t10钢热处理工艺

合集下载

10钢的热处理 C曲线(精编)

10钢的热处理 C曲线(精编)

三、钢的奥氏体晶粒度 钢的奥氏体晶粒大小根据标准晶粒度等级图确 定。标准晶粒度分为8级。 1~4级为粗晶粒度,5~8级为细晶粒度。
标准晶粒度 等级
放大100倍
1.实际晶粒度和本质晶粒度
实际晶粒度:某一具体热处理或热加工条件 下的奥氏体的晶粒度。
它决定钢的性能。
本质晶粒度 钢加热到930 ℃±10℃、保温 8小时、冷却后测得的晶粒度。
➢650~600℃ : 细片状P---索氏体(S); 片间距为0.2~0.4μm (1000×); 25~36HRC。
➢600~550℃:极细片状P---屈氏体(T); 片间距为<0.2μm ( 电镜 ); 35~40HRC。
珠光体形貌像
光镜下形貌
电镜下形貌
索氏体形貌像
光镜形貌
电镜形貌
屈氏体形貌像
(b) 电子显微照片 5000×
上贝氏体形态
上贝氏体强度、韧性都较差。
下贝氏体(下B) 在350 ℃~Ms之间转变
产物。光学显微镜下为黑色针状, 电子显微镜 下可看到在铁素体针内沿一定方向分布着细 小的碳化物(Fe2.4C)颗粒。
(a) 光学显微照片 500倍
(b) 电子显微照片 12000倍
奥氏体向贝氏体下的贝转氏体变形属态 于半扩散型转变, 铁下原贝子氏不体扩硬散度而高碳,原韧子性有好一,定具扩有散较能好力的。强 韧性。
1.共析钢过冷奥氏体的等温转变 等温转变曲线(TTT曲线、C曲线)来分析。
T --- time T --- temperature T --- transformation
共析碳钢 TTT 曲线建立过程示意图
温度
(℃)பைடு நூலகம்
A1
800
700

10钢的热处理 C曲线(精编)

10钢的热处理 C曲线(精编)
1.共析钢过冷奥氏体的等温转变 等温转变曲线(TTT曲线、C曲线)来分析。
T --- time T --- temperature T --- transformation
共析碳钢 TTT 曲线建立过程示意图
温度
(℃)
A1
800
700
600
500
400 300 200 100
0
-100 0
1
10
102
光镜形貌 电镜形貌
(2) 中温转变
贝氏体转变区(550 ℃~Ms):
过冷奥氏体的转变产物为贝氏体型组织。
贝氏体 渗碳体分布在碳过饱和的铁素体基体上 的两相混合物。
上贝氏体(上B) 550 ℃~350 ℃之间转变产物。 呈羽毛状, 小片状的渗碳体分布在成排的铁素体片 之间。
(a)光学显微照片 500×
奥氏体组织。
F
Fe3C
未溶Fe3C
A A
残余Fe3C
A 形核 A
残余Fe3C溶解
A 长大 A A 均匀化
二、影响奥氏体转变速度的因素
1.加热温度 随加热温度的提高, 奥氏体化速度加快。 2.加热速度 加3.钢热中速碳度含越量快,发生转变的温度越高,转变 所需碳4.的合含时金量间元增越素加短,。铁素体和渗碳体的相界面增 大,钴5.转原、变始镍速组等度织加加快快奥。氏体化过程; 铬原、始钼组、织钒中等渗减碳慢体奥为氏片体状化时过奥程氏;体形成速 度快硅,、渗铝碳、体锰间等距不越影小响,奥转氏变体速化度过越程快。。 合金元素的扩散速度比碳慢得多,合金钢的 热处理加热温度一般较高,保温时间更长。
三、钢的奥氏体晶粒度 钢的奥氏体晶粒大小根据标准晶粒度等级图确 定。标准晶粒度分为8级。 1~4级为粗晶粒度,5~8级为细晶粒度。

