t10等温球化退火温度

合集下载

球化退火过程中的组织转变

球化退火过程中的组织转变

球化退火过程中的组织转变
球化退火是一种热处理技术,其主要目的是将钢中珠光体转变为球状组织,以便改善钢的塑性和切削性。

这个过程中发生的主要组织转变是由珠光体向球状体的转变,通常由三个阶段组成:
1. 奥氏体转变:将钢材加热到适当的温度,使其处于奥氏体状态。

这通常需要一个特定的温度范围,根据不同钢材和应用,通常在725℃至1050℃之间。

2. 等温球化:将钢材置于特定温度下进行处理,以促进球状体的形核和生长。

这个过程的时间通常是根据钢材的种类和规格而定的,从数分钟到数小时不等。

3. 退火:将钢材从等温球化处理的温度冷却到室温,这通常需要数小时到数天的时间,以便使钢材内部的组织转变充分完成。

在整个球化退火过程中,还会发生其他一些组织转变,如高温下的马氏体转变、低温下的马氏体和贝氏体转变等。

然而,球化退火过程中的主要组织转变是由珠光体向球状体的转变,这种转变可以提高钢材的塑性和切削性,从而使其更加适合各种应用。

球化退火与软化退火

球化退火与软化退火

球化退火是使钢中碳化物球化而进行的退火工艺。

将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。

球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。

这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。

而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。

另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。

球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。

在球化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。

因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。

球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。

普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。

等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。

等温后随炉冷至500℃左右出炉空冷。

和普通球化退火相比,球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。

软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在於使以加工硬化的工件再度软化、回復原先之韧性,以便能再进一步加工。

此种热处理方法常在冷加工过程反覆实施,故又称之為製程退火。

大部分金属在冷加工后,材料强度、硬度会随著加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。

钢的热处理工艺

钢的热处理工艺
的含碳量为 0.6~1.4% ,正火组织中不 出现先共析相,只存在伪共析珠光体和 索氏体。对于亚共析钢,正火后组织中 析出的铁素体数量较少,珠光体数量较 多,且珠光体片间距较小;对于过共析 钢,正火可以抑制先共析网状渗碳体的 析出。
12
正火工艺较简单、经济,主要应用于以下方面:
(1)改善低碳钢的切削加工性能 碳量〈0.25 %的低碳钢及低合金钢,退火后硬度过低,正火处理 可提高硬度,改善切削加工性能。 (2)消除中碳钢热加工缺陷 中碳结构钢铸、锻、轧及焊件,热加工后易出现魏氏组织、晶粒 粗大等过热缺陷和带状组织,正火可消除,达到细化晶粒、均匀组织、 消除内应力的目的。 (3)消除过共析钢网状碳化物
16
(1)热应力及其变化规律
工件在加热和冷却时,由于不同部位的温度差异,导致热胀冷缩的不 一致而产生的内应力称为热应力。 以圆柱 工件为例分 析热应力的 变化规律 到了冷却后期,表层温度的 降低和体积的收缩已经终止,而 心部体积继续收缩,由于心部受 到表层的牵制,应力逐渐转变为 拉应力,而表层则受到压应力。 当整个试样冷至室温时,内外温 差消失,冷却后期的应力状态被 保留下来成为残余应力。 因此,工件淬火冷至室温时, 由于热应力引起的残余应力 表层
炉冷至略低于 Ar1的温度等温处理。如此多次反复加热和冷却,最后冷 至室温,以获得球化效果最好的粒状珠光体组织。
一次球化退火 等温球化退火
往复球化退火
8
T10钢球化退火组织 ( 化染 ) 500
9
(4)扩散退火
扩散退火 又称 均匀化退火 ,是将铸锭、铸件加热至 Ac3 或 Accm 以上 150 ~ 300℃,保温 10 - 15h ,然后随炉缓慢 冷却的热处理工艺。
温度)所需要的时间,而且取决于组织转变所需要的时间。完全退火 保温时间与钢材的化学成分、工件的形状和尺寸、加热设备类型、装 炉量以及装炉方式等因素有关。 退火后的冷却速度应缓慢,以保证奥氏体在Ar1温度以下不大的 过冷条件下进行珠光体转变,避免硬度过高。碳钢< 200℃/h ,低合 金钢<100℃/h,高合金钢<50℃/h。出炉温度在600℃以下。 将奥氏体化后的钢很快降至稍低于 Ar1 温度等温,使奥氏体转变 为珠光体,在空冷至室温,称为等温退火。 等温退火适用于高碳钢、合金工具钢和高合金钢等,可以显著缩 短退火时间;但不适合大截面工件和大批量炉料。

