焦炉煤气DDS脱硫技术

合集下载

焦炉煤气制合成气的脱硫及净化工艺技术

焦炉煤气制合成气的脱硫及净化工艺技术

焦炉煤气制合成气的脱硫及净化工艺技术摘要:众所周知,中国是一个炼焦大国,在众多焦炉仓促建成之后,由于相应设施不配套,致使一些企业“焦而不化”现象层出不穷,大量的焦炉煤气被直接的燃烧排放,既是对环境的严重污染,也是对资源的极大浪费,因而也被人们称其为“点天灯”。

本文简述了焦炉煤气的一系列净化工艺,并且介绍了采用催化转化与非催化转化制取天然气的工艺流程,希望对于了解焦炉煤气净化技术有借鉴意义。

关键词:焦炉煤气;合成气;脱硫;净化工艺引言焦炉煤气作为焦炭制成过程中煤炭经过高温干馏环节所产生的气态产品,其在炼焦产品总质量中占据着15%-18%的比重,是位于焦炭产品之下的第二大炼焦产品。

据相关统计显示,我国目前焦炉煤气年产量为1331.2亿m3,除去一半用来进行燃料回收,还有665.6亿m3的焦炉煤气可以应用到其他工业领域中,但由于国内焦化产业长期以来将工作重心放于焦炭生产方面,未能对焦炉煤气回收利用充分重视,不少焦化企业处于经济因素的考虑,未能建设起相应的焦炉煤气净化回收装置,大量焦炉煤气未被回收利用,而是直接排放燃烧。

每年未被利用的焦炉煤气高达300多亿m3,经济损失高达数百亿元,在造成极大资源浪费的同时,对周边环境也造成了十分严重的污染。

对此,为了实现焦炉煤气的有效回收利用,满足当前实现绿色工业、循环经济与建设节约型社会的发展要求,本文简要对焦炉煤气净化回收工艺进行介绍,并介绍了相应的应用情况,为日后的焦化工艺提供一定的借鉴参考。

1气体组分焦炉煤气是焦炭生产过程中煤炭经高温干馏出来的气体产物,在干馏温度为550℃,焦炉煤气中有大量的H2S、COS、CS2、NH3、HCN、噻吩、硫磺、硫醚、焦油、萘、苯等化学物质。

焦炉煤气经过净化和提取回收化工产品后成为回炉煤气,回炉煤气的气体组分一般为(%,以体积百分比计):H254-59、CH423-28、CO5.5-7、CO21.5-2.5、N23-5、CnHm2-3、O20.3-0.7。

我国焦炉煤气脱硫技术现状

我国焦炉煤气脱硫技术现状

我国焦炉煤气脱硫技术现状1、概述焦炉煤气是重要的中高热值气体燃料,既可用于钢铁生产,也可供城市居民使用,还可作为原料气用于生产合成氨、甲醇等产品,不论采用何种方式利用焦炉煤气,其硫含量都必须降低到一定程度。

炼焦煤料中含有0.5%~l.2%的硫,其中有20%~45%的硫以硫化物形式进入荒煤气中形成硫化氢气体,另外还有相当数量的氰化氢。

焦炉产生的粗煤气中含有多种杂质,需要进行净化。

焦炉煤气中一般含硫化氢4~8g/m3,含氨4~9g/m3,含氰化氢0.5~1.5g/m3。

硫化氢(H2S)及其燃烧产物二氧化硫(SO2)对人体均有毒性,氰化氢的毒性更强。

氰化氢和氨在燃烧时生成氮氧化物(NOX),二氧化硫与氮氧化物都是形成酸雨的主要物质,煤气的脱硫脱氰洗氨主要是基于环境保护的需要。

此外,对轧制高质量钢材所用燃气的含硫量也有较高的要求,煤气中H2S的存在,不仅会腐蚀粗苯系统设备,而且还会使吸收粗苯的洗油和水形成乳化物,影响油水分离。

因此,脱除硫化氢对减轻大气和水质的污染、加强环境保护以及减轻设备腐蚀均有重要意义。

2、焦炉煤气脱硫方法近几年,钢铁企业的快速发展带动了焦化行业的发展,其中随着世界环保意识的加强,国内外焦炉煤气脱硫脱氰技术得以迅速开发和改良,先后出现了干式氢氧化铁法、湿式碱法、改良ADA法等脱硫方法。

