数学建模第五部分初等模型及简单优化模型

合集下载

数学建模第五部分-初等模型及简单优化模型

数学建模第五部分-初等模型及简单优化模型

记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
5.1 公平席位分配
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取整; [qi]+ =ceil(qi) ~ 向 qi方向取整. 1) [qi]– ni [qi]+ (i=1,2, … , m), 即ni 必取[qi]– , [qi]+ 之一 2) ni (N, p1, … , pm ) ni (N+1, p1, … , pm) (i=1,2, … , m) 即当总席位增加时, ni不应减少 ―比例加惯例”方法满足 1),但不满足 2) Q值方法满足 2), 但不满足 1)。令人遗憾!
• 空右轮盘半径记作 r ;
• 时间 t=0 时读数 n=0 .
建模目的
建立时间t与读数n之间的关系 (设v,k,w ,r为已知参数)
5.2 录像机计数器的用途
模型建立 建立t与n的函数关系有多种方法
1. 右轮盘转第 i 圈的半径为r+wi, m圈的总长度 等于录像带在时间t内移动的长度vt, 所以
T1 T2 k1 l Q1 k1 , sh , h d ( s 2) k2 d
5.3 双层玻璃窗的功效
建模 记单层玻璃窗传导的热量Q2 T1 T2 T1 T2 Q1 k1 Q2 k1 d ( s 2) 2d
双层与单层窗传导的热量之比
室 内 T1
2d
室 外 T2
Q2
5.1 公平席位分配
应讨论以下几种情况 初始 p1/n1> p2/n2 1)若 p1/(n1+1)> p2/n2 , 则这席应给 A

数学模型(第五版)

数学模型(第五版)
数学模型(第五版)
2018年高等教育出版社出版的图书
01 成书过程
03 教材特色 05 作者简介
目录
02 内容简介 04 教学资源
《数学模型(第五版)》是由姜启源、谢金星、叶俊编写,高等教育出版社出版的 “十二五”普通高等教育 本科国家级规划教材,适合作为高等学校各专业学生学习数学建模课程的教材和参加数学建模竞赛的辅导材第五版)习题参考解答》是为配合《数学模型(第五版)》而编写的学习指导书,书号为9787-04--4,2018年5月23日由高等教育出版社出版,170千字、128页。
《数学模型(第五版)》开通有数字课程、MOOC课程的资源。
作者简介
《数学模型(第五版)》是由姜启源、谢金星、叶俊编写。 姜启源:同济大学应用数学系教授。 谢金星:清华大学数学科学系教授。 叶俊:清华大学数学科学系教授。
内容简介
《数学模型(第五版)》共11章,包括建立数学模型、初等模型、简单的优化模型、微分方程模型、微分方 程模型、差分方程与代数方程模型、离散模型、概率模型、统计模型、博弈模型。
教材特色
教材参考中国国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与 修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删 除了个别案例,并对习题作了相应的修订。
全书共11章,包括建立数学模型、初等模型、简单的优化模型、微分方程模型、微分方程模型、差分方程与 代数方程模型、离散模型、概率模型、统计模型、博弈模型。
成书过程
第五版在保持前四版基本结构和风格的基础上,进行增删与修订,新增和改编的案例接近案例总数的一半, 新版本于2018年5月由高等教育出版社出版(《即数学模型(第五版)》)。
感谢观看

数学模型第五版

数学模型第五版

数学建模的能力
想象力
洞察力
判断力
比较广博的数学知识
深入实际调查研究的决心和能力
创新意识
• 如何学习数学建模
学别人的模型学习 分析、改进、推广
做自己的模型实际题目;参加竞赛
学别人的模型
对于案例——椅子能在不平的地面上放稳吗; 在学懂的基础上可以作哪些研究
1 模型假设中哪些条件是本质的, 哪些是非本质的 地面高度连续 是 椅子至少三只脚着地 是
用 x 表示船速;y 表示水速,列出方程:
(x y)30750
x=20
(x y)50750 求解 y =5
答:船速为20km/h
航行问题建立数学模型的基本步骤
• 作出简化假设船速 水速为常数 • 用符号表示有关量x, y分别表示船速和水速 • 用物理定律匀速运动的距离等于速度乘以
时间列出数学式子(二元一次方程) • 求解得到数学解答x=20, y=5
章 13 建模示例之一 包饺子中的数学
14 建模示例之二 路障间距的设计

