变容二极管调频电路设计
变容二极管直接调频电路

只有在 2 时为理想线性调制,可得到输出信号是一调频波,其余 都是非线性。因此,在变容管作为振荡回路总电容的情况下,必须 选用 2 的超突变结变容管。否则,频率调制器产生的调频波不仅 出现非线性失真,而且还会出现中心频率不稳定的情况。
小结:
本节课我们主要给大家讲解了变容二极管的直接调频电 路,通过学习,可知其工作原理如下:
近开路。为防止振荡回路L对UQ和短路,必须在变容二极管和L之间加入隔直电容 C1和C2,它们对于高频接近短路,对于调制频率接近开路。综上所述,对于高频 而言,由于L1开路、C3短路,可得高频通路,如图(b)所示。
3.原理电路
C1
L Cj C2
L1
uΩ C3
UQ
L Cj
L1
Cj
uΩ
UQ
(a)
(b)
(c)
UQ
L Cj
L1
Cj
uΩ
UQ
(a)
(a)原理电路
(b)
(c)
(b)高频振荡通路 (c)低频控制电路
将变容二极管接入LC正弦振荡器的谐振回路中(VCO),图(a)原理电路中 ,L和变容二极管组成谐振回路,虚方框为变容二极管的控制电路。UQ用来 提供变容二极管的反向偏压,其取值应保证变容二极管在调制信号电压的变 化范围内,始终工作在反向偏置状态,同时还应保证由UQ值决定的振荡频 率等于所要求的载波频率。通常调制电压比振荡回路的高频振荡电压大得多 ,所以变容二极管的反向电压随调制信号变化,即
将调制信号作为压控振荡器的控制电压,直接控制主振荡 回路元件的变容二极管 Cj 的值,使其产生的振荡频率随调制 信号规律而变化,从而实现直接调频的目的。
通信技术专业教学资源库 四川信息职业技术学院
变容二极管调频课程设计..

成绩评定表课程设计任务书目录摘要 (4)1 •弓I言 (5)2 • Protel 99 SE 简介 (6)3•实验步骤 (7)3.1 Protel 99 SE 绘图环境设置 (7)3.1.1新建一个设计库 (7)3.1.2 添加元件库 (10)3.2绘制原理图 (12)3.2.1 选取元件 (12)3.2.2摆放元件 (13)3.2.3元件连接 (13)3.2.4放置输入/输出点 (14)3.2.5更改元件属性 (15)3.2.6 ERC(电气规则检查) (16)3.3 PCB 制图 (16)3.3.1自动生成PCB文件 (16)3.3.2自动布线 (18)3.4仿真应用 (20)4 •课设总结 (22)5 •参考文献 (22)摘要本次课设的要求和目的是掌握Protel的应用。
本文以Protel99SE为例,详细具体地介绍这个软件的用法与应用。
文章首先介绍了Protel99SE基本知识,然后提出需用该软件解决的实际问题,结合实际问题一步步介绍Protel99SE的用法,如:基础原理图设计,印制电路板基础,PCB元件的制作,电路仿真分析,综合案例演练等。
接着分析应用Protel99SE软件的过程中可能遇到的问题及一些应对方法。
课设最后进行总结,检查课设的完整性和彻底性,检验自己对Protel99SE软件的掌握程度及应用情况。
Protel 99 SE 应用课程设计――变容二极管的调频电路1 •引言人类社会已进入到高度发达的信息化社会,信息社会的发展离不开电子产品的进步。
现代电子产品在性能提高、复杂度增大的同时,价格却一直呈下降趋势,而且产品更新换代的步伐也越来越快,实现这种进步的主要原因就是生产制造技术和电子设计技术的发展。
前者以微细加工技术为代表,目前已进展到深亚微米阶段,可以在几平方厘米的芯片上集成数千万个晶体管;后者的核心就是EDA技术。
EDA是指以计算机为工作平台,融合了应用电子技术、计算机技术、智能化技术最新成果而研制成的电子CAD通用软件包,主要能辅助进行三方面的设计工作:IC设计,电子电路设计以及PCB设计。
变容二极管直接调频电路

变容二极管直接调频电路
变容二极管调频电路是一种经典的调频电路,主要使用半导体可控硅电子元件变容二极管作为控制元件。
它可以用来提供按需要调整的频率、振幅和相位,可以根据调频、接收和发射系统的需要以及信号源(如晶体振荡器)来调整调制频率、振幅和相位。
变容二极管作为调频控制元件,具有电容可变的特性,可实现电容的连续变化,从而实现调频电路的实现。