总的来说,煤气的脱硫方法按吸收剂的形态,可分为干法和湿法两大类。

2.1 焦炉煤气干法脱硫技术干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,多采用固定床原理,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。

但是由于气固吸附反应速度较慢,因此该工艺运行的设备一般比较庞大,再者由于吸附剂硫容的限制,脱硫剂更换频繁,消耗量大,而且脱硫剂不易再生,致使运行费用增高,劳动强度大,同时不能回收成品硫,废脱硫剂、废气、废水严重污染环境,因此,在大型焦化和钢铁行业,如果焦炉煤气不进行深加工(如焦炉煤气制甲醇),一般不考虑干法脱硫;中小型焦化厂主要采用干法工艺。

dds催化剂脱硫新技术及工业应用

dds催化剂脱硫新技术及工业应用

dds催化剂脱硫新技术及工业应用DDS催化剂脱硫新技术及工业应用随着环保要求的不断提高,石油炼制和化工行业对硫含量的控制越来越严格。

传统的脱硫技术主要包括吸附法、氧化法、生物法等,但这些方法存在处理效果不理想、成本较高、副产物处理困难等问题。

因此,开发新型高效、低成本的脱硫技术成为了当前的研究热点。

DDS催化剂脱硫新技术应运而生,其在工业应用中取得了显著的成果。

一、DDS催化剂脱硫新技术简介DDS催化剂脱硫新技术是一种基于催化剂的湿式氧化脱硫技术,其核心是利用催化剂将硫化物转化为二氧化硫和水,从而实现脱硫的目的。

DDS催化剂具有高活性、高选择性和高稳定性等优点,能够在短时间内实现高效的脱硫效果。

此外,DDS催化剂还具有较好的抗硫中毒能力,能够在较宽的温度和压力范围内稳定工作。

二、DDS催化剂脱硫新技术的原理DDS催化剂脱硫新技术的基本原理是在一定的温度和压力条件下,利用催化剂将硫化物氧化为二氧化硫和水。

在这个过程中,催化剂起到了催化作用,降低了反应的活化能,提高了反应速率。

同时,催化剂还能够选择性地将硫化物转化为二氧化硫,避免了其他副反应的发生。

三、DDS催化剂脱硫新技术的优势1. 高效:DDS催化剂具有较高的催化活性,能够在短时间内实现高效的脱硫效果。

与传统的脱硫技术相比,DDS催化剂脱硫新技术的处理效率更高,能够满足严格的环保要求。

2. 低成本:DDS催化剂具有较高的选择性和稳定性,能够在较宽的温度和压力范围内稳定工作。

这使得DDS催化剂脱硫新技术在实际应用中具有较低的运行成本,有利于降低企业的生产成本。

3. 环保:DDS催化剂脱硫新技术产生的副产物主要是水和二氧化碳,对环境无污染。

此外,DDS 催化剂还具有较好的抗硫中毒能力,能够减少硫资源的浪费。

4. 安全:DDS催化剂脱硫新技术采用湿式氧化法进行脱硫,避免了高温、高压等危险条件,具有较高的安全性。

四、DDS催化剂脱硫新技术的工业应用近年来,DDS催化剂脱硫新技术在石油炼制和化工行业的工业应用中取得了显著的成果。

DDS脱硫技术简介

DDS脱硫技术简介
吸收反应
CO2+H2O+ Na2CO32NaHCO3(由于一般气体中含有CO2)
CS2+ H2O COS + H2S
CS2+2H2O CO2+2H2S
COS + H2O CO2+ H2S
2R-SH + Fe2+Fe(R-S)2+ 2H+
3R-SH + Fe3+Fe(R-S)3+ 3H+
日常生产中只要加入三种药品:DDS催化剂、辅料、碳酸亚铁。
7、从气液吸收平衡角度讲,湿法脱硫不可能将H2S脱至1mg/m3以下,为什么DDS脱硫技术可以?
答:DDS催化剂具有特殊的结构,被DDS催化剂吸附的H2S分子即使在再生过程中没有转化为单质硫,其在溶液中也不再表现游离S2-和HS-的物化性质,因此,被DDS催化剂吸附的H2S与气相中的H2S之间不存在气液吸收平衡的问题,只有液相中极少量的游离的S2-和HS-会影响H2S的吸收。因此,可以将硫化氢脱至1 mg/m3以下。
主要目的是为了降低运行费用。由于DDS催化剂成本较高,因此价格相对也较高。加入DDS催化剂辅料、B型DDS催化剂辅料和活性碳酸亚铁后,以DDS催化剂作为“模板”,在亲硫性耗氧菌的作用下可生成DDS催化剂,从而减少DDS催化剂的加入量;另外,由于DDS催化剂对生存环境有严格要求,在亲硫性耗氧菌的作用下,加入DDS催化剂辅料、B型DDS催化剂辅料和活性碳酸亚铁后可以稳定溶液组分,给DDS催化剂的生存及保持高活性提供环境保障。
答:主要目的是为了降低运行费用。由于DDS催化剂成本较高,因此价格相对也较高。加入DDS催化剂辅料、B型DDS催化剂辅料和活性碳酸亚铁后,以DDS催化剂作为“模板”,在亲硫性耗氧菌的作用下可生成DDS催化剂,从而减少DDS催化剂的加入量;另外,由于DDS催化剂对生存环境有严格要求,在亲硫性耗氧菌的作用下,加入DDS催化剂辅料、B型DDS催化剂辅料和活性碳酸亚铁后可以稳定溶液组分,给DDS催化剂的生存及保持高活性提供环境保障。