立 数 学

15 建模示例之三 椅子能在不平的 地面上放稳吗
16 数学建模的基本方法和步骤 17 数学模型的特点和分类
型 18 怎样学习数学建模——学习课程
和参加竞赛
1 1 从现实对象到数学模型
我们常见的模型
玩具 照片、飞机、火箭模型… ~ 实物模型
结论:在模型假设条件下;将椅子绕中心旋转, 一定能找到四只脚着地的稳定点
1 6 数学建模的基本方法和步骤
数学建模的基本方法
对客观事物特性的认识
机理分析
内部机理的数量规律
白箱
测试分析
对量测数据的统计分析 与数据拟合最好的模型

数学建模简单的优化模型

数学建模简单的优化模型

q T1 时, t 0, 故有 Q rT1 . 在 T1 到 T 这段缺货时间内需求率
量,当 t

q
q 不变, t 按原斜率继续下降,
Q
由于规定缺货量需补足,所以在
R A r
T1
t T 时数量为 R 的产品立即达,
B
T
t
使下周期初的存储量恢复到Q. 与不容许缺货的模型相似,一个周期内的存储费是c2 乘以图中三角形 A 的面积,缺货损失费是 c3乘以三角形 面积B, 加上准备费,得一周期内的总费用为
2


2c1r Q rT . c2
将⑷代入到⑶式,得最小的平均费用为

C 2c1c2 r .
⑷,⑸被称为经济订货批量公式(EOQ公式).

结果解释 由⑷,⑸式可以看到,当 c1(准备费用)提高时,生 产周期和产量都变大;当 c2存储费增加时,生产周期和 产量都变小;当需求量 r 增加时,生产周期变小而产量 变大。这些结果都是符合常识的。
从而赢得竞争上的优势。
模型假设 为处理上的方便,假设模型是连续型的,即周期 T , 产量Q 均为连续变量. 1.每天的需求量为常数 r; 2.每次生产的准备费用为 c1 ,每天每件的存储费为 c2 ,
Q 3.生产能力无限大,即当存储量为零时, 件产品可以
立即生产出来.
建模 设存储量为 q t , q 0 Q. q t 以 r 递减,直到
0.1不变,研究 r 变化
40r 60 t r
r 1.5

t 是 r 的增函数,下图反映了t 与 r 的关系。
t 20
15
10
5
1.5

数学建模中的优化模型

数学建模中的优化模型

建模时需要注意的几个基本问题
1、尽量使用实数优化,减少整数约束和整数变量 2、尽量使用光滑优化,减少非光滑约束的个数 如:尽量少使用绝对值、符号函数、多个变量求 最大/最小值、四舍五入、取整函数等 3、尽量使用线性模型,减少非线性约束和非线性变 量的个数(如x/y <5 改为x<5y) 4、合理设定变量上下界,尽可能给出变量初始值 5、模型中使用的参数数量级要适当(如小于103)
20
t 对r 的(相对)敏感度
t
15 10 5 0 1.5
Δ t / t dt r S (t , r ) Δ r / r dr t
60 S (t , r ) 3 40 r 60
2
2.5
r
3
生猪每天体重增加量r 增加1%,出售时间推迟3%。
敏感性分析
4r 40g 2 t rg
例1 汽车厂生产计划
汽车厂生产三种类型的汽车,已知各类型每辆车对 钢材、劳动时间的需求,利润及工厂每月的现有量.
小型
钢材(吨) 劳动时间(小时) 1.5 280
中型
3 250
大型
5 400
现有量
600 60000
利润(万元)
2
3
4
• 制订月生产计划,使工厂的利润最大. • 如果生产某一类型汽车,则至少要生产80辆, 那么最优的生产计划应作何改变?
1)舍去小数:取x1=64,x2=167,算出目标函数值 z=629,与LP最优值632.2581相差不大. 2 )试探:如取 x1=65 , x2=167 ; x1=64 , x2=168 等, 计算函数值z,通过比较可能得到更优的解. • 但必须检验它们是否满足约束条件. 为什么? 3)模型中增加条件:x1, x2, x3 均为整数,重新求解.