t10等温球化退火温度

t10等温球化退火温度

t10等温球化退火温度
t10 等温球化退火温度是钢铁材料热处理过程中一个重要的参数。

本文首先介绍了t10 钢的性质和用途,作为一种常用的工具钢,t10 钢具有高硬度、高耐磨性和良好的韧性。

为了充分发挥这些性能优势,需要对t10 钢进行等温球化退火处理。

等温球化退火是一种钢铁材料热处理工艺,通过在适当的温度下保温一段时间,使钢铁材料中的碳化物球化,从而改善其力学性能。

对于t10 钢而言,等温球化退火的主要目的是消除因钢的冶炼、轧制和冷拔过程中产生的内应力,降低硬度,提高切削性能。

选择合适的t10 等温球化退火温度是实现良好热处理效果的关键。

一般来说,t10 钢的等温球化退火温度范围在900-1000℃之间。

在这个温度范围内,可以获得较好的球化效果,使碳化物呈球状分布,从而提高钢的性能。

影响t10 等温球化退火温度的因素主要有钢的化学成分、原始组织状态、退火制度等。

针对不同的t10 钢产品,需要根据这些因素合理选择等温球化退火温度,以达到最佳的热处理效果。

实际应用中,t10 等温球化退火温度的控制需要借助专业的热处理设备,如退火炉。

退火炉的操作人员需要根据钢的材质、规格和热处理要求,调整炉温和保温时间,确保热处理过程的顺利进行。

总之,t10 等温球化退火温度是影响钢铁材料性能的关键因素。

45与T10钢热处理组织和性能比较研究

45与T10钢热处理组织和性能比较研究

201545与T10钢热处理组织和性能比较研究学生姓名:所在院系:所学专业:机械设计制造及其自动化导师姓名:完成时间:2015年4月10日45钢与T10钢热处理组织和性能比较研究摘要为探讨热处理工艺对45钢及T10的影响,本文对45钢与T10做了退火,正火,淬火以及低温回火,中温回火,高温回火的热处理工艺处理,观察金相组织,测量布氏硬度,再对得到的数据进行系统详细的分析比较,结果表明再相同热处理下含碳量是影响45与T10在金相组织形成,硬度差异的主要因素。

发现了随着含碳量的增加,钢的硬度、强度增加,塑性、韧性降低的结果。

关键词:热处理,金相组织,硬度,45,T1045 steel T10 steel heat treatment and research organizations andPerformance ComparisonAbstractTo explore the Heat Treatment on 45 Steel and T10, the paper made of 45 steel and T10 annealing, normalizing, quenching and tempering, tempering temperature, tempering the heat treatment process, observe the microstructure, measuring cloth hardness, and then the data is systematically detailed analysis and comparison results show that the carbon content and then heat-treated at the same affect with T10 45 formed in the microstructure, hardness difference of the main factors. Found that with increasing carbon content steel hardness, strength increases, lower ductility, toughness results.Keywords: heat treatment, microstructure, hardness, 45, T10目录绪论 (1)1 实验材料及方法 (2)1.1实验方案 (2)1.2实验材料及设备 (2)1.3 实验方法 (3)2 实验结果与分析 (4)2.1 45钢与T10原始材料组织与性能分析 (5)2.2 45钢与T10在退火后组织与性能分析 (5)2.3 45钢与T10在正火后组织与性能分析 (6)2.4 45钢与T10在淬火后组织与性能分析 (7)2.5 45钢与T10在低温回火后组织与性能分析 (7)2.6 45钢与T10在中温回火后组织与性能分析 (8)2.7 45钢与T10在高温回火后组织与性能分析 (8)3 结论 (9)参考文献 (11)致谢 (12)绪论人类的发展史是与金属材料的应用及其发展紧密联系着的,特别是在近代,金属材料在人类文明中更占有特殊重要的位臵。

