压缩机防喘振控制分析
工艺空气压缩机的喘振及预防

工艺空气压缩机的喘振及预防什么是工艺空气压缩机的喘振?在工业生产过程中,空气压缩机是一种常用的设备。
在运行过程中,压缩机可能会出现喘振现象,这是指系统压力在一定流量条件下发生快速周期性的振荡现象。
喘振的形式有多种,常见的有一次振荡、二次振荡和多次振荡等,喘振的发生会导致压缩机的故障、减少设备寿命、能源浪费等问题,影响产品质量和工厂生产效率。
工艺空气压缩机喘振的原因1.过流和过压设备运行过程中,如果进气流量和阻力非常大,输出的风量不能满足生产需求,这时就需要增大排气压力、减小出口截面积,这两个措施都会增加振荡风动力。
出口截面积变小,进一步缩小进口面积,阻力也会更大,容易出现回流,损失也会更大。
2.群体变幻群体变幻的原因是空气压缩机中的气体具有某种定量的弹性模量,当输入侵蚀力发生变化时,气体颗粒和空气充满了一定的空化,会产生一定的变形,会出现气动不稳定的滞后效应,导致喘振产生。
3.流向的变化和节流当压缩机在运行过程中遇到节流或流量变化时,会出现流方向的变化,这种转换会改变压缩机过滤物的动力性质,引起喘振现象。
4.非完全气体压缩机可能在设备或管路中加入了一些液体或固体物质,它们会突然随着气流经过时变化,这个突变会引起气体流的不稳定性,导致喘振。
工艺空气压缩机喘振的预防经过上述对工艺空气压缩机喘振原因的分析,以下是一些有效的预防措施。
1.控制进气及排气流量要预防喘振问题,就需要控制进气流量和排气流量,这样可以减少气体压缩程度,降低气体流动的剧烈程度。
此外,还应根据工艺需要进行有效的处理大量的空气。
2.流量约束在设计或安装空气压缩机时,应该对流量进行约束。
这可以通过增加流量容量,增加气室容积、阀门调节、分流减少气流量、缩小进排气口等措施来实现。
3.安装振动杀器振动杀器一般采用振动减震弹性体,能吸收压力波,而且不影响空气压缩机的输出,并且可以降噪,提高工艺设备的运行效率。
4.增加进气管路及附加装置进气口和出气口的大小比应该尽可能的小,进口管道直径应该比出口大,这样可以起到一定的减小压差,降低流速,减小输出封堵荷载,从而减少喘振概率。
离心式压缩机防喘振控制措施分析

离心式压缩机防喘振控制措施分析摘要:在化工企业生产过程中,离心式压缩机有着十分重要的作用和地位,其有着排气压力在,输送流量小的优势,但其在具体运行过程中也存在一定缺陷问题。
如喘振问题,发生喘振对压缩机会造成极大危害,所以,需要采取有效防控措施,以确保压缩机得以安全、稳定地运行。
有鉴于此,下文在充分结合相关文献研究以及自己多年工作实践经验情况下,先是对离心式压缩机喘振问题的成因展开了认真分析,进而探讨了几点离心式压缩机喘振防控的有效措施,以供借鉴。
关键词:离心式压缩机;防喘振;控制措施一、探析离心式压缩机发生喘振的原因通常生产装置运行中的压缩机在运作时,如果受到外部因素影响而致使流量减小并达到Qmin值时,则会致使压缩机流道发生旋转脱离问题。
如果气量继续减少,那么压缩机叶轮整体流道就会形成气体旋涡区,而此时压缩机出口压力则会发生及时降低。
而与此同时,与压缩机出口相互连接的管网系统压力并不断立刻降低,且管网内气体还会倒流到压缩机内。
当管网内压力比压缩机出口排气压力小时,气体就会停止倒流,此时压缩机就会向管网内进行排气。
但由于进气量不够,当压缩机出口管网恢复到一定压力时流道内就会发生旋涡。
在这种循环下,机组和管道内流量也会随着之出现周期性变化,机器进出口压力也会引发较大幅度脉动。
另外,因气体压缩机进出口部位发生倒流,与此同时还会有较大周期性气流声响以及大幅度振动现象。
喘振是离心式压缩机自身所固有的一种特性,其发生喘振的原因通常可以在对象特性方面找出来。
因压缩机压缩比和流量曲线上存在一个交点,当其在右面曲线上进行作业时,压缩机是处于稳定状态的。
如在曲线左面低流量范围内作业时,会受到气体所具有的可压缩性特征影响,而出现不稳定。
而如果流量降低到喘振线时,倘若压缩比降下,那么流量就会继续减少;再加上输出管线气体压力要比压缩机出口压力大,所以,已经被压缩气体就会迅速倒流到压缩机内,随后管线内压力会进一步减小,进而会致使气体流动方向发生反转,并最终引发周期性喘振。
压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。
喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。
1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。
2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。
3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。
4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。
1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。
2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。
3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。
4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。
5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。
6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。
7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。
通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。
压缩机喘振原因及预防措施

