴箱的连铸体称作机体。
甲,基本术语1. 工作循环活塞式内燃机的工作循环是由进气、压缩、作功和排气等四个工作过程组成的封闭过程。
内燃机的结构工作原理应用

内燃机的结构、工作原理与应用1. 内燃机的结构内燃机是一种将燃料燃烧产生的能量转化为机械能的发动机。
它有一组气缸和活塞组成的结构,其中燃料与空气混合后被压缩,然后在高温下燃烧,产生高压气体推动活塞作功。
内燃机的结构主要包括以下几个部分:1.1 缸体与缸盖内燃机的缸体和缸盖通常由铸铁、铝合金等材料制成。
缸体用于容纳气缸,缸盖则用于密封气缸,同时还有进气门和排气门的安装位置。
1.2 活塞与连杆活塞是内燃机中的一个重要部件,它与气缸壁之间形成密封腔。
活塞通过连杆与曲轴连接,使活塞的上下运动转化为曲轴的旋转运动。
1.3 曲轴与凸轮轴曲轴是内燃机的主轴,它与连杆配合,将活塞的上下运动转换为旋转运动。
凸轮轴则控制气门的开启和闭合时间,以调节燃料和空气的进出。
1.4 气门与气门机构内燃机的气门用于控制燃料和空气的进出。
气门机构由凸轮轴、推杆、摇臂、弹簧等构成,通过凸轮轴的转动来控制气门的开闭状态,以实现进、排气过程的控制。
2. 内燃机的工作原理内燃机的工作原理主要包括四个步骤:进气、压缩、燃烧与排气。
2.1 进气在进气冲程中,活塞从上死点下移,气缸内的压力降低,气门打开,新鲜空气通过进气道进入气缸。
2.2 压缩在压缩冲程中,活塞上移,气门关闭,气缸内的空气被压缩,从而增加了气体分子的热力学能量。
2.3 燃烧在燃烧冲程中,活塞上移到达上死点附近,燃料通过喷油器喷入气缸,与空气混合并被点火。
燃料的燃烧产生高温高压气体,推动活塞向下运动。
2.4 排气在排气冲程中,活塞向下运动,压力推开排气阀,废气从排气道中排出。
同时,凸轮轴使进气门打开,循环开始下一轮。
3. 内燃机的应用内燃机是目前最常用的一种发动机,广泛应用于汽车、摩托车、船舶、飞机和工业设备等领域。
其应用主要体现在以下几个方面:3.1 汽车与摩托车内燃机是汽车和摩托车的主要动力来源。
通过内燃机将化学能转化为机械能,驱动车辆运行。
同时,内燃机的高功率和高效率也有助于提高车辆的加速性能和燃油经济性。
内燃机工作原理

内燃机工作原理内燃机是一种热力机械,它通过燃烧燃料释放的化学能转化为机械能。
内燃机是现代交通工具如汽车、飞机、火车等的主要动力来源之一。
理解内燃机的工作原理对于我们了解交通工具的运行机制至关重要。
内燃机根据燃料的不同可以分为汽油机和柴油机两种类型。
无论是汽油机还是柴油机,其工作原理都遵循着四个基本步骤:进气、压缩、燃烧和排气。
首先,进气阶段是指内燃机通过进气门将空气引入到气缸内部。
在这个阶段,汽油机可以通过节气门来控制空气的流量,而柴油机则通过喷油器来控制燃油的喷射。
接下来是压缩阶段。
活塞在上升过程中将空气压缩到较高的压力。
在这个阶段,燃料被预先喷射到气缸中,并与压缩的空气混合。
第三个阶段是燃烧阶段。
当活塞达到最高压力时,一个火花塞在汽油机中产生火花,将燃料点燃。
在柴油机中,当燃料与压缩的空气混合达到一定温度时,燃料自燃。
燃烧产生的高温高压气体将活塞推向下方,并通过连杆传递给曲轴。
最后是排气阶段。
活塞下降过程中将燃烧产生的废气推出气缸。
