模糊控制器介绍
模糊控制简介

模糊控制理论模糊控制理论是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
模糊控制作为以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,它已成为目前实现智能控制的一种重要而又有效的形式尤其是模糊控制与神经网络、遗传算法及混沌理论等新学科的融合,正在显示出其巨大的应用潜力。
实质上模糊控制是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
本文简单介绍了模糊控制的概念及应用,详细介绍了模糊控制器的设计,其中包含模糊控制系统的原理、模糊控制器的分类及其设计元素。
“模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。
“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。
模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量与模糊逻辑推理为基础的一种计算机数字控制技术。
模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
在1968~1973年期间Zadeh·L·A先后提出语言变量、模糊条件语句与模糊算法等概念与方法,使得某些以往只能用自然语言的条件语句形式描述的手动控制规则可采用模糊条件语句形式来描述,从而使这些规则成为在计算机上可以实现的算法。
1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器, 并把它应用于锅炉与蒸汽机的控制,在实验室获得成功。
这一开拓性的工作标志着模糊控制论的诞生并充分展示了模糊技术的应用前景。
模糊控制实质上是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
模糊控制与神经网络控制

模糊控制与神经网络控制模糊控制和神经网络控制是现代控制领域中的两个重要研究方向,它们通过不同的方法和理论来解决复杂系统的控制问题。
本文将就这两种控制方法进行介绍和对比,并探讨它们在实际应用中的优劣势。
一、模糊控制模糊控制是一种基于模糊逻辑理论的控制方法,它通过将输入和输出之间的关系进行模糊化来实现系统的控制。
模糊控制器的设计通常包括模糊化、规则库的建立、推理机制以及解模糊化等步骤。
在模糊控制中,输入和输出以模糊集形式表示,通过一系列的模糊规则进行推理得到控制信号。
模糊规则库中存储了专家知识,根据实际问题的需求可以设计不同的规则。
推理机制使用模糊规则进行推理,最后通过解模糊化将模糊输出转化为具体的控制量。
模糊控制的优点之一是适用于非线性和不确定性系统,它能够通过模糊化处理来处理实际系统中的不确定性和模糊性。
此外,模糊控制能够利用专家经验进行控制器的设计,无需准确的系统数学模型。
然而,模糊控制也存在一些局限性。
首先,模糊控制的规则库和参数通常需要由专家进行手动设计,这对专家的经验和知识有一定的要求。
其次,模糊控制的性能也会受到模糊规则的数量和质量的影响,如果规则库设计不当,控制性能可能无法满足要求。
二、神经网络控制神经网络控制是一种基于人工神经网络的控制方法,它通过将系统模型表示为神经网络结构来实现控制。
神经网络是一种模仿生物神经系统结构和功能的计算模型,具有自适应学习和适应性处理的能力。
在神经网络控制中,神经网络被用作控制器来学习系统的映射关系。
通过输入和输出的样本数据,神经网络根据误差信号不断调整权重和阈值,使得输出逼近于期望输出。
神经网络控制通常包括网络的结构设计、学习算法的选择和参数调整等步骤。
与模糊控制相比,神经网络控制具有更好的自适应性和学习能力。
它能够通过学习过程来建立系统的非线性映射关系,并且对于未知系统具有较好的鲁棒性。
此外,神经网络控制不需要准确的系统模型,对系统的数学模型要求相对较低。
模糊控制器的设计知识讲解

模糊控制器的设计知识讲解模糊控制器的设计⼀、 PID 控制器的设计我们选定的被控对象的开环传递函数为327()(1)(3)G s s s =++,采⽤经典的PID 控制⽅法设计控制器时,由于被控对象为零型系统,因此我们必须加⼊积分环节保证其稳态误差为0。
⾸先,我们搭建simulink 模型,如图1。
图1simulink 仿真模型由于不知道Kp ,Kd ,Ki ,的值的⼤致范围,我们采⽤signal constraints 模块进⾏⾃整定,输⼊要求的指标,找到⼀组Kp,Kd ,Ki 的参数值,然后在其基础上根据经验进⾏调整。
当选定Kp=2,Kd=0.95,Ki=0.8时,可以得到⽐较好的响应曲线。
调节时间较短,同时超调量很⼩。
响应曲线如图2所⽰。
图2 PID 控制响应曲线将数据输出到⼯作空间,调节时间ts =2.04s ,超调量%0σ=。
可以看出,PID 控制器的调节作⽤已经相当好。
⼆、模糊控制器的设计1、模糊控制器的结构为:图3 模糊控制器的结构2、控制参数模糊化控制系统的输⼊为偏差e 和偏差的变化率ec ,输出为控制信号u 。
⾸先对他们进⾏模糊化处理。
量化因⼦的计算max min**max minx x k x x -=- ⽐例因⼦的计算**max minmax minu u k u u -=-其中,*max x ,*min x 为输⼊信号实际变化范围的最⼤最⼩值;max x ,min x 为输⼊信号论域的最⼤最⼩值。
*max u ,*min u 为控制输出信号实际变化范围的最⼤最⼩值,max u ,min u 输出信号论域的最⼤最⼩值。
相应的语⾔值为NB ,NM ,NS ,ZO ,PS ,PM ,PB 。
分别表⽰负⼤、负中、负⼩、零、正⼩、正中、正⼤。
3、确定各模糊变量的⾪属函数类型语⾔值的⾪属度函数就是语⾔值的语义规则,可分为连续式⾪属度函数和离散化的⾪属度函数。
本系统论域进⾏了离散化处理,所以选⽤离散量化的⾪属度函数。
模糊控制简介