压缩机喘振原因及预防措施压缩机喘振原因及预防措施0 引言压缩机运行中一个特殊现象就是喘振。
防止喘振是压缩机运行中极其重要的问题。
许多事实证明,压缩机大量事故都与喘振有关。
喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。
喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。
喘振在运行中是必须时刻提防的问题。
在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。
判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。
1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。
当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。
上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。
2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。
大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用大型透平式压缩机是工业生产中常见的设备,其运行过程中可能会出现喘振现象,严重时甚至会对设备造成损坏。
对大型透平式压缩机进行喘振控制至关重要。
本文将从大型透平式压缩机的喘振原因、喘振控制方法和应用实例等方面进行探讨。
一、大型透平式压缩机的喘振原因1. 受力不平衡:透平式压缩机在运行过程中,由于零部件的磨损或装配不良等原因,会导致叶片、轴承等部件受到不平衡的力,从而引起喘振。
2. 流体动态影响:透平式压缩机在高速旋转时,叶片与流体之间的相互作用会导致流体的波动和压力的变化,若流体动态影响不稳定则容易引起喘振。
3. 控制系统不良:大型透平式压缩机的控制系统,包括调速装置、润滑系统等,如果调控不当或存在故障,也会导致喘振的发生。
1. 结构设计优化:在透平式压缩机的设计阶段,可以通过优化结构设计来降低叶轮、轴承等部件的受力不平衡,减少喘振的发生概率。
2. 流体动态分析:通过数值模拟或实验手段,对透平式压缩机叶片与流体的相互作用进行研究,找出流体动态影响不稳定的原因,并采取相应措施来稳定流场,减少喘振的可能性。
3. 控制系统优化:对于透平式压缩机的调速装置、润滑系统等控制系统,进行优化设计和严格的质量控制,确保其正常运行,避免因控制系统问题引起的喘振。
4. 振动监测与诊断:对大型透平式压缩机进行振动监测,并建立相应的诊断系统,及时发现喘振现象并采取措施进行控制。
以某大型化工装置中采用的透平式压缩机为例,通过对其喘振问题的控制,取得了良好的应用效果。
该透平式压缩机采用了先进的结构设计和流体动态分析技术,通过优化叶轮结构和流道形状等手段,降低了受力不平衡和流体动态影响,极大地减少了喘振的发生概率。
控制系统方面,采用了先进的调速装置和智能化的润滑系统,保证了设备在高速旋转时的平稳运行,有效地避免了因控制系统不良引起的喘振。
该透平式压缩机还配备了振动监测与诊断系统,对设备的振动进行实时监测,一旦发现异常振动就可以及时采取措施进行处置,避免喘振对设备造成损害。
压缩机防喘振控制方案

压缩机防喘振的两种方法[分享]压缩机防喘振的两种方法一、离心式压缩机喘振的原因喘振是离心式压缩机的固有特性。
产生喘振的原因首先得从对象特性上找。
从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。
在此点右面的曲线上工作,压缩机是稳定的。
在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。
当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。
喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。
二、防喘振自控系统的可行性分析为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。
只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。
即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。
三、防喘振自控系统的几种实现方法目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法1.固定极限流量法固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。
此法优点是控制系统简单,使用仪表较少。
缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。
2.可变极限流量法在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。
常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。
压缩机防喘振控制