废气通过排气门排出发动机,并进入排气系统。
内燃机的工作原理基于热力学的原理。
在压缩和燃烧阶段,燃料的化学能转化为热能,从而使气体的温度和压力升高。
高温高压气体通过连杆和曲轴的机械运动转化为机械能,并驱动车辆的运行。
内燃机的效率是指输出功率与输入燃料消耗之间的比值。
提高内燃机的效率是一个重要的目标,因为高效率意味着更低的燃料消耗和更少的排放。
工程师们通过不断改进内燃机的设计和控制系统来提高其效率,例如采用可变气门正时、涡轮增压器和直接喷射等技术。
此外,内燃机还面临着一些挑战,包括排放和燃料选择。
排放问题已经成为当今社会关注的焦点,因为内燃机燃烧产生的废气对环境产生负面影响。
因此,研发更清洁的燃烧技术和排放控制装置成为了内燃机工业的重要课题。
此外,随着可再生能源的发展,如生物燃料和电动汽车技术的进步,燃料选择也在逐渐多样化,从而对内燃机提出了新的挑战和机遇。
总之,内燃机是现代交通工具中不可或缺的动力装置。
内燃机工作原理

内燃机工作原理
内燃机是一种动力系统,是由发动机构成的机械传动系统。
它将有机燃料(如汽油、
柴油等)、空气和排气气体结合起来,在发动机的内部完成能量转换。
这种能量转换能够
提供给各种内燃机类型的动力驱动和热能,从而促进机械作业。
理解内燃机工作原理可以帮助我们加深对内燃机的了解,并为内燃机的维护和保养服
务奠定基础。
一般来说,内燃机的工作原理分为四个主要阶段:压缩,燃烧,排气和喷油。
压缩阶段:压缩是内燃机能量转换过程中的第一步,在这一步中,内燃机上的活塞将
最终在缸内空气从低压吸入到高压。
此外,由于紧凑的气体会增加空气温度,因此当活塞
在缸中上下移动时,会产生更多的热量。
燃烧阶段:当空气被完全压缩后,即可开始燃烧。
通常,有机燃料(汽油、柴油等)
由喷油嘴喷射到缸中,形成一个强烈的火焰,从而使缸内的空气和燃料燃烧。
在此过程中,压缩的活塞会立即发挥作用,将热能释放到缸内气体中,从而使活塞和缸体进一步推动。
排气阶段:当有机燃料燃烧完毕后,它将排出组成排气气体的各种有毒物质,例如一
氧化碳、二氧化碳和氮氧化物,这些气体都产生了在缸中燃烧时不会改变其空气比热容。
喷油阶段:这一步的功能是将新的有机燃料(汽油、柴油等)送入缸内,以补充之前
已经燃烧的有机燃料。
在喷油嘴喷射的机器中,会主动控制有机燃料和空气量,以保证正
确的混合比例,并使缸内有机燃料火焰合理而有效地发动并迅速完成燃烧。
总体而言,内燃机的工作原理主要是指机械传动系统在发动机内部完成能量转换,并
将有机燃料混合、燃烧、释放热量以及排出排气气体,以提供动力和发动机的正常运行。
内燃机基本工作原理

内燃机基本工作原理内燃机是一种将燃料变为机械能的装置,其基本工作原理是通过燃烧燃料在气缸内产生高温高压气体,驱动活塞做功,将热能转化为机械能。
下面将详细介绍内燃机的基本工作原理。
内燃机的基本构造包括气缸、活塞、曲柄连杆机构和气门控制系统等。
内燃机工作的基本循环是四冲程循环,包括进气冲程、压缩冲程、燃烧冲程和排气冲程。
在进气冲程中,汽缸进气门打开,活塞从上死点向下运动,将空气抽入汽缸。
进气门关闭后,活塞开始向上运动,将进气气体压缩。
在压缩冲程中,当活塞靠近上死点时,活塞上面的火花塞产生一个火花,点燃压缩的混合气。