焦炉烟气脱硫脱硝工艺流程

焦炉烟气脱硫脱硝工艺流程

焦炉烟气脱硫脱硝工艺流程焦炉烟气是一种含有大量二氧化硫和氮氧化物的废气,对环境和人体健康都会造成严重影响。

为了减少这些有害气体的排放,需要对焦炉烟气进行脱硫脱硝处理。

下面介绍一种常见的焦炉烟气脱硫脱硝工艺流程。

一、脱硫工艺脱硫是指将焦炉烟气中的二氧化硫转化为硫酸气体或颗粒物并进行回收的过程。

目前常用的脱硫工艺有湿法和干法两种。

1.湿法脱硫工艺湿法脱硫是指通过与气体接触的液体中的化学试剂来吸收二氧化硫,然后将吸收的二氧化硫转化为硫酸。

常用的化学试剂有石灰石、石膏、氢氧化钠等。

湿法脱硫工艺流程如下:(1)废气先通过预处理系统进行加热和除尘,以便后续的工艺操作。

(2)将加热后的废气引入吸收塔,在吸收塔中与喷淋的化学试剂进行接触和反应,吸收二氧化硫。

(3)将吸收后的废气经过除雾器,去除湿气和颗粒物,得到含有硫酸的气体。

(4)最后,将含有硫酸的气体进行净化和回收,同时将剩余的废液进行处理和排放。

2.干法脱硫工艺干法脱硫是指利用固体吸收剂吸收二氧化硫,然后将吸附的硫化合物进行回收或转化为稳定的物质。

常用的固体吸收剂有活性炭、氧化铁、氧化钙等。

干法脱硫工艺流程如下:(1)废气经过预处理系统后,与喷雾的固体吸收剂进行接触和反应,吸附二氧化硫。

(2)将吸附后的固体吸收剂进行回收或转化为稳定的物质,如通过加热脱附二氧化硫。

(3)最后,将剩余的固体吸收剂进行处理和排放。

二、脱硝工艺脱硝是指将焦炉烟气中的氮氧化物转化为氮气和水的过程。

目前常用的脱硝工艺有选择性催化还原法和非选择性催化还原法两种。

1.选择性催化还原法选择性催化还原法是指将氧化剂加入焦炉烟气中,将氮氧化物转化为氮气和水。

常用的氧化剂有氨气和尿素等。

选择性催化还原法脱硝工艺流程如下:(1)预处理系统将废气进行加热和除尘。

(2)在催化剂层中,将氨气或尿素加入焦炉烟气中,氮氧化物和氨气或尿素在催化剂的作用下发生反应,生成氮气和水。

(3)最后,将剩余的氨气或尿素进行处理和回收利用。

焦炉煤气脱硫及硫回收工艺介绍及特点分析

焦炉煤气脱硫及硫回收工艺介绍及特点分析

焦炉煤气脱硫及硫回收工艺介绍及特点分析焦炉煤气脱硫是指将焦炉煤气中的硫化氢(H2S)等含硫化合物去除,以减少对环境的污染和提高能源利用效率的过程。

煤气脱硫工艺种类繁多,常见的有吸收法、吸附法、催化氧化法等。

下面将介绍吸收法和催化氧化法,并分析其特点。