调频电路中的这种变容二极管可以用作一种稳定的控制元件,用来调整感应线圈的频率。
它还可以用来控制连接电路的相位和振幅,从而控制调频信号的相位和振幅,从而实现调频电路的频率、相位和振幅的调节。
变容二极管调频电路中,变容二极管通常是以受到外部射频电磁脉冲激励为基础,借助内部结构反馈成一种和射频电磁脉冲频率及相应振幅。
一般情况下,变容二极管的输出频率比其激励源的频率要低,因为变容二极管的内部的电容,本身也作为了频率的调节因素,当激励信号的频率发生变化时,变容二极管内部的电容也会发生变化,使输出频率存在随机的波动。
因此,为了完成调频功能,变容二极管需要通过外部的频率控制焊接引脚来实现控制,从而实现控制信号的稳定和调频功能。
变容二极管调频电路具有体积小、体积效率高、运行可靠性高等优点,被广泛应用在调频、中频、短波等信号处理的领域,如通讯系统、无线电测量设备、航空专业仪器、收音机等。
由于变容二极管的调频电路设计简单,采用变容二极管作为调频控制元件,它还能节省大量空间,可扩展性非常强,可用来编辑一个可编程的调频电路,从而可以实现多种功能,如调制、接收和发射等,广泛应用在电子设备和通讯产品以及其他相关产品中。
可采用变容二极管晶体直接调频电路

5.3
5.3.1
直接调频电路
变容二极管直接调频电路
一、变容二极管的特性
变容二极管的符号和结电容 C j 随外加偏压
变化的关系如图5.3.1所示,其表达式为
Cj
(1
C j (0) VB )n
式中: :为加到变容管两端的电压;
VB :变容管的势垒电位差(锗管为0.2V,硅管
主讲 元辉
四、电路实例分析
高 频 电 子 线 路
用在卫星通信地面站调 频发射机中。
图5.3.6 140 MHz的变容管作回路总电容的直接调频电路
主讲
元辉
高 频 电 子 线 路
调频电路的高频通路、变容管的直流通路和音频控 制电路分别如图(b)、(d)、(c)所示。
注意: 画高频通路时,忽略了接在集电极上的75Ω小电阻。 画音频控制通路时,忽略了直流通路中的各个电阻。 由图(b)高频通路知,这是一个变容二极管作回路总电
3、变容二极管的控制电路
图(c)为变容二极管的控制电路。 C1 的作用使 结电容不 受振荡回路的影响。
图5.3.2 变容二极管作为回路总电容的直接调频原理电路
主讲
元辉
高 频 电 子 线 路
4、调频原理分析 由于振荡回路中仅包含一个电感L和一个变容二极管
等效电容 C j,在单频调制信号 (t ) Vm cos t 的作用下 回路振荡角频率,即调频特性方程为
osc (t )
1 LC j
1 LC jQ (1 m cos t )n
c (1 m cos t )
n 2
1 式中 c 为 0 时的振荡角频率,即调频电路 LC jQ
中心角频率(载波角频率),其值由VQ 控制。
变容二极管调频电路设计

变容二极管调频电路设计一、基本原理变容二极管调频电路利用变容二极管的非线性特性,实现调频功能。
变容二极管即反向偏压下的二极管,它的电容值与反向偏压有关,反向偏压越大,电容值越小。
当正弦信号进入反向偏压的二极管时,随着信号电压的增大,二极管的电容值减小,导致信号频率的增加。
反之,随着信号电压的减小,二极管的电容值增大,导致信号频率的减小。
通过不同程度的反向偏压,可以实现对信号频率的调整。
二、电路设计步骤1.确定工作频率范围:首先,确定设计的变容二极管调频电路的工作频率范围。
根据具体应用需求,选择适当的频率范围。
2.选择电路拓扑结构:常见的变容二极管调频电路拓扑结构包括正弦波调频电路和方波调频电路。
正弦波调频电路适用于较高频率的调频需求,而方波调频电路适用于较低频率的调频需求。
根据具体的工作频率范围和调频要求,选择合适的电路拓扑结构。
3.设置电压偏置电路:由于变容二极管是在反向偏置电压下工作,需要设计一个合适的电压偏置电路。
该电路的作用是为变容二极管提供适当的反向偏置电压,保证在工作频率范围内变容二极管始终处于反向偏压状态。
4.设计信号源和功率放大器:为了提供输入信号和驱动变容二极管,需要设计信号源和功率放大器。
信号源可以选择稳定的正弦波源或方波源,功率放大器的设计要考虑到输出功率和失真等因素。
5.确定电容和电压范围:根据工作频率范围和调频要求,选择合适的变容二极管和电容。