这个点火称为点火提前角,可以通过调整点火系统来控制。
在燃烧冲程中,混合气受到点火后迅速燃烧,产生高温高压气体。
这些气体向下推动活塞,活塞通过曲柄连杆机构将线性运动转化为旋转运动,驱动曲轴。
在排气冲程中,当活塞接近下死点时,排气门打开,将燃烧后的废气从汽缸排出。
排气门关闭后,活塞开始向上运动,进入下一个循环的进气冲程。
总体来说,内燃机的工作原理是通过燃烧燃料产生高温高压气体,利用活塞和曲柄连杆机构将线性运动转化为旋转运动,从而驱动机械设备工作。
下面分别介绍内燃机的各个关键步骤。
1.进气冲程:当活塞从上死点向下运动时,进气门打开,此时气缸内的压力低于大气压,空气通过进气阀门进入气缸。
进气门关闭后,活塞向上运动,将进气气体压缩。
2.压缩冲程:当活塞靠近上死点时,进气气体被压缩成高压状态,此时混合气达到最高点火压力。
在这个阶段,燃料喷射器将燃料注入气缸,与压缩气体混合。
3.燃烧冲程:通过点火系统点燃混合气,混合气迅速燃烧,产生高温高压气体。
这些气体向下推动活塞,推动曲柄连杆机构,将线性运动转化为旋转运动。
4.排气冲程:当活塞接近下死点时,排气门打开,废气通过排气阀门排出气缸。
排气门关闭后,活塞向上运动,进入下一个循环的进气冲程。
内燃机中的曲轴是一个重要的部件,它通过连杆将活塞的线性运动转化为旋转运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内燃机的工作原理
一、内燃机的构造和有关名词
为了说明内燃机的工作原理,首先介绍一下内燃机的构造和有关名词。
柴油机的主体部分为圆柱的气缸体4个,在气缸体内有上下移动的圆柱形活塞,为了防止燃烧气体泄漏,在活塞上装有密封气体的活塞环。
气缸体的上部为气缸盖,在气缸盖上有进气通道、排气通道以及进气门和排气门,进、排气门之间装有喷油器。
活塞中部装有活塞销,通过它与连杆上部相接,连杆下部连接曲轴,通过曲轴末端的飞轮输出功率。
内燃机在工作时活塞处于上下两个极端位置的示意图(略)。
(1)上止点(又叫上死点)活塞顶面位移到距离曲轴中心线最远时的位置。
(2)下止点(又叫下死点)活塞顶面位移到距离曲轴中心线最近时的位置。
(3)活塞冲程(又叫活塞行程)活塞的上止点与下止点间的距离,单位为毫米。
活塞移动一个行程时,曲轴旋转半圈(180度)。
因此,活塞冲程等于曲柄半径的两倍。
(4)燃烧室容积(又叫压缩室容积)活塞在上止点时,活塞顶以上(包括活塞顶部的凹坑)和气缸盖底部(包括气缸盖内部的辅助燃烧室)之是所构成空间的容积,单位为升。
(5)气缸工作容积活塞在上下止点位置时其间的气缸容积,单位为升。
(6)发动机排量一台内燃机各个气缸工作容积之和(对单缸内燃机其排量就是气缸工作容积),单位为升。
(7)气缸总容积活塞在下止点位置时,活塞上部所有密封容积,单位为升。
气缸总容积=燃烧室容积+气缸工作容积
(8)压缩比气缸总容积与燃烧室容积的比值
压缩比=气缸总容积/燃烧室容积。
BR>压缩比,表示活塞由下止点移到上止点时,气体在气缸内被压缩的程度。
压缩比越大,压缩时气体在气缸内被压缩得就越高。
柴油机压缩比的范围一般为16~20。
汽油机压缩比的范围一般为6~8。