吸收法是通过将焦炉煤气中的硫化氢溶于溶剂中,实现气体的物理吸收和化学吸收,从而达到脱硫的目的。

常用的溶剂有碱性溶液、有机溶剂等。

在吸收法中,气体与液体的接触方式有湿法和干法之分。

湿法吸收法是利用液体溶剂对焦炉煤气进行吸收脱硫。

具体工艺流程为:煤气首先通过一个喷淋器,将溶剂喷淋到煤气中,形成液滴;接着在吸收塔内,煤气通过液滴与溶剂的接触,硫化氢溶于溶剂中;最后,经过分离器将溶剂和硫化氢分离,溶剂再重新进入循环。

湿法吸收法具有脱硫效率高、气体处理量大、适应性广的特点。

干法吸收法是指利用固体吸附剂对焦炉煤气进行吸附脱硫。

常用的固体吸附剂有活性炭、分子筛等。

具体工艺流程为:煤气通过一个吸附器,固体吸附剂将煤气中的硫化氢吸附;当固体吸附剂饱和后,可以通过加热或换料的方式实现再生,从而循环使用。

干法吸附法具有烟气温度低、处理量大、不产生二次污染等特点。

催化氧化法是通过将焦炉煤气中的硫化氢氧化成硫酸气体,再进行后续处理。

具体工艺流程为:煤气先通过一个反应器,在催化剂的作用下,硫化氢氧化成硫酸气体;然后通过吸收塔对硫酸气体进行吸收,得到硫酸液;最后,通过蒸馏、结晶等方式使硫酸液再生。

催化氧化法具有氧化效率高、硫回收量大的特点。

总的来说,焦炉煤气脱硫及硫回收工艺的选择应根据实际情况,综合考虑效率、成本、环保等因素。

吸收法具有处理量大、脱硫效率高等特点,适用于大规模高硫煤气的处理;催化氧化法具有回收硫的优势,适用于硫回收要求较高的情况。

同时,还可以根据需求将多种脱硫工艺结合应用,以达到更好的脱硫效果。

焦炉煤气DDS脱硫技术(简装)

焦炉煤气DDS脱硫技术(简装)

焦炉煤气DDS脱硫技术二零一八焦炉煤气DDS脱硫技术1、DDS脱硫技术简介1.1 概述DDS脱硫技术是“铁-碱溶液催化法煤气脱硫技术”的简称,是一种全新的湿法生物化学脱硫技术,用含DDS脱硫催化剂和亲硫耗氧性耐热耐碱菌及有关辅助材料的碱性溶液吸收煤气中的无机硫、有机硫、HCN和极少量的CO2,进行脱硫。

其脱硫原理和概念与传统的湿法脱硫技术有所不同。

1.2 DDS脱硫反应原理DDS脱硫剂是模仿人体正常血红蛋白的载氧性能研制出来的脱硫催化剂,它是含有铁的有机络合物的多聚合物。

DDS催化剂既能脱除无机硫又能脱除少量有机硫。

同时在吸收过程中会产生一些不溶性铁盐沉淀,好氧菌在DDS络合铁配体的协助下可以将这些不溶性铁盐瓦解,使之以活性铁离子的形式返回溶液中,保证溶液中各种形态铁离子的稳定存在。