同时,确定电容的电压范围,以保证电容的可靠性和稳定性。
6.进行电路仿真和优化:在设计完成后,进行电路仿真和优化。
使用电路仿真软件,验证电路的性能和稳定性。
根据仿真结果,调整电路参数,优化设计。
7.制作电路原型和测试:最后,根据优化后的设计方案,制作电路原型,并进行测试。
通过测试,验证电路的性能和可靠性,可以对设计进行进一步改进和优化。
三、注意事项-选择合适的变容二极管:变容二极管的性能参数对电路的调频性能影响较大,应选择性能稳定可靠的品牌和型号。
实验七变容二极管调频器

实验七变容二极管调频器—、实验准备1.做本实验时应具备的知识点:●频率调制●变容二极管调频●静态调制特性、动态调制特性2.做本实验时所用到的仪器:●变容二极管调频模块●双踪示波器●频率计●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握用变容二极管调频振荡器实现FM的方法;3.理解静态调制特性、动态调制特性概念和测试方法。
三、实验内容1.用示波器观察调频器输出波形,考察各种因素对于调频器输出波形的影响;2.变容二极管调频器静态调制特性测量;3.变容二极管调频器动态调制特性测量。
四、实验原理1.调频电路变容二极管调频器实验电路如图7-1所示。
图中,12BG01本身为电容三点式振荡器,它与12D01、12D02(变容二极管)一起组成了直接调频器。
12BG03为放大器,12BG04为射极跟随器。
12W01用来调节变容二极管偏压。
由图7-1可见,加到变容二极管上的直流偏置就是+12V经由12R02、12W01和12R03分压后,从12R03得到的电压,因而调节12W01即可调整偏压。
由图可见,该调频器本质上是一个电容三点式振荡器(共基接法),由于电容12C05对高频短路,因此变容二极管实际上与12L02相并。
调整电位器12W01,可改变变容二极管的偏压,也即改变了变容二极管的容量,从而改变其振荡频率。
因此变容二极管起着可变电容的作用。
对输入音频信号而言,12L01短路,12C05开路,从而音频信号可加到变容二极管12D01、 12D01上。
当变容二极管加有音频信号时,其等效电容按音频规律变化,因而振荡频率也按音频规律变化,从而达到了调频的目的。
121图7-1 变容二极管调频器实验电路本实验电路为西勒振荡器,高频等效电路如图7-2所示。
电路的频率为:∑=LC t f π21)(式中: j 1C C 11112C0312C0412C06∑=+++在调制信号Ωu 控制下实现频率调制。
12C062CC1F图7-2 变容二极管调频器高频等效电路2.调频电路的特性(1)调频电路的静态调制特性静态调制特性是指,振荡频率f 随变容二极管直流偏置电压B V 的变化特性。
电容三点式振荡器与 变容二极管直接调频电路设计

高频实验报告(三)——电容三点式振荡器与变容二极管直接调频电路设计组员座位号 16实验时间周一上午目录一、实验目的 (3)二、实验原理 (3)2。
1电容三点式振荡器基本原理32.2变容二极管调频原理 (6)2。
3寄生调制现象82.4主要性能参数及其测试方法 (9)三、实验内容 (10)四、实验参数设计 (11)五、实验参数测试 (14)六、思考题 (15)一、实验目的1.掌握电容三点式LC振荡电路的基本原理。
2.掌握电容三点式LC振荡电路的工程设计方法。
3.了解高频电路中分布参数的影响及高频电路的测量方法。
4.熟悉静态工作点、反馈系数、等效Q值对振荡器振荡幅度和频谱纯度的影响。
5.掌握变容二极管调频电路基本原理、调频基本参数及特性曲线的测量方法。
二、实验原理2.1电容三点式振荡器基本原理电容三点式振荡器基本结构如图所示:图3.1 电容三点式振荡器基本结构在谐振频率上,必有X1+X2+X3=0,由于晶体管的v b与v c反相,而根据振荡器的振荡条件|T|=1,要求v be=-v ce,即i X1 = i X2,所以要求X1与X2为同性质的电抗。
综合上述两个条件,可以得到晶体管LC 振荡器的一般构成法则如下:在发射极上连接的两个电抗为同性质电抗,另一个为异性质电抗.原理电路如图3.2所示:图3。
2原理电路共基极实际电路如图3。