R=(NBe × PBu ) + ( NSe × PSu ) + (0e × 0u ) + ( PSe × NSu ) + ( PBe × NSu )
NBe × PBu = (1, 0.5, 0, 0, 0, 0, 0) × (0, 0, 0, 0, 0, 0.5,1) NSe × PSu = (0, 0.5,1, 0, 0, 0, 0) × (0, 0, 0, 0,1, 0.5, 0) 0e × 0u = (0, 0, 0.5,1, 0.5, 0, 0) × (0, 0, 0.5,1, 0.5, 0, 0) PSe × NSu = (0, 0, 0, 0,1, 0.5, 0) × (0, 0.5,1, 0, 0, 0, 0) PBe × NSu = (0, 0, 0, 0, 0, 0.5,1) × (1, 0.5, 0, 0, 0, 0, 0) 0 0 0 0 0.5 1 0 0 0 0 0 0.5 0.5 0.5 0 0 0.5 0.5 1 0 0 R= 0 0 0.5 1 0.5 0 0 0 0.5 1 0.5 0.5 0 0 0 0 0 0.5 0.5 0.5 0 1 0.5 0 0 0 0 0
学习功能
数据存储 单元
y
∗ k
e
r + —
∆
∆
k
e
e
k
c
2
e
k
Байду номын сангаас
r
模糊 控制 规则
k
∆
u
u
u
u
k −1
k
+ +
被 控 对 象
y
k
六.思考
矛盾对立统一规律: 矛盾对立统一规律:两面性 • 优点:模糊逻辑本身提供了由专家构造语 优点: 言信息并将其转化为控制策略的一种系统 的推理方法, 的推理方法,因而能够解决许多复杂而无 法建立精确数学模型系统的控制问题, 法建立精确数学模型系统的控制问题,所 以它是处理推理系统和控制系统中不精确 和不确定性的一种有效方法。从广义上讲, 和不确定性的一种有效方法。从广义上讲, 模糊控制是适于模糊推理, 模糊控制是适于模糊推理,模仿人的思维 方式, 方式,对难以建立精确数学模型的对象实 施的一种控制策略。 施的一种控制策略。它是模糊数学同控制 理论相结合的产物, 理论相结合的产物,同时也是智能控制的 重要组成部分。 重要组成部分。
模糊控制技术课后习题答案

模糊控制技术课后习题答案模糊控制技术课后习题答案模糊控制技术是一种广泛应用于工程领域的控制方法,它通过模糊推理和模糊逻辑来处理模糊信息,从而实现对复杂系统的控制。
在学习模糊控制技术的过程中,课后习题是巩固知识和加深理解的重要途径。
下面将为大家提供一些模糊控制技术课后习题的答案,希望对大家的学习有所帮助。
1. 什么是模糊控制系统?模糊控制系统是一种基于模糊逻辑和模糊推理的控制系统。
它通过建立模糊规则库,对输入和输出进行模糊化处理,然后通过模糊推理得到控制信号,实现对系统的控制。
模糊控制系统能够处理模糊信息和不确定性,适用于复杂系统的控制。
2. 什么是模糊集合?模糊集合是对现实世界中模糊概念的数学描述。
与传统的集合不同,模糊集合中的元素具有模糊隶属度,表示了元素与集合之间的模糊关系。
模糊集合可以用隶属函数来表示,隶属函数的取值范围在[0,1]之间。
3. 什么是模糊逻辑?模糊逻辑是一种扩展了传统逻辑的数学理论,它能够处理模糊信息和不确定性。
在模糊逻辑中,命题的真值不再是只有真和假两种取值,而是可以是任意在[0,1]范围内的模糊值。
模糊逻辑通过模糊推理和模糊规则来处理模糊信息,实现对复杂问题的推理和决策。
4. 什么是模糊推理?模糊推理是模糊控制系统中的核心过程,它通过对模糊规则进行推理,得到模糊输出。
模糊推理的基本思想是将输入与模糊规则库中的规则进行匹配,然后根据匹配程度和规则的权重计算出输出的模糊值。
常用的模糊推理方法有模糊关联和模糊推理机。
5. 什么是模糊控制器?模糊控制器是模糊控制系统中的关键组成部分,它通过模糊推理和模糊规则来生成控制信号,实现对系统的控制。
模糊控制器的输入是模糊化后的系统状态,输出是经过去模糊化处理的控制信号。
常见的模糊控制器有模糊PID控制器和模糊神经网络控制器。
通过以上几个问题的回答,我们对模糊控制技术有了初步的了解。
模糊控制技术作为一种处理模糊信息和不确定性的控制方法,在工程领域有着广泛的应用。
请简述模糊控制器的组成及各组成部分的用途。