DDS脱硫液在酚类物质与铁离子的共同催化下,用空气氧化再生,副产硫膏,再生DDS脱硫液循环使用。

其反应过程可归纳为:吸收反应、再生反应、生物降解反应。

1)吸收反应可以简单归结如下为五类反应:(1) H2S、CO2与碱及铁离子的反应。

(2) CS2、COS的水解反应。

(3) R-SH、 SH 与铁离子的反应。

(4) SO2与H2S的氧化还原反应。

(5) 少量铁离子在碱性溶液中的降解反应。

2)再生反应可以简单归结为如下三类反应:(1) NaHCO3与Na2CO3的转换过程(2) Fe3+氧化溶液中的S2-及HS-离子自身被还原为Fe2+,Fe2+再被空气中的氧及醌类物质氧化为Fe3+的反应。

(3) 醌氧化溶液中的S2-、HS-及Fe2+离子自身被还原为酚,酚再被氧化为醌的酚醌转换的过程。

3)生物降解过程的降解反应可以简单归结为如下三类反应:(1) 细菌与不溶性铁盐[Fe(OH)2、FeCO3、FeO、FeS]结合并返回到溶液中。

(2) 在DDS配体作用下瓦解不溶性铁,重新结合为DDS铁的形式。

(3) 载氧菌氧化溶液中的S2-及HS-离子。

焦炉煤气精脱硫工艺分析

焦炉煤气精脱硫工艺分析

焦炉煤气精脱硫工艺分析一、工艺原理:焦炉煤气中的H2S主要通过煤气中的Fegl肟羧酸盐、CaS等吸收剂进行吸收。

Fegl肟羧酸盐是一种高效的硫化物吸收剂,可在较低的温度下将煤气中的H2S和COS吸收。

而CaS则可以将煤气中的剩余H2S去除。

二、工艺流程:1.气体预处理:首先对焦炉煤气进行预处理,去除其中的悬浮颗粒物和水分,以净化煤气。

2.前骤吸收:采用Fegl肟羧酸盐作为吸收剂,通过吸收剂床将煤气中的H2S、COS等硫化物吸收。

床层中的吸收剂会与煤气中的硫化氢进行反应,生成硫化铁,并将其捕集。

3.普鲁士蓝阳极液循环:将废液中的硫化铁氧化为硫酸铁,通过循环泵送到反应床顶部,实现循环利用。

4.精脱硫:采用CaS作为吸收剂,通过床层吸收煤气中剩余的硫化氢,并将其转化为CaS。

此过程需要保持一定的温度和压力,以促使吸收反应的进行。

5.再复焦炉:将经过精脱硫的煤气送入焦炉进行再加热,以提高炉内温度。

三、工艺特点:1.高效: 采用Fegl肟羧酸盐和CaS作为吸收剂,可以高效地吸收煤气中的硫化物,使硫化氢的去除率达到90%以上,保证煤气的质量。

2.安全:精脱硫过程中对温度和压力的要求较高,可以有效地防止硫化氢的泄漏,保证了生产环境的安全。

3.循环利用:工艺中的废液通过循环泵送到反应床顶部,实现了废液中的硫化铁的循环利用,减少了废液的排放,具有较好的环保效益。

总结起来,焦炉煤气精脱硫工艺通过床层吸收剂的反应,有效地去除焦炉煤气中的硫化氢等硫化物,以保证煤气的质量达到环保要求。

该工艺具有高效、安全、循环利用等特点,在焦化行业得到广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1、DDS脱硫技术简介1.1 概述1.2 DDS脱硫反应原理1.3 工艺流程简介2、DDS脱硫剂2.1 主要组分及作用2.2 DDS脱硫溶液2.3 加入四种药品的原因3、DDS脱硫过程中的注意事项3.1 加药过程中需要注意的问题3.2 DDS脱硫的再生时间和溶液的PH值3.3 细菌疲劳3.4 细菌数量3.5 副反应问题4、DDS脱硫技术操控指标及效果4.1 操控指标4.2 脱硫效果5、原料投入及运行成本分析5.1 原料投入分析5.2 运行成本分析附DDS脱硫操作焦炉煤气DDS脱硫技术1、DDS脱硫技术简介1.1 概述DDS脱硫技术是“生化铁—碱溶液催化法气体脱硫方法”的简称,是一种全新的湿法生物化学脱硫技术,用含DDS脱硫催化剂和亲硫耗氧性耐热耐碱菌及有关辅助材料的碱性溶液吸收煤气中的无机硫、有机硫和极少量的二氧化碳,进行脱硫。