3所示:C2C1图3。
3共基极实际电路求)ωj T (的等效电路如下图3。
4 )ωj T (的等效电路其中:20102200121(111()111 ''m L ob f ib L Eob ib cb e f beA j g R j g G k g R R g g r r C G k C C C Q LC C ωξω)≈+=+++≈≈=≈++,=, ,(3-1)0G 为谐振回路导纳,Q 0为回路固有品质因数.回路谐振时有:112()'f C F j k C C ω≈=+(3-2)1()()()1m L fT j A j F j g R k j ωωωξ==+(3—3) ξ是谐振回路广义失谐其中:以上讨论中,忽略C ob 的影响。
通信电路设计变容二极管调频电路设计

通信电路设计变容二极管调频电路设计
变容二极管调频电路是一种用于实现快速可调调频的电路,它可以快速变化调频信号
的输出频率而不影响调频信号的波形、幅度和相位。
这种电路由于具有调节脉宽和调节频
率容易操作的优点,已广泛应用于微波信号处理、无线连接、语音处理等领域。
变容二极管调频电路由二极管、变容电容器、滤波元件和稳压电路组成,其结构如下
图所示:
图1 变容二极管调频电路示意图
二极管主要起“开关式”放大作用,根据反馈电路的不同情况,其工作的仿真模型和
电路结构可以极大的改变,其在调频方面有很大的作用。
变容电容器可以实现电容的变化,从而调节电流的充放电量,调节输出信号的频率。
滤波元件可以把调制信号从信号源中提取出来,有效地打消其他低频信号,使得其输
出信号更加清晰,从而更好地实现变频效果。
稳压电路将产生固定电压,它可以保护二极管和变容电容不受外部电压波动的影响,
以提高调频电路的稳定性。
通过以上四部分的调制电路可以实现变容二极管调频电路,可以有效控制信号的频率,提高电路的可靠性和鲁棒性。
此外,变容二极管调频电路还具有低功耗和体积小的优点,
使得它在实际应用中受到广泛的欢迎,在微波、通信等领域发挥着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 01、方案选择 (1)2、变容二极管直接调频原理 (1)3、变容二极管直接调频 (3)3.1 变容二极管工作原理 (3)4、电路实现 (4)4.1课程设计指标 (4)4.2元件参数选择 (5)4.3电路设计仿真图 (5)4.4电路仿真结果 (6)4.5 PCB如图4.4所示 (7)总结与体会 (8)参考文献 (9)摘要调频电路具有抗干扰性能强、声音清晰等优点,获得了快速的发展。
主要应用于调频广播、广播电视、通信及遥控。
调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。
由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz 的范围内。
在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。
变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。
其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。
较之中频调制和倍频方法,这种方法的电路简单、性能良好、副波少、维修方便,是一种较先进的频率调制方案。
本课题载波由LC电容反馈三端振荡器组成主振回路,振荡频率有电路电感和电容决定,当受调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率受调制信号的控制,从而实现调频。
关键词:变容二极管 LC电容反馈三端振荡器调频1、方案选择变容二极管调频方式有两种:间接调频和直接调频。
(1)间接调频先将调制信号进行积分处理,然后用它控制载波的瞬时相位变化,从而实现间接控制载波的瞬时频率变化的方法,称为间接调频法。
根据前述调频与调相波之间的关系可知,调频波可看成将调制信号积分后的调相波。
这样,调相输出的信号相对积分后的调制信号而言是调相波,但对原调制信号而言则为调频波。
这种实现调相的电路独立于高频载波振荡器以外,所以这种调频波突出的优点是载波中心频率的稳定性可以做得较高,但可能得到的最大频偏较小。