模糊控制器是一种基于模糊逻辑理论的控制系统,它利用模糊集合的概念来描述模糊输入和输出,通过模糊规则和模糊推理实现对系统的控制。
模糊控制器的组成主要包括模糊化、模糊推理、解模糊和规则库四个部分,每个部分都有其独特的用途。
1. 模糊化模糊化是将系统的实际输入转化为模糊集合的过程。
在模糊控制系统中,输入往往是模糊的、不确定的,因此需要将这些模糊的输入转化为模糊集合。
模糊化的主要目的是将具体的输入转化为模糊语言值,如“很冷”、“冷”、“适中”、“热”、“很热”等,以便更好地描述系统的输入状态。
2. 模糊推理模糊推理是模糊控制器的核心部分,它用于根据模糊规则和模糊输入来得出模糊输出。
模糊推理的过程是基于一系列的模糊规则,这些规则描述了系统输入和输出之间的关系。
通过模糊推理,模糊控制器能够根据输入的模糊语言值,利用模糊规则进行推理,从而得出模糊输出的模糊语言值。
3. 解模糊解模糊是将模糊输出转化为具体的控制量的过程。
在模糊控制系统中,输出往往是模糊的语言值,需要通过解模糊将其转化为具体的控制量。
解模糊的方法有很多种,常见的方法包括最大隶属度法、加权平均法和中心平均法等。
解模糊的目的是将模糊输出转化为可以直接应用于控制系统的具体输出值。
4. 规则库规则库是模糊控制器中存储的一系列模糊规则的集合。
模糊规则描述了系统输入和输出之间的关系,它通常采用“如果…那么…”的形式来表示。
在模糊控制器中,规则库起着至关重要的作用,它包含了系统的专业知识和经验,是模糊控制器能够有效进行模糊推理的基础。
总体来说,模糊控制器的组成部分分别完成了模糊输入的转化、模糊推理的实现、模糊输出的转化和存储的模糊规则,这些部分相互协作,共同实现了对模糊、不确定系统的精确控制。
模糊控制器在工业控制、汽车控制、电力系统控制等领域有着广泛的应用,其独特的优势使其成为一种不可忽视的控制方法。
模糊控制器作为一种基于模糊逻辑理论的控制系统,在实际应用中具有诸多优势。
第三章、模糊控制系统

精确量(V0)
∴V0 = 5
当论域V中,其最大隶属度函数对应的输出值多于一个时, 简单取最大隶属度输出的平均即可:
即:当有(v1) µ 2)= L =µc (vJ ) 最大时 µ = (v
1 J 取v0 = ∑ v j J j =1
U 1 , U 2 , L ,U n :输出论域上模糊子集
总的模糊关系: R( 其中:
e , de , u ) = U Ri
n
当ki 取µv (vi )时
重心法
模糊化计算的其它方法:左取大、右取大等。
第二节:模糊控制系统的设计 一、模糊控制器的结构设计 模糊控制器的结构设计包括:输入输出变量选择、模糊化 算法、模糊推理规则和精确化计算方法。 一维模糊控制器 被控对象 输入输出 (按模糊控制器输入变量个数) 变量 多输入多输出 单输入单输出 二维模糊控制器 多维模糊控制器
例:x分成三档(NB、ZE、PB); y y分成两档(NB、PB); 模糊分区形式:
PB NB 0 NB ZE
R1
R2 R4
R3
PB 24
问:在此分档情况下,最大规则数为多少?
x
2 规则库 用一系列模糊条件描述的模糊控制规则就构成模糊控制规则库。 建立 规则库 选择输入变量和输出变量 建立规则(完备性、交叉性、一致性)
完备性:对于任意给定的输入均有相应的控制规则起作用。 交叉性:控制器的输出值总由数条规则来决定。 一致性:规则中不存在相互矛盾的规则。
模糊控制规则建立方法 1)专家经验法: 通过对专家控制经验的咨询形成控制规则库。 实质:通过语言条件语句来模拟人类的控制行为。
模糊控制原理(PDF)