《数学建模》课程教学大纲

《数学建模》课程教学大纲

《数学建模》课程教学大纲课程编号: 90907011学时:32学分:2适用专业:本科各专业开课部门:各学院一、课程的性质与任务数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际问题的一门边缘交叉学科,是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。

本课程主要介绍初等模型、简单优化模型、微分方程模型、概率统计模型、数学规划模型等模型的基本建模方法及求解方法。

通过数学模型有关概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力,综合分析能力;培养学生应用数学方法解决实际问题的能力。

三、实践教学的基本要求(无)四、课程的基本教学内容及要求第一章数学模型概述1.教学内容数学模型与数学建模、数学建模的基本方法和步骤、数学模型的特点和分类。

2.重点与难点重点:数学模型与数学建模。

难点:数学建模的基本方法和步骤。

3.课程教学要求了解数学模型与数学建模过程;了解数学建模竞赛规程;掌握几个简单的智力问题模型。

第二章初等模型1.教学内容双层玻璃窗的功效、动物的身长与体重。

2.重点与难点重点:初等方法建模的思想与方法。

难点:初等方法建模的思想与方法。

3.课程教学要求了解比例模型及其应用。

第三章简单的优化模型1.教学内容存贮模型、最优价格。

2.重点与难点重点:存贮模型。

难点:存贮模型。

3.课程教学要求掌握利用导数、微分方法建模的思想方法;能解决简单的经济批量问题和连续问题模型。

第四章数学规划模型1.教学内容线性规划建模、非线性规划建模,奶制品的生产与销售、接力队的选拔与选课策略、钢管和易拉罐下料。

2.重点与难点重点:线性规划方法建模、非线性规划建模。

难点:非线性规划方法建模、Lingo软件的使用。

3.课程教学要求掌握线性规划建模方法;了解对偶单纯形的经济意义;了解Lingo数学软件在解决规划问题中的作用。

数学建模-优化模型

数学建模-优化模型

r
周呈圆形蔓延,半径 r与 t 成正比. B
面积 B与 t2 成正比
dB/dt与 t 成正比
模型建立
假设1) 假设2)
dB
b t1,
t t b
2 1 x
dt
b
t
t t 1
2 1 x 0
t1
x t2 t
B(t2 )
t2 dB dt 0 dt
bt2 t12 2t12 2 2 2(x )
• 解释条件中正负号的实际意义
效用函数u(x1,x2)几种常用的形式
1. u ( )1 , , 0
x1 x2
p1x1 p1 ,
p2 x2
p2
u
x1 p1 u p2 x2
• 购买两种商品费用之比与二者价格之比的平方根 成正比, 比例系数是参数α与β之比的平方根.
• u(x1,x2)中参数 , 分别度量甲乙两种商品对消费
几何分析
消费线AB
u(x1, x2) = c 单调减、 下凸、互不相交.
AB必与一条等效用线
x2
· y/p2 A
相切于Q点 (消费点).
x2
Q (x1, x2) 唯一
0
u(x1,x2) = c
c增加
·Q
l 3
l
x1 1
·l2B
y/p1 x1
模型求解
max u(x1, x2 )
引入拉格朗日
s.t. p1x1 p2x2 y 乘子λ构造函数
模型求解 求 x使 C(x)最小
dC 0 dx
x c1t12 2c2t1
2c32
dB
dt b
x
0
t1
t2 t
结果解释 • / 是火势不继续蔓延的最少队员数