(2)直接调频用调制信号直接控制振荡器的瞬时频率变化的方法称为直接调频法。
如果受控振荡器是产生正弦波的LC 振荡器,则振荡频率主要取决于谐振回路的电感和电容。
将受到调制信号控制的可变电抗与谐振回路连接,就可以使振荡频率按调制信号的规律变化,实现直接调频。
可变电抗器件的种类很多,其中应用最广的是变容二极管。
作为电压控制的可变电容元件,它有工作频率高、损耗小和使用方便等优点。
具有铁氧体磁芯的电感线圈,可以作为电流控制的可变电感元件。
此外,由场效应管或其它有源器件组成的电抗管电路,可以等效为可控电容或可控电感。
直接调频法原理简单,频偏较大,但中心频率不易稳定。
在正弦振荡器中,若使可控电抗器连接于晶体振荡器中,可以提高频率稳定度,但频偏减小。
在满足设计的各项参数的基础上尽量简化电路。
因此本次课程设计采用变容二极管直接调频设计电路。
2、变容二极管直接调频原理变容二极管调频电路是有主振电路和调频电路构成,如变容二极管调频仿真图,TC、4C、5C、1L为主振回路,D2为变容二极管,Cc为耦合电容隔离直流,为振荡管,3C为高频滤波电容,7C为耦合电容,1C为旁路电容。
6R、8R为变容二极管提供一个6静态反偏电压,7R 为隔离电阻,1R 、2R 、4R 、5R 给三极管提供一个合适静态工作点。
设调制信号为Ωu (t)=m u Ωcos Ωt,加在二极管上的反向直流偏压为Q V ,Q V 的取值应保证在未加调制信号时振荡器的振荡频率等于要求的载波频率,同时还应保证在调制信号Ωu (t)的变化范围内保持变容二极管在反向电压下工作。
加在变容二极管上的控制电压为r u (t)=Q V +m u Ωcos Ωt 式(2-1)根据式(3-1)可得,相应的变容二极管结电容变化规律为(1)当调制信号电压Ωu (t)=0时,即为载波状态。
此时r u (t)=Q V ,对应的变容二极管结电容为jQ C ,其中Q j C =)U V 1(C DQ 0j + 式(2-2) (2)当调制信号电压Ωu (t)=m u Ωcos Ωt 时,对应的变容二极管的结电容与载波状态时变容二极管的结电容的关系是j C =γΩ+Ω+]U t cos U V 1[C Dm Q 0j 式(2-3)令m= u Ω/(D U +Q V )为电容调制度,则可得 j C =γΩ+)t cos m 1(C jQ式(2-4) 上式表示的是变容二极管的结电容与调制电压的关系。
而变容二极管调频器的瞬时频率与调制电压的关系由振荡回路决定无调制时,谐振回路的总电容为 ∑Q C =1C +Q C QC C C C C + 式(2-5)Q C 为静态工作点所对应的变容二极管节电压。
当有调制时,谐振回路的总电容为:∑C =1C +j C jC C C C C + 式(2-6)回路的总电容的变化量为:△C =C ∑-C ∑Q ;频偏△C与△f 的关系:△f=1/2*f 0*△C/C ∑Q 。
由变容二极管部分接入振荡器振荡回路的等效电路。
调频特性取决于回路的总电容C ∑,而C ∑可以看成一个等效的变容二极管, C ∑随调制电压Ωu (t)的变化规律不仅决定于变容二极管的结电容C j 随调制电压Ωu (t)的变化,而且还与C 1和C 2的大小有关。
因为变容二极管部分接人振荡回路,其中心频率稳定度比全部接入振荡回路要高,但其最大频偏要减小。
3、变容二极管直接调频3.1 变容二极管工作原理变容二极管又称可变电抗二极管"。
是一种利用PN 结电容(势垒电容)与其反向偏置电压Vr 的依赖关系及原理制成的二极管。
所用材料多为硅或砷化镓单晶,并采用外延工艺技术。
反偏电压愈大,则结电容愈小。
变容二极管具有与衬底材料电阻率有关的串联电阻。
主要参量是:零偏结电容、零偏压优值、反向击穿电压、中心反向偏压、标称电容、电容变化范围(以皮法为单位)以及截止频率等,对于不同用途,应选用不同C 和Vr 特性的变容二极管,如有专用于谐振电路调谐的电调变容二极管、适用于参放的参放变容二极管以及用于固体功率源中倍频、移相的功率阶跃变容二极管等。
变容二极管是根据PN 结的结电容随反向电压大小而变化的原理设计的一种二极管。
它的极间结构、伏安特性与一般检波二极管没有多大差别。