t10钢的淬火组织

t10钢的淬火组织

t10钢的淬火组织T10钢是一种高碳工具钢,具有优异的硬度和耐磨性,在工业制造和冶金加工中广泛应用。

淬火是一种热处理工艺,通过控制钢材的冷却速度,使其在固态下迅速冷却,从而提高钢材的硬度和耐磨性。

对于T10钢而言,淬火是必不可少的工序,可以很好地改善其力学性能和使用寿命。

T10钢的淬火组织主要决定于钢材的成分和处理工艺。

T10钢的主要成分为碳(C)、硅(Si)、锰(Mn)、磷(P)和硫(S)。

其中,碳是钢材的主要强化元素,能够提高钢材的硬度和强度。

而硅、锰、磷和硫等元素则通过形成相应的化合物和固溶体来影响钢材的热处理性能和力学性能。

在淬火过程中,首先需要将T10钢加热到适当的温度,使其达到A3点以上。

然后,将钢材迅速置于冷却介质中,以实现快速冷却。

常用的冷却介质有水、油和盐水等。

冷却过程中,钢材的温度将迅速下降,达到马氏体转变的范围。

在适宜的冷却速度下,钢材中的马氏体将得以保留。

马氏体是一种具有高硬度和脆性的组织形态,能够有效提高钢材的硬度,但同时也会增加钢材的脆性。

对于T10钢而言,淬火的目标是尽可能多地产生马氏体,以获得较高的硬度,同时又要尽量减少马氏体的脆性,以保证钢材的使用寿命。

T10钢的淬火组织主要有马氏体、残余奥氏体和贝氏体等。

马氏体是由奥氏体经过快速冷却所得到的一种相,具有充分强化的效果。

残余奥氏体是在淬火过程中没有转变成马氏体的奥氏体,常常出现在硬度较低的区域,对钢材的力学性能有一定影响。

贝氏体则是由马氏体经过回火处理后转变而成的组织相,可以提高钢材的韧性和强度。

为了得到理想的淬火组织,可以选择不同的淬火条件和回火工艺。

淬火条件包括加热温度、冷却介质和冷却速度等。

一般来说,较高的加热温度和更快速的冷却速度可以得到较高的硬度和强度,但同时也会增加残余奥氏体的含量。

回火工艺则是通过控制回火温度和时间,来调节贝氏体的含量和组织形貌,以实现对钢材硬度和韧性的平衡。

总之,T10钢的淬火组织是通过控制钢材的加热和冷却过程来实现的。

T10刚的热处理

T10刚的热处理

T10刚的热处理1、预备热处理(球化退火)锻造后为了给后序的加工、最终热处理工序作好准备, 应消除锻件内的应力, 改善组织, 并使其具有合适的硬度和稳定细小的组织, 以利于机械加工。

因此锻件要在毛坏状态下进行预先热处理。

T10A 碳素工具钢, 一般采取球化退火, 使渗碳体成球状均匀分布, 若锻件沿晶界出现网状碳化物时, 则先进行正火处理, 消除网状碳化物, 然后进行球化退火。

通常采用球化退火, 以获得铁素体机体上分布的细小均匀的粒状碳化物组织。

表1 球化退火工艺参数钢号加热等温温度/℃时间/ h温度/℃时间/ h 空冷硬度T10A 750~ 780 2~ 3 680~ 700 3~ 5 炉冷至500℃空冷 HB197 2、最终热处理(淬火+低温回火)2.1、淬火( 1) 淬火温度T10淬透性低。

需要用水冷却, 容易产生变形和淬裂, 另外碳素工具钢对过热敏感, 晶粒容易长大, 其淬火温度一般是在碳化物与奥氏体共存的两相区内, 这是由于碳化物的存在不仅可以阻止奥氏体的长大, 使碳素工具钢保持较小晶粒,从而能在高硬度条件下保证具有一定的韧性; 而且剩余碳化物的存在也有利于模具耐磨性的提高。

为防止过热, 选取最低的淬火加热温度( 760~ 780℃ ) , 是获得最好机械性能的关键,为防止淬火开裂, 必须在淬火方法上实现均匀冷却。

( 2) 加热、保温时间的确定由于加热时间与模具的材质、工件大小有关。

升温时间因工件大小而异, 保温时间依材质而不同, 加热时间不可取一定值, 加热时间的长短直接影响模具的组织性能。

为保证T10A 冷作模具基体奥氏体化, 碳化物溶解, 必须有一定保温时间, 保温时间采用40~ 60 min。

2.2、回火模具在淬火或电火花加工后应及时进行回火处理, 回火温度应根据模具的硬度性能要求选择不同的回火温度, 以获得不同强度、韧性及硬度要求, T10 碳素工具钢在不同回火温度下的硬度如表表2T10 碳素工具钢在不同回火温度下的硬度钢号达到下列硬度(HRC)范围的回火温度/℃T10A 45~ 50 50~ 54 54~ 58 58~ 62360~ 380 300~ 320 250~ 270 160~ 180。