球化退火介绍

球化退火介绍

提问者: 映月沙丘- 江湖新秀最佳答案球化退火球化退火是使钢中碳化物球化而进行的退火工艺。

将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。

球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。

这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。

而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。

另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。

球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。

在球化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。

因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。

球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。

普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。

等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。

等温后随炉冷至500℃左右出炉空冷。

和普通球化退火相比,球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。

T10刚的热处理

T10刚的热处理

T10刚的热处理1、预备热处理(球化退火)锻造后为了给后序的加工、最终热处理工序作好准备, 应消除锻件内的应力, 改善组织, 并使其具有合适的硬度和稳定细小的组织, 以利于机械加工。

因此锻件要在毛坏状态下进行预先热处理。

T10A 碳素工具钢, 一般采取球化退火, 使渗碳体成球状均匀分布, 若锻件沿晶界出现网状碳化物时, 则先进行正火处理, 消除网状碳化物, 然后进行球化退火。

通常采用球化退火, 以获得铁素体机体上分布的细小均匀的粒状碳化物组织。

表1 球化退火工艺参数钢号加热等温温度/℃时间/ h温度/℃时间/ h 空冷硬度T10A 750~ 780 2~ 3 680~ 700 3~ 5 炉冷至500℃空冷 HB197 2、最终热处理(淬火+低温回火)2.1、淬火( 1) 淬火温度T10淬透性低。

需要用水冷却, 容易产生变形和淬裂, 另外碳素工具钢对过热敏感, 晶粒容易长大, 其淬火温度一般是在碳化物与奥氏体共存的两相区内, 这是由于碳化物的存在不仅可以阻止奥氏体的长大, 使碳素工具钢保持较小晶粒,从而能在高硬度条件下保证具有一定的韧性; 而且剩余碳化物的存在也有利于模具耐磨性的提高。

为防止过热, 选取最低的淬火加热温度( 760~ 780℃ ) , 是获得最好机械性能的关键,为防止淬火开裂, 必须在淬火方法上实现均匀冷却。

( 2) 加热、保温时间的确定由于加热时间与模具的材质、工件大小有关。

升温时间因工件大小而异, 保温时间依材质而不同, 加热时间不可取一定值, 加热时间的长短直接影响模具的组织性能。

为保证T10A 冷作模具基体奥氏体化, 碳化物溶解, 必须有一定保温时间, 保温时间采用40~ 60 min。

2.2、回火模具在淬火或电火花加工后应及时进行回火处理, 回火温度应根据模具的硬度性能要求选择不同的回火温度, 以获得不同强度、韧性及硬度要求, T10 碳素工具钢在不同回火温度下的硬度如表表2T10 碳素工具钢在不同回火温度下的硬度钢号达到下列硬度(HRC)范围的回火温度/℃T10A 45~ 50 50~ 54 54~ 58 58~ 62360~ 380 300~ 320 250~ 270 160~ 180。

微观热处理T10钢

微观热处理T10钢

微观组织控制课程实验学院:机械与汽车工程学院班级:材控学号::一.实验目的:本次研究的主要容是退火态T10钢的热处王里工艺及其组织性能的研究。

通过观察经过不同预先热处理的退火态T10钢试样的显微组织,以及测量其洛氏硬度、冲击韧性等,分析了不同预先热处理的T10钢试样的组织性能和力学性能。

结果表明,正火+等温球化退火为退火态T10 钢的最佳预先热处理工艺; 不同预先热处理所得到的组织效果会遗传到最终的组织中; 预先热处理为正火+普通球化退火和等温球化退火的退火态T10钢试样,经过水淬和低温回火后,发生了脆性转变。