其脱硫原理和概念与传统的湿法脱硫技术有所不同。

1.2 DDS脱硫反应原理DDS脱硫剂是模仿人体正常血红蛋白的载氧性能研制出来的脱硫催化剂,它是含有铁的有机络合物的多聚合物。

DDS催化剂既能脱除无机硫又能脱除少量有机硫。

同时在吸收过程中会产生一些不溶性铁盐沉淀,好氧菌在DDS络合铁配体的协助下可以将这些不溶性铁盐瓦解,使之以活性铁离子的形式返回溶液中,保证溶液中各种形态铁离子的稳定存在。

DDS脱硫液在酚类物质与铁离子的共同催化下,用空气氧化再生,副产硫膏,再生DDS脱硫液循环使用。

由于DDS脱硫液进入系统后,首先会在所有设备内壁形成一层非常致密的氧化物保护膜,再者DDS脱硫液中含有较高浓度的Fe2+和Fe3+,可以有效降低单质铁被氧化成 Fe2+和Fe3+,即减缓溶液对设备的腐蚀速度,延长设备的使用寿命。

当DDS溶液和气体接触时,吸收气体中的无机硫、有机硫和二氧化碳.并转化为“富液”。

“富液”是吸收了S 、H2S和CO2的含DDS催化剂(的Na2CO3)的水溶液。

吸收反应可以简单归结如下为五类反应:(1) H2S、CO2与碱及DDS铁离子的反应。

(2) CS2、COS的水解反应。

(3) R-SH、 SH 与DDS铁离子的反应。

(4) SO2与H2S的氧化还原反应。

(5) 少量DDS铁离子在碱性溶液中的降解反应。

通常情况下,“富液”经减压和加热后,溶解于其中的CO2逸出,再通入空气,在 DDS催化剂的催化作用下,“富液”中的 S2-被氧化成S,并以泡沫形式浮出,DDS溶液得以再生,再生后的DDS溶液循环使用。

再生反应可以简单归结为如下三类反应:(1) NaHCO3与Na2CO3的转换过程(2) DDS-Fe3+氧化溶液中的S2-及HS-离子自身被还原为DDS-Fe2+,DDS-Fe2+再被空气中的氧及醌类物质氧化为DDS-Fe3+的反应。

(3) 醌氧化溶液中的S2-、HS-及DDS-Fe2+离子自身被还原为酚,酚再被氧化为醌的酚醌转换的过程。

由于在吸收和再生过程中会产生Fe(OH)3、Fe(OH)2、Fe2O3、FeO、Fe2S3和FeS等不溶性铁盐,在DDS络合铁配体的协助下,好氧菌可以将生成的不溶性铁盐瓦解,使之返回DDS脱硫液中,保证溶液中各种形态铁离子的稳定存在,增大溶液中FeCO3的含量可以减少和防止DDS 催化剂的分解。

生物降解过程的降解反应可以简单归结为如下三类反应:(1) 细菌与不溶性铁盐[氢氧化(亚)铁、碳酸(亚)铁、氧化(亚)铁、硫化(亚)铁]结合并返回到溶液中。

(2) 在DDS配体作用下瓦解不溶性铁,重新结合为DDS铁的形式。

(3) 载氧菌氧化溶液中的S2-及HS-离子。

1.3 工艺流程简介来自上一工序的煤气进入预冷塔,将煤气温度降至30~35℃进入脱硫塔,在脱硫塔填料层中与脱硫液逆流接触,煤气中的H2S被溶液吸收后进入气液分离器,气液分离后的煤气进入下一道工序。