t10钢的结晶过程及组织状态

t10钢的结晶过程及组织状态

t10钢的结晶过程及组织状态结晶是固态金属在固态化学反应中,发生了原子或分子的重新排列形成晶体的过程。

钢是一种合金,其中含有铁和碳,以及其他合金元素。

t10钢是一种碳钢,其主要成分为铁和碳。

在钢的结晶过程中,原子或分子会逐渐排列有序,形成晶体结构,从而影响钢的组织状态和性能。

在t10钢的结晶过程中,首先需要进行熔炼。

熔炼过程中,将t10钢的原料放入高温炉中进行加热,使得原料熔化。

随后,通过冷却,原料逐渐凝固形成固体。

在凝固过程中,原子或分子会重新排列有序,形成晶体。

t10钢的组织状态主要包括铁素体、珠光体和贝氏体等。

铁素体是钢中最基本的组织,是由α铁晶体组成的。

珠光体是由铁素体和碳骨架组成的结构,具有一定的韧性和抗拉强度。

贝氏体是在钢中形成的一种组织,具有较高的硬度和强度。

在t10钢的结晶过程中,具体的组织状态取决于冷却速率和合金元素的影响。

快速冷却会导致组织细化,形成细小的晶粒,从而提高钢的硬度和强度。

而慢速冷却则会导致组织粗化,形成大的晶粒,使钢具有较好的韧性和塑性。

除了冷却速率,合金元素也对t10钢的组织状态有重要影响。

例如,添加了适量的铬、钼等合金元素可以提高钢的硬度和耐磨性;添加适量的锰、硅等合金元素可以提高钢的强度和韧性。

合金元素的加入可以改变钢的晶粒形貌和组织结构,从而调整钢的性能。

t10钢具有一系列优异的特性。

首先,它具有较高的硬度和强度,能够满足一些对耐磨性要求较高的场合。

其次,t10钢具有良好的韧性和塑性,能够适应较大的变形和冲击载荷。

此外,t10钢还具有较好的耐腐蚀性能和热处理响应性,能够通过适当的热处理工艺进一步改善钢的性能。

总结起来,t10钢的结晶过程和组织状态是钢材形成和性能发挥的重要环节。

通过合理的冷却速率和合金元素的控制,可以得到不同的组织结构,从而满足不同工况下的需求。

t10钢具有较高的硬度、强度、韧性和耐腐蚀性能,是一种重要的结构材料。

在实际应用中,我们可以根据具体要求选择合适的热处理工艺,进一步优化t10钢的组织和性能,以满足不同领域的需求。

热处理制度对T10钢组织和硬度的影响实验

热处理制度对T10钢组织和硬度的影响实验

热处理制度对T10钢组织和硬度的影响实验一、实验目的1.论述T10钢球化退火和780℃淬火后的组织和硬度。

2.探索了改变原始组织和热处理工艺(淬火温度)对其的影响。

二、概述T10钢是一种最常用的工模具钢,热处理后要求有高的硬度59—65HRC、强度、耐磨性及适当的韧性等;T10钢ACm为800℃,通常采用球化退火、Ac1+(30~50)℃淬火及170℃~200℃回火的传统热处理工艺。

通常认为这可使钢获得具有最佳配合的强度和韧性。

一些工厂的生产实践表明,T10钢制冷变形模具使用寿命较低,易出现壁裂、崩刃和折断等,以致过早报废。

为此,我们探索改进T10钢的热处理工艺。

三、实验步骤二实验过程1.试验方法试验用T10钢的成分见表1。

选用粒状珠光体及片状珠光体两种原始组织,前者试样仅用780℃传统工艺淬火,而后者试样则用740、780、840、900℃四种淬火温度,随后进行机械性能检测试验。

表1 T10钢的化学成分2.试样的热处理2.1预备热处理2.2.1正火T10钢的ACm 为800℃,正火温度约为ACm+30~50℃,故取840℃。

用下列经验公式计算加热时间:aKDT公式中T——加热时间,min;a——加热时间系数,min/mm,(碳钢取0.8~1.2 min·mm-1);K——装炉修正系数;D——工件有效厚度,mm。

正火工艺参数见表2,工艺曲线见图1。

表2 正火工艺参数温度T/℃图1 正火工艺曲线正火后组织图见图2 时间t/min840℃550℃图2 正火后组织(×400) 2.1.2球化退火T10钢锻坯经10kw 箱式电炉等温球化退火,在770 ℃保温2 h ,再冷到680℃,保温4小时,出炉空冷。

机械加工后的机械性能、淬透性及金相试样,一部分按传统工艺热处理,以作对比。

球化退火工艺参数见表2。

球化退火工艺曲线见图3。

图3球化退火工艺曲线 球化退火后组织如图4所示时间t/min770℃温度T/℃ 680℃图4 等温球化退火后组织(×400)2.2最终热处理所有试样在箱式炉内进行最后热处理,等温球化退火试样淬火加热780℃,正火试样淬火加热分别为740、780、840、900℃保温,用水淬火,200℃回火,然后磨加工到规定尺寸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T10钢热处理工艺
T10钢的热处理工艺通常包括正火、淬火和回火三个步骤。

1. 正火处理:将T10钢加热到Ac1以上20~30℃,保温4小时后,以30~40℃/h的速度冷却到680℃等温6小时,再炉冷到550℃出炉。

在这个过程中,通过控制相变的热力学和动力学来改变奥氏体向珠光体转变的模式,从传统的片层转变机制改变为“离异共析”的转变形式。

2. 淬火处理:将正火后的T10钢加热到850℃左右,保温一段时间后,以50~60℃/h的速度淬火,得到马氏体结构。

3. 回火处理:将淬火后的T10钢加热到适当温度,保温一段时间后,以20~30℃/h的速度冷却到室温。

回火可以缓解淬火产生的应力,提高钢材的韧性和抗疲劳性能,同时也可以稳定钢材的硬度和强度。

总体来说,T10钢的热处理工艺可以提高其硬度和强度,同时保持较好的韧性和抗疲劳性能。

具体的热处理参数需要根据具体的应用需求和钢材质量来确定。

相关文档
最新文档