数学建模中的优化模型

数学建模中的优化模型

数学建模中的优化模型优化模型在数学建模中起着重要的作用。

通过优化模型,我们可以找到最优的解决方案,以满足不同的约束条件和目标函数。

本文将介绍优化模型的基本概念、常见的优化方法以及在实际问题中的应用。

让我们来了解一下什么是优化模型。

优化模型是指在给定的约束条件下,寻找使目标函数达到最大或最小的变量值的过程。

这个过程可以通过建立数学模型来描述,其中包括目标函数、约束条件以及变量的定义和范围。

在优化模型中,目标函数是我们希望最大化或最小化的指标。

它可以是一个经济指标,如利润最大化或成本最小化,也可以是一个物理指标,如能量最小化或距离最短化。

约束条件是对变量的限制,可以是等式约束或不等式约束。

变量则是我们需要优化的决策变量,可以是连续变量或离散变量。

常见的优化方法包括线性规划、非线性规划、整数规划和动态规划等。

线性规划是指目标函数和约束条件都是线性的优化模型。

它可以通过线性规划算法来求解,如单纯形法和内点法。

非线性规划是指目标函数和约束条件中包含非线性项的优化模型。

它的求解方法相对复杂,包括梯度下降法、牛顿法和拟牛顿法等。

整数规划是指变量取值只能是整数的优化模型。

它的求解方法包括分支定界法和割平面法等。

动态规划是一种递推的优化方法,适用于具有最优子结构性质的问题。

优化模型在实际问题中有着广泛的应用。

例如,在生产计划中,我们可以通过优化模型来确定最佳的生产数量和生产时间,以最大化利润或最小化成本。

在资源分配中,我们可以通过优化模型来确定最佳的资源分配方案,以最大化资源利用率或最小化资源浪费。

在交通调度中,我们可以通过优化模型来确定最短路径或最优路径,以最小化行驶时间或最大化交通效率。

优化模型还可以应用于金融投资、供应链管理、电力系统调度、网络优化等领域。

通过建立数学模型和选择合适的优化方法,我们可以在复杂的实际问题中找到最优的解决方案,提高效率和效益。

优化模型在数学建模中是非常重要的。

它通过建立数学模型和选择合适的优化方法,帮助我们找到最优的解决方案,以满足不同的约束条件和目标函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n2
当p1/n1= p2/n2 时,分配公平 若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度
p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10
p1/n1– p2/n2=5 虽二者的绝对 不公平度相同
右轮转速不是常数
5.2 录像机计数器的用途
模型假设 • 录像带的运动速度是常数 v ;
• 计数器读数 n与右轮转数 m成正比,记 m=kn;
• 录像带厚度(加两圈间空隙)为常数 w;
• 空右轮盘半径记作 r ; • 时间 t=0 时读数 n=0 .
i 1,2,, m
该席给Q值最大的一方 Q 值方法
5.1 公平席位分配
三个系用Q值方法重新分配 21个席位
按人数比例的整数部分已将19席分配完毕
甲系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3
用Q值方法分配 第20席和第21席
第20席
Q1
1032 1011
对 丙
加 甲 103 51.5 10.3 10 10.815 11 系
惯 乙 63 31.5 6.3 6 6.615 7 公
例 丙 34 17.0 3.4
4
3.570
3
平 吗
总和 200 100.0 20.0 20 21.000 21
5.1 公平席位分配
“公平”分配方法 衡量公平分配的数量指标
人数 A方 p1 B方 p2
5.1 公平席位分配
应讨论以下几种情况 初始 p1/n1> p2/n2 1)若 p1/(n1+1)> p2/n2 , 则这席应给 A 2)若 p1/(n1+1)< p2/n2 , 应计算rB(n1+1, n2) 3)若 p1/n1> p2/(n2+1), 应计算rA(n1, n2+1) 问: p1/n1<p2/(n2+1) 是否会出现? 否! 若rB(n1+1, n2) < rA(n1, n2+1), 则这席应给 A 若rB(n1+1, n2) >rA(n1, n2+1), 则这席应给 B