吸收了H2S的“富液”经脱硫循环泵进入再生塔,在催化剂的作用下经空气氧化再生后,“富液”转化为“贫液”,“贫液”经贫液泵打入脱硫塔,(对于高塔再生“贫液”经液位调节器进入脱硫塔)如此循环使用。

氧化后的单质硫以泡沫的形式从再生槽中浮选出来去(压滤)熔硫。

其工艺流程图见图1。

2、DDS脱硫剂简单地说,DDS催化剂的结构,主要由“氧柱”和“铁柱”组成,两者之间的间距是8~20A°这么近的距离很容易将吸附在其表面的粒子产生静电吸附而发生化学反应,同时“铁柱”将硫化物分解的能量迅速传递,使氧化还原反应进行很快。

T101预冷塔T102脱硫塔T103脱硫塔T104再生塔 R101换热器R101换热器 R103熔硫釜 P101预冷循环泵 P102液下泵P103脱硫循环泵 P104碱泵 P105硫泡沫泵 V101反应槽V102液封槽V103地下槽 V104液封槽 V105反应槽 V106液封槽V107反应槽V108液位调节器 V109加药装置 V110空气缓冲罐V111碱液槽V112泡沫槽BK101板框压滤机图1 DDS煤气脱硫工艺流程图(高塔再生)2.1主要组分及作用DDS催化剂,DDS催化剂辅料, B型DDS催化剂辅料和活性FeCO3。

DDS催化剂: DDS铁、细菌的芽孢以及细菌生存所必需的一些物质。

催化剂辅料:多元酚类物质,细菌营养物质。

B型辅料:铁的无机、有机化合物(络合物)细菌培养基物质和活性载氧体。

活性FeCO3:分子结构比较蓬松,给催化剂提供反应空间,在辅料、B辅及好氧菌的作用下,生成一种类似DDS铁的物质。

2.2 DDS脱硫溶液DDS溶液是由DDS催化剂、DDS催化剂辅料、Na2CO3 (或氨水)和水组成。

以Na2CO3(或氨水)为碱源制备的脱硫液作为缓冲溶液,配以DDS 催化剂、DDS催化剂辅料,控制Na2CO3(或氨水)的加入量。

药品的补入,尤其是辅料的加入,不可进行大幅度的加减量,以免引起溶液成分大幅度波动,造成脱硫液成分的恶化。

提高PH值,不宜单纯依靠加碱来增加总碱度 (碱量增加造成副盐增加,对再生系统影响比较大),而应通过调节NaHC03/Na2CO3比值来控制总碱度。

尽量控制低比值,做到稀液脱硫。

DDS脱硫溶液组分的稳定对整个系统的长周期稳定运行至关重要。

因为刚开始DDS脱硫效果特别好,煤气H2S几乎检测不到或很低,往往短期内不按要求进行加药,脱硫效果也很好。

但是运行时间一长,溶液组分发生变化,脱硫效果会变差。

配料时应根据脱硫效果及H2S的变化情况对所加脱硫剂的数量给予适当的调整。

2.3加入四种药品的原因主要目的是为了降低运行费用。

由于DDS催化剂成本较高,因此价格相对也较高。

加入DDS催化剂辅料、B型DDS催化剂辅料和活性碳酸亚铁后,以DDS 催化剂作为“模板”,在亲硫性耗氧菌的作用下可生成DDS催化剂,从而减少DDS催化剂的加入量;另外,由于DDS催化剂对生存环境有严格要求,在亲硫性耗氧菌的作用下,加入DDS 催化剂辅料、B 型DDS催化剂辅料和活性碳酸亚铁后可以稳定溶液组分,给DDS催化剂的生存及保持高活性提供环境保障。

3、DDS脱硫过程中注意事项DDS脱硫技术中的一大核心技术就是生物物质—细菌,正是由于细菌的参与使得DDS脱硫技术具有生化反应的特点。

在脱硫的过程中除了无机反应和有机反应外,还存在细菌的繁殖、生长、成熟和死亡等过程。

DDS脱硫技术较之其它的脱硫方法对日常生产管理的要求更为严格,凡是能引起细菌数量减少、细菌中毒死亡和细菌疲劳的做法都是不允许的。

大量溶液损失是造成细菌数量减少的主要原因,虽然每天都补充DDS催化剂,但 DDS催化剂中只有细菌的芽孢,要使其成长为具有活性的细菌需要一定的时间,而随脱硫液损失掉的大部分细菌却是具有活性的成熟细菌。