T10钢的热处理工艺及组织性能,通过对经过不同预备热处理的T10钢的微观组织分析及力学性能分析,探寻在热处理过程中,不同预先热处理对钢的组织及性能的影响规律,在此研究基础上,对现在实际生产中的一般热处理工艺进行优化,以达到最好的效果。

二:实验方法T10钢的概述:目前常用的碳素工具钢有T8、T10、T12,其中T10用量最多。

T10钢优点是可加工性好,来源容易;但淬透性低、耐磨性一般、淬火变形大。

因钢中含合金元素微量,耐回火性差,硬化层浅,因而承载能力有限。

虽有较高的硬度和耐磨性,但小截面工件韧性不足,大截面工件有残存网状碳化物倾向。

T10钢在淬火加热(通常达800℃)时不致于过热,淬火后钢中有过剩未溶碳化物,所以比T8钢具有更高的耐磨性,但淬火变形收缩明显。

由于淬透性差,硬化层往往只有1.5~5mm;一般采用220~250℃回火时综合性能较佳。

热处理时变形比较大,故只适宜制造小尺寸、形状简单、受轻载荷的模具。

T10钢的成分:碳 C :0.95~1.04(T X,X:碳的千分数)硅Si:≤0.35锰Mn:≤0.40硫S :≤0.020磷P :≤0.030铬Cr:允许残余含量≤0.25≤0.10(制造铅浴淬火钢丝时)镍Ni:允许残余含量≤0.20≤0.12(制造铅浴淬火钢丝时)铜Cu:允许残余含量≤0.30≤0.20(制造铅浴淬火钢丝时) 热处理通常分为3步进行:加热、保温和冷却。

热处理制度对T10钢组织和硬度的影响实验

热处理制度对T10钢组织和硬度的影响实验

热处理制度对T10钢组织和硬度的影响实验一、实验目的1.论述T10钢球化退火和780℃淬火后的组织和硬度。

2.探索了改变原始组织和热处理工艺(淬火温度)对其的影响。

二、概述T10钢是一种最常用的工模具钢,热处理后要求有高的硬度59—65HRC、强度、耐磨性及适当的韧性等;T10钢ACm为800℃,通常采用球化退火、Ac1+(30~50)℃淬火及170℃~200℃回火的传统热处理工艺。

通常认为这可使钢获得具有最佳配合的强度和韧性。

一些工厂的生产实践表明,T10钢制冷变形模具使用寿命较低,易出现壁裂、崩刃和折断等,以致过早报废。

为此,我们探索改进T10钢的热处理工艺。

三、实验步骤二实验过程1.试验方法试验用T10钢的成分见表1。

选用粒状珠光体及片状珠光体两种原始组织,前者试样仅用780℃传统工艺淬火,而后者试样则用740、780、840、900℃四种淬火温度,随后进行机械性能检测试验。

表1 T10钢的化学成分2.试样的热处理2.1预备热处理2.2.1正火T10钢的ACm 为800℃,正火温度约为ACm+30~50℃,故取840℃。

用下列经验公式计算加热时间:aKDT公式中T——加热时间,min;a——加热时间系数,min/mm,(碳钢取0.8~1.2 min·mm-1);K——装炉修正系数;D——工件有效厚度,mm。

正火工艺参数见表2,工艺曲线见图1。

表2 正火工艺参数温度T/℃图1 正火工艺曲线正火后组织图见图2 时间t/min840℃550℃图2 正火后组织(×400) 2.1.2球化退火T10钢锻坯经10kw 箱式电炉等温球化退火,在770 ℃保温2 h ,再冷到680℃,保温4小时,出炉空冷。

机械加工后的机械性能、淬透性及金相试样,一部分按传统工艺热处理,以作对比。

球化退火工艺参数见表2。

球化退火工艺曲线见图3。

图3球化退火工艺曲线 球化退火后组织如图4所示时间t/min770℃温度T/℃ 680℃图4 等温球化退火后组织(×400)2.2最终热处理所有试样在箱式炉内进行最后热处理,等温球化退火试样淬火加热780℃,正火试样淬火加热分别为740、780、840、900℃保温,用水淬火,200℃回火,然后磨加工到规定尺寸。