不同的是在加反向偏压时,变容二管呈现较大的结电容。
这个结电容的大小能灵敏地随反向偏压而变化。
正是利用了变容二极管这一特性,将变容二极管接到振荡器的振荡回路中,作为可控电容元件,则回路的电容量会随调制信号电压而变化,从而改变振荡频率,达到调频的目的。
已知,结电容C j 与反向电压v R 存在如下关系:C j =]V v 1[CD R 0j + 式(4-1)加到变容管上的反向电压,包括直流偏压V 0和调制信号电压v ω(t)=ωV cos ωt ,如图3.1,即v R (t)= V 0+ωV cos ωt 式(4-2)此外假定调制信号为单音频简谐信号。
结电容在v R (t)的控制下随时间发生变化。
图3.1 用调制信号控制变容二极管结电容把受到调制信号控制的变容二极管接入载波振荡器的振荡回路,则振荡频率亦受到调制信号的控制。
适当选择变容二极管的特性和工作状态,可以使振荡频率的变化近似地与调制信号成线性关系。
这样就实现了调频。
4、电路实现4.1课程设计指标(1)主振频率:f 0=12MHz(2)频率稳定度:(3)最大频偏:(4)振荡器输出电压:(5)电源电压:2.5V4.2元件参数选择(1)电源电压:2.5V(2)高频三极管采用2N2222(硅NPN 管,C I =600mA ,P=625mW ,ce V =30V ,cb V =60V ,eb V =5V )(3)变容二极管采用FMMV2109:反向偏置电压为4V ,R6与R8为变容二极管提供静态时的反向直流偏置电压V Q ,电阻R3称为隔离电阻,常取R7>>R6,R7>>R8,以减小调制信号V Q 对V Q 的影响。
已知V Q =4V ,若取R8=10k Ω,隔离电阻R7=150k Ω,则R6=10K Ω。
(4)LC 振荡器:由公式f 0=LC21π可知,假设L=10uH ,则LC 振荡回路总电容C=18pF,那么C 4取10pF ,C 5取8pF 。
4.3电路设计仿真图变容二极管直接调频电路仿真图如图4.1。
图4.1 变容二极管直接调频电路仿真图4.4电路仿真结果(1)LC振荡器输出频率测量值f0=12MHz。
仿真结果如图4.2图4.2 主振频率测量值f0(2)输出波形如图4.3。
图4.3 仿真结果输出波形4.5 PCB如图4.4所示图4.4 变容二极管PCB图总结与体会通过本周的课程设计,我对高频电子线路这门课程有了更深的了解,更值得我开心的是我明白了自身的不足。
说起来很惭愧,上了三年大学,学了三年电子,发觉自己竟然连一只三极管还没有学会。
以前上课总是抱着不求甚解的心态去学习,结果发现真没学到多少东西,很多曾经觉得学会的东西在实际应用的时候就成了文盲了。
看来做什么都要有追根求底的精神。
不然什么都只是知道,却什么都不精通,这是将来走上社会最忌讳的。
虽然只是短暂的一周,但在这期间,却让我受益匪浅。
这次课程设计再次让我认识到了知识和实践的重要性。
在我们平时的学习过程中,一定要认真掌握所学知识,咱们电气的知识都是科学知识,来不得半点马虎。
只有牢固掌握了所学的知识,才能有清晰的思路,才能在遇到实际问题的时候及时找到最合理的方案,这样不仅节省了很多时候,也为我们的学习提供了很多帮助。
就是因为平时没做好这一点,在做这个课程设计的时候真的无从下手,而这都是老师在课堂上为我们讲解的知识。
这时候不得不回头复习书上的知识,也去网上查了好多资料。
选择元器件参数是件很让人头痛的事,同一个三极管有很多型号,有时候这不仅靠的是知识,也靠我们的经验,这时候就体现出了自己的经验不足。
为此也不得不去图书馆查找资料。
其实最让我头痛的是如何选定电路方案,很怕走了弯路就难以回头了。
可是当仿真成功那一刻,真真的开心的不得了。
所以这次课程设计真真是让人痛并快乐着。
在这里也不得不谢谢同学的帮助,他们同样也在忙着课程设计,仍然不厌其烦的解答我的疑惑。
然后也要谢谢我的指导老师,这次课程设计很有意义,让我学到的可不仅仅是课堂知识。
参考文献1:李银华电子线路设计指导北京航空航天大学出版社 2005.6 2:谢自美电子线路设计华中科技出版社 20033:沈伟慈通信电路西安电子科技大学出版社 2011.94:阳昌汉高频电子电路哈尔滨工程大学出版社 2001。