细菌中毒或死亡的原因主要是细菌的生存环境遭到破坏。

重金属离子 (如 Co,Ni,Pb,Hg等)或其它杀菌物质的加入、操作条件的恶化等都可能引起细菌中毒甚至死亡。

因此,最好不要往脱硫液中加入其它类型的脱硫催化剂。

细菌疲劳现象的直接原因是细菌的负载能力降低而且又长时问处于超负荷工作状态,从而最终疲惫失去脱硫能力。

这时,脱硫效率会大幅度下降,整个脱硫和再生过程主要以无机或有机反应为主,生化反应基本停止。

3.1加药过程中需要注意的问题加料过程中最忌讳将DDS催化剂和活性FeCO3加热后加入脱硫液中,因为加热后会使DDS催化剂和活性FeCO3的分子结构遭到破坏。

所以,应将DDS催化剂和活性FeCO3用脱硫液混合均匀后,直接加入反应槽。

在反应槽中活化反应以后,DDS 催化剂转型稳定,活性FeCO3、DDS催化剂辅料和B型辅料形成稳定的“共同体”,此后,对DDS 脱硫液加热时,DDS催化剂和活性FeCO3就不会被破坏。

但是,DDS催化剂辅料和B型DDS催化剂辅料需要加热溶解后送入反应槽。

3.2 DDS脱硫的再生时间和溶液PH值DDS脱硫技术最关键的过程是再生过程,再生最佳停留时间为25min左右,最小停留时间也应大于10min。

溶液的PH值一般为8.2~9.0,其中最佳为8.8。

主要是在这个PH值下DDS催化剂的活性最好,脱硫效果最佳,此外在此条件下,其它辅料合成DDS催化剂的反应也比较活跃。

3.3细菌疲劳DDS脱硫技术是一种生物化学技术,在脱硫和再生过程中除了无机反应和有机反应外,还存在细菌的繁殖、生长、成熟、死亡的过程。

因此DDS脱硫技术具有明显的生物特点,细菌疲劳就是生物特性其中之一。

造成溶液生物疲劳的直接原因是细菌负载能力降低,而且又处于超负荷工作状态,从而最终疲惫失去脱硫能力。

此时脱硫效率会大幅下降,溶液中不溶性铁盐含量增大,整个脱硫和再生过程主要以无机或有机反应为主,生化反应基本停止。

造成溶液生物疲劳的根本原因有:1)溶液配制初期(转型期)没有按照操作规程加药,加药量少,或转型期操作条件控制不严格,导致形成的脱硫液负载能力低,没有打好基础。

2)正常生产过程中加药量少或不加药。

3)使用过程中长时间负荷过大,如煤气量、进口H2S严重超过设计指标。

4)再生反应不完全,溶液长时间处于欠再生状态。

5)细菌数量少,活性低。

一旦出现细菌疲劳现象仅加大催化剂投入量往往无济于事,唯一的办法是降低负荷,给细菌必要的休息时间,使之慢慢恢复活力。

因此加强日常管理,严格执行操作规程是防止细菌疲劳的最有效办法。

3.4细菌数量大量溶液损失是造成细菌减少的主要原因,虽然日常生产中每天补充催化剂,但催化剂中只有细菌芽胞,要使其成长为具有活性的细菌需一定时间,而随脱硫液损失的大部分细菌是具有活性的成熟细菌,因此日常生产中一定要避免带液和跑液现象的发生。

其次重金属离子(如Co、Ni、Pb、Hg等离子)、各种杂质或杀菌物质的加入、操作条件的恶化等都可以引起细菌中毒甚至死亡,因此最好不要往脱流液中加入其它物质,生产过程中也要避免各种杂质进入系统。

相关文档
最新文档