第一部分模糊控制第2讲模糊控制原理第一节模糊控制(推理)系统的基本结构1.1 模糊控制系统的组成模糊控制器1.2 模糊控制器(推理)的结构1.2 模糊控制器的结构模糊化模糊化的作用是将输入的精确量转换成模糊量。
具体过程为:1)尺度变换尺度变换,将输入变量由基本论域变换到各自的论域范围。
变量作为精确量时,其实际变化范围称为基本论域;作为模糊语言变量时,变量范围称为模糊集论域。
2)模糊处理将变换后的输入量进行模糊化,使精确的输入量变成模糊量,并用相应的模糊集来表示。
知识库1.2 模糊控制器的结构数据库规则库数据库主要包括各语言变量的隶属函数,尺度变换因子及模糊空间的分级数等。
规则库包括了用模糊语言变量表示的一系列控制规则。
它们反映了控制专家的经验和知识。
1.2 模糊控制器的结构◆模糊推理模糊推理是模糊控制器的核心,它具有模拟人的基于模糊概念的推理能力。
◆清晰化作用:将模糊推理得到的模糊控制量变换为实际用于控制的清晰量。
包括:1) 将模糊量经清晰化变换成论域范围的清晰量。
2) 将清晰量经尺度变换变化成实际的控制量。
1.3 模糊控制器的维数模糊控制器输入变量的个数称为模糊控制器的维数。
对于单输入单输出的控制系统,一般有以下三种情况:一维模糊控制器一个输入:误差;输出为控制量或控制量的变化。
二维模糊控制二个输入:误差及误差的变化。
三维模糊控制器三个输入为输入:误差、误差的变化、误差变化的速率。
第二节模糊控制系统的基本原理2.1 模糊化运算(Fuzzification)2.2 清晰化计算(Defuzzification)2.3 数据库(Data base)2.4 规则库(Rule base)2.4 模糊推理(Fuzzy Inference)2.1 模糊化运算(Fuzzification)模糊化运算是将输入空间的观测量映射为输入论域上的模糊集合。
首先需要对输入变量进行尺度变换,将其变化到相应的论域范围,然后将其模糊化,得到相应的模糊集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模糊控制器介绍
例、已知()()
0.525
123s G e s s s -=
+++,分别设计PID 控制与模糊控制,使系统达
到较好性能,并比较两种方法的结果。
具体要求:
1、分别采用fuzzy 工具箱和编程实现模糊控制器。
2、分析量化因子和比例因子对模糊控制器控制性能的影响。
3、分析系统在模糊控制和PID 控制作用下的抗干扰能力(加噪声干扰)、抗非线性能力(加死区和饱和特性)以及抗时滞的能力(对时滞大小加以改变)。
4、讨论系统在模糊控制和PID 控制作用下的时间参数和结构变化下的抗干扰能力。
模糊控制部分大作业旨在利用模糊控制器和PID 控制器实现对已知系统的控制,分别得到较好的控制效果。
然后改变系统的参数、结构或者加入非线性环节,以验证模糊控制器的鲁棒性能。
以下是作业过程:
1、PID 控制
考虑到系统中存在纯延迟环节,使得系统的稳定性大大降低。
如果系统的反馈信号没有延迟,系统的响应特性将会得到很好的改善。
因此,对于存在纯滞后环节的系统,特别是大延迟过程,一般采用Smith 预估控制,即将纯滞后补偿模型与PID 控制器并接。
本题中,延迟环节的时间常数不是很大,仅为0.2,因此基本上不会影响系统的稳定,采用常规PID 控制也基本可以达到很好的控制效果。
常规PID 控制框图如图1-1(相应文件:PID.mdl )
图1-1 常规PID 控制框图
PID 参数选取:38.0=p K ,285.0=i K ,1.0=d K 常规PID 控制的单位阶跃响应曲线:
图1-2 常规PID 控制响应曲线
2.模糊控制
模糊控制规则(相应文件:zdh.fis )
各变量论域
输入变量:E :[-6 6];EC :[-6 6]; 输出变量:U :[0 7] 语言变量
E : NB 、NM 、NS 、NZ 、PZ 、PS 、PM 、PB (8个) EC :NB 、NM 、NS 、ZE 、PS 、PM 、PB (7个) U : NB 、NM 、NS 、ZE 、PS 、PM 、PB (7个)。