热处理正火和退火

热处理正火和退火

单元5 正火和退火正火和退火是热处理操作中最基本的操作方法,工件通常在毛坯状态或粗加工后进行正火或退火。

退火的工艺操作方法较多,如均匀化退火、完全退火、等温退火、球化退火和去应力退火等。

无论正火或任何一种退火操作,都离不开加热和冷却,而掌握热处理的操作技能就是要掌握加热温度、加热方法和冷却方法。

尽管正火和各种退火的工艺规范不同,但一些基本操作方法是相同的。

在掌握基本操作方法的前提下,再分别考虑不同钢种、不同形状和尺寸的工件特殊要求,使之得到满意的操作效果。

技能训练1——工件正火和退火加热规范及冷却规范的选用 1.加热规范的选用技能加热规范主要指加热温度和加热时间,而加热温度又是加热规范中最重要的参数。

正火和退火的加热温度大多是由材料的相变点决定的,当材料确定后,就由该种材料的相变点A1、A3、Acm加上常数从而确定加热温度。

(1)选择原则1)工件使用的材料 不同化学成分的材料相变点的温度不同,而相变点是决定加热温度的主要依据,所以材料不同,加热规范也不同。

2)工艺方法 即使是同一材料,但因热处理工艺方法不同,加热温度也不同。

如正火和退火的温度不同,同样是退火,而均匀化退火和等温退火的温度也不同。

3)加热设备 设备不同则加热温度也有差异。

工件的材料相同可使用同一种热处理工艺方法,但在盐浴炉加热时温度通常要比在电阻炉加热低l0~20℃。

4)工件形状和尺寸 大尺寸工件加热温度偏高;工件形状复杂,加热温度要低。

5)装炉量 工件装炉量不同,装料方式不同,即使是相同的材料、使用相同的设备但加热系数不同。

装炉量大加热时间长,装炉量小就可缩短加热时间。

工件装料方式不同,加热时间也有差异。

密装时可延长加热时间,工件散装时可减少加热时间。

(2)正火加热规范的选用1)正火加热温度 钢的正火加热温度为Ac3或Ac cm+(30~50)℃。

因此只要在手册中查到不同钢种的A3或Acm,则正火温度基本可以确定。

但这种方法比较麻烦,大多数手册中已将正火温度算好,直接列在表中,因此当工件钢种牌号确定后,直接查阅手册就可获得正火温度范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t10等温球化退火温度
t10 等温球化退火温度是钢铁材料热处理过程中一个重要的参数。

本文首先介绍了t10 钢的性质和用途,作为一种常用的工具钢,t10 钢具有高硬度、高耐磨性和良好的韧性。

为了充分发挥这些性能优势,需要对t10 钢进行等温球化退火处理。

等温球化退火是一种钢铁材料热处理工艺,通过在适当的温度下保温一段时间,使钢铁材料中的碳化物球化,从而改善其力学性能。

对于t10 钢而言,等温球化退火的主要目的是消除因钢的冶炼、轧制和冷拔过程中产生的内应力,降低硬度,提高切削性能。

选择合适的t10 等温球化退火温度是实现良好热处理效果的关键。

一般来说,t10 钢的等温球化退火温度范围在900-1000℃之间。

在这个温度范围内,可以获得较好的球化效果,使碳化物呈球状分布,从而提高钢的性能。

影响t10 等温球化退火温度的因素主要有钢的化学成分、原始组织状态、退火制度等。

针对不同的t10 钢产品,需要根据这些因素合理选择等温球化退火温度,以达到最佳的热处理效果。

实际应用中,t10 等温球化退火温度的控制需要借助专业的热处理设备,如退火炉。

退火炉的操作人员需要根据钢的材质、规格和热处理要求,调整炉温和保温时间,确保热处理过程的顺利进行。

总之,t10 等温球化退火温度是影响钢铁材料性能的关键因素。

相关文档
最新文档