二、内燃机的工作原理
内燃机的工作原理是利用燃料在气缸内燃烧产生的热能,通过气体受热膨胀推动活塞移动,再经过连杆传递到曲轴使其旋转做功。
内燃机在实际工作时,由热能到机械能的转变是无数次的连续转变。
而每次能量转变,都必须经历进气、压缩、作功和排气四个过程。
每进行一次进气、压缩、作功和排气叫做一个工作循环。
若曲轴每转两圈,活塞经过四个冲程完成一个工作循环的叫做四冲程内燃机;若曲轴每转一圈,活塞只经过两个冲程就完成一个工作循环的叫做二冲程内燃机。
(一)四冲程柴油机的工作过程四冲程柴油机的工作过程
1、进气冲程
进气冲程是实现吸进新鲜空气的过程。
靠飞轮旋转惯性的作用车动曲轴,将活塞由上止点位置逐渐拉向下止点,这时通过配气机构开启进气门、关闭排气门,随着活塞向下移动,气缸内的容积逐渐增大,产生真空吸力,新鲜空气不断地被吸进气缸。
活塞移动到下止点(即活塞移动一冲程),进气冲程结束,进气门关闭。
2、压缩冲程
在飞轮带动下,曲轴继续旋转推动活塞由下止点向上止点运动。
这时进、排气门均关闭,在活塞移动中气缸内的容积逐渐减小,而气体的压力和温度逐渐升高。
当活塞移动到上止点时,气缸内气体的压力可达到2940~4410千帕(30~45千克力.平方厘米),温度可达500~700摄试度(比柴油的自燃温度高150~250摄试度)。
至此活塞移动了第二个冲程,曲轴累计回转了一圈,压缩冲程终了。
3、作功冲程
当压缩冲程接近终了时,进、排气门继续关闭,喷油器开始向气缸内喷入雾状柴油,在
气缸内高温空气的作用下,油雾很快被蒸发,并与高温空气混合成可燃混合气体而迅速自行着火燃烧,放出大量热能,使气缸内气体受热发生猛烈膨胀,气体的压力迅速增到5900~8800千帕(60~90千克力/平方厘米),温度可达1500~2000摄试度。
从而产生很大的推力迫使活塞从上止点向下止点运动,并通过连杆使曲轴旋转,从而带动飞轮旋转,起储能作用,将柴油发出的热能转变为曲轴旋转的机械能。
随着活塞向下止点运动,气缸内气体的压力和温度下降。
至活塞移动到下止点,曲轴累计回转了一圈半,作功冲程终了。
4、排气冲程
由飞轮带动,曲轴继续旋转,活塞由下止点移向上止点,通过配气机构开启排气门,气缸中燃烧后的废气被向上运动的活塞挤压,经排气门排出气缸,排气的温度为300~500摄试度,压力为103~122千帕(1.05~1.25千克力/平方厘米),活塞到达上止点时,排气冲程结束,排气门关闭。
至此,活塞移动了四个冲程,曲轴累计回转两圈。
上述四个冲程完成后,即完成了一个工作循环。
当活塞再次从上止点移向下止点时,又开始了第二个工作循环。
这样周而复始,柴油机连续运转,不断向外输出动力。
在这个工和循环中曲轴回转了两圈,活塞经过了四个冲程,所以称这种柴油机为四冲程柴油机。
(二)四冲程汽油机的工作过程
四冲程汽油机的工作过程与四冲程柴油机的工作过程基本相同,每一个工作循环同样有进气、压缩、作功、排气四个冲程。
其主要区别有以下几点:
1、在进气过程中,进入气缸的不是纯空气,而是空气与汽油相混合的可燃混合气。
在进气通道上装有化油器,空气在进气冲程的吸力作用下,以较高的流速流经化油器,将被吸入化油器喉管的汽油吹散和雾化,形成可燃混合气进入气缸。