记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
5.1 公平席位分配
qi=Npi /P不全为整数时,ni 应满足的准则: 记 [qi]– =floor(qi) ~ 向 qi方向取整; [qi]+ =ceil(qi) ~ 向 qi方向取整.
1) [qi]– ni [qi]+ (i=1,2, … , m), 即ni 必取[qi]– , [qi]+ 之一 2) ni (N, p1, … , pm ) ni (N+1, p1, … , pm) (i=1,2, … , m)
/ n2
rA (n1, n2 )
~ 对A的相对不公平度 公平分配方案应
类似地定义 rB(n1,n2)
使 rA , rB 尽量小
将一次性的席位分配转化为动态的席位分配, 即
设A, B已分别有n1, n2 席,若增加1席,问应分给A, 还是B 不妨设分配开始时 p1/n1> p2/n2 ,即对A不公平
96.4,
Q2
632 67
94.5,
Q3
342 3 4
96.3
第21席
Q1
1032 1112
80.4,
Q2 ,
Q1最大,第20席给甲系
Q3 同上
Q3最大,第 21席给丙系
Q值方法 分配结果
甲系11席,乙系6席,丙系4 席
公平吗?
5.1 公平席位分配
进一步的讨论
Q值方法比“比例加惯例”方法更公平吗?
数学建模
08:55
第五部分 初等模型及优化
初等模型实例
5.1 公平的席位分配 5.2 录像机计数器的用途 5.3 双层玻璃窗的功效 5.4 实物交换
简单优化模型实例
5.5 生猪出售时机 5.6森林救火 5.7最优价格 5.8 冰山运输 5.9 消费者均衡(选)
08:55
5.1 公平席位分配
即当总席位增加时, ni不应减少 “比例加惯例”方法满足 1),但不满足 2) Q值方法满足 2), 但不满足 1)。令人遗憾!
5.2 录像机计数器的用途
问 经试验,一盘标明180分钟的录像带 题 从头走到尾,时间用了184分,计数
器读数从0000变到6061。 在一次使用中录像带已经转过大半,计数器读数为 4450,问剩下的一段还能否录下1小时的节目?
问 三个系学生共200名(甲系100,乙系60,丙系40),代表 题 会议共20席,按比例分配,三个系分别为10,6,4席。
现因学生转系,三系人数为103, 63, 34, 问20席如何分配。
若增加为21席,又如何分配。
系别 学生 比例 20席的分配 21席的分配
比 例
人数 (%) 比例 结果
比例
结果
5.1 公平席位分配
当 rB(n1+1, n2) < rA(n1, n2+1), 该席给A
rA, rB的定义
p22
p12
该席给A
n2 (n2 1) n1(n1 1) 否则, 该席给B
定义
Qi
pi2 ni (ni 1)
,
i 1,2, 该席给Q值较大的一方
推广到m方 分配席位
计算
Qi
pi2 , ni (ni 1)
p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100
p1/n1– p2/n2=5
但后者对A的不公平 程度已大大降低!
5.1 公平席位分配
“公平”分配方法 将绝对度量改为相对度量
若 p1/n1> p2/n2 ,定义
p1 / n1 p2 p2 / n2
席位分配的理想化准则 已知: m方人数分别为 p1, p2,… , pm, 记总人数为 P= p1+p2+…+pm, 待分配的总席位为N。 设理想情况下m方分配的席位分别为n1,n2,… , nm (自然应有n1+n2+…+nm=N),
ni 应是 N和 p1, … , pm 的函数,即ni = ni (N, p1, … , pm )
思考 计数器读数是均匀增长的吗? 要求 不仅回答问题,而且建立计数器读数与
录像带转过时间的关系。
5.2 录像机计数器的用途
观察
计数器读数增长越来越慢!
问题分析 录像机计数器的工作原理
左轮盘
右轮盘 主动轮
0000 计数器
录像带 磁头
压轮
录像带运动
录像带运动方向 右轮盘半径增大 计数器读数增长变慢
录像带运动速度是常数
相关文档
最新文档