2、汽油机吸入的混合气是由电火花强制点火,而不是压缩自燃(压缩比较小,压力和温度都比较低,不足以引起自燃)。
在气缸兽上装有火花塞,当活塞在压缩冲程运行到临近上止点时,炎花塞在高压电的作用下产生电火花将可燃混合气点燃。
从以上柴油机和汽油机的工作过程中可以见到在工作循环中只有一个作功冲程是活塞驱动曲轴旋转而作功的,其它三个冲程都是为作功冲程作准备,均需要由曲轴带动活塞运动,要消耗一部分能量。
因此,在曲轴的一端均装有一转动惯量较大的飞轮。
在作功冲程驱动曲轴及飞轮旋转,产生转动惯量带动在气缸中运动的。
另外,单缸四冲程内燃机曲轴每旋转两圈只有半圈(作功冲程)作功,运转不均匀,所以会产生较大的震动,因此在单缸机上都有尺寸较大的、重量较重的飞轮来储存能量,保持运转的平稳性。
(三)多缸四冲程内燃机的工作过程
具有两个或两个以上气缸的内燃机称为多缸内燃机。
若单机要求较大的功率时,采用单缸内燃机则需加大气缸的直径和冲程,相应的零部件都要加大尺寸,使机器相当笨重。
运动部件的运动惯量增大,难以平衡,导致工作起来不稳定,震动较大。
因此,较大功率的内燃机,一般都不采用单缸加大缸径方式,而是采用较小缸径、多缸的型式。
由于多缸内燃机的作功冲程是相互交替均匀分配的,所以多缸比单缸内燃机旋转均匀、工作稳定。
多缸四冲程内燃机可视为由多个单缸机共用一根曲轴和一个大机体组合而成的,每个气缸与单缸机一样各自完成本身的工作循环,只是各气缸的作功冲程相互错开,使各缸的同一冲程按一定的工作顺序排列组合。
二缸四冲程内燃机曲轴的两个曲柄位于同一平面内,方位相反而相互错开180度。
三缸四冲程内燃机曲轴的曲柄夹角互为120度,其工作顺序为12--3缸或1--3--2缸两种方式。
三缸四冲程内燃机作功间隔是均匀的,在每一缸的作功冲程后都有60度的间歇时间,下缸才开始作功,三缸机运转平稳,是小缸径多缸机的发展方向。
(四)二冲程内燃机的工作过程
四冲程内燃机的曲轴旋转两圈,活塞经过了四个冲程才完成一个工作循环;而二冲程内
燃机的曲轴转一圈,活塞经过两个冲程就可完成一个工作循环,这是四冲程与二冲程内燃机的基本区别。
第一冲程:当活塞从下止点向上止点运动时,活塞起着一个上挤下吸的作用。
在运动中活塞关闭了换气孔和排气孔,在活塞的上部使进入气缸内燃机混合气受到压缩。
当活塞继续上升,活塞的下部将进气孔打开时,开始吸气,由于曲轴箱的容积不断增加,产生吸力,化油器中的可燃混合气便被吸入曲轴箱。
第二冲程:当活塞接近上止点时,火花塞点燃被压缩的可燃混合气,活塞起着上推下压作用。
在活塞上方燃气膨胀产生的压力使活塞向下移动而作功。
当活塞继续向下移动时,在活塞的下方首先关闭气孔,使曲轴箱内的可燃混合气受到挤压,当继续向下移动时,排气孔被打开,气缸中的废气受到燃气压力的作用自行排出。
当活塞再向下移动时,换气孔被打开,曲轴箱内受挤压的可燃气体经换气孔进入气缸,并帮助驱扫废气。
该扫气过程实际上是排气和进气两个工作过程的结合,一直到活塞经过下止点后,再向上运动将换气孔和排气孔封闭后才结束。
由此可知,二冲程汽油机没有一个单独的进气和排气冲程,进气和排气过程分别是与压缩和作功的过程同时进行的。
所以,二冲程汽油机曲轴转一圈,活塞走两个冲程即完成一个工作循环。