压缩机防喘振控制方法
压缩机防喘振的控制方法大致可分为固定极限 流量法和可变极限流量法,
1 . 固定极限流量法
固定极限流量是使压 缩机的入口流量保持控制线大于源自高转速下的临界流量,从而避免进
入喘振区运行,但在
低转速下效率太低,
能量浪费太大,
2 . 可变极限流量法
可变极限流量法是为 了减少压缩机的能量 损耗,在压缩机负荷 经常波动的场合采用,
4. 喘振的原因
当压缩机入口气体流量小于压缩机的最小流量 时,会导致压缩机排气管压力比机组内部压力 高,这时气体会发生瞬间倒流,压缩气体倒流又 使得排出侧气体压力降低,机组内部压力升高, 使气体流量恢复,直到出口压力升高,又重复上 述过程,这就是压缩机的喘振,
压缩机性能曲线的最高点就是喘振点,
离心压缩机特性
2. 喘振 当压缩机的负荷降低到一定程度时,气体排送会 发生往复运动的强烈振荡,从而导致机身的剧 烈振动,称为喘振,这是气体动力装置的一种特 性,
离心式压缩机与轴流式压缩机的比较
离心压缩机适用于中、小流量和中、高压力的 场合,流量约20~2000Nm3/min,大的可达 10000Nm3/min,单缸压比约 3.5~10,多缸排气 压力可高达90MPa以上,多变效率约为 76~83 %,
3. 压缩机的工作点
因为压缩机是串联在管路中,故当它正常工作 时,必须满足:
1 流过压缩机的气量必须等于流过管路的气量 指换算到同一状态下 ;
2 管端压力pe应与压缩机的排压相等,
因此,压缩机的工作点一定是在该压缩机的性 能曲线与管路特性曲线的交点上,
压缩机的工作点
性能曲线
工作点
管路特性曲线
压缩机的种类
2. 根据压缩机的压缩形式分,可分为往复式压 缩机、回转式压缩机、离心式压缩机和轴流式 压缩机,
大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用随着工业生产的日益发展,大型透平式压缩机在工业生产中扮演着重要的角色。
由于透平式压缩机工作时会产生较大的振动和噪音,如果不加以控制和防范,很容易引发喘振问题,严重影响设备的安全性和正常运行。
对大型透平式压缩机的喘振控制及应用成为工程技术领域亟待解决的重要问题。
什么是喘振?喘振是由于压缩机内部气体振荡而产生的一种不稳定的振动现象。
当压缩机工作时,由于气体流动速度和压力变化引起的共振效应,会使得系统产生自激振动,即所谓的喘振。
喘振不仅会导致设备损坏,还会引起严重的噪音污染,甚至对生产车间的安全形成威胁。
大型透平式压缩机的喘振控制成为了工程技术领域的焦点关注。
在喘振控制中,需要从多个方面入手,包括结构设计、控制系统、运行管理等多个方面,才能全面有效地解决喘振问题。
对于大型透平式压缩机的结构设计来说,需要合理设计压缩机的内部结构。
通过科学的设计和优化,减小气体流动速度的变化,降低共振效应的发生,从而减少喘振的产生。
还可以通过结构的改善和优化,增加阻尼器、削减共振频率等措施来有效抑制喘振的发生。
在压缩机的结构设计阶段,就可以采取措施来预防喘振问题的产生,这是避免喘振问题的有效手段。
对于大型透平式压缩机的控制系统来说,需要建立完善的控制系统,并对其进行合理的配置和优化。
通过运用先进的控制算法和技术,实时监测和调节压缩机的工作状态,及时发现并处理喘振问题。
还可以通过自适应控制、模糊控制和神经网络控制等方法,对压缩机的振动进行智能化控制,从而有效减少喘振的发生。
还可以通过合理的控制策略和调整参数,提高控制系统的稳定性和可靠性,进一步降低喘振的风险。
对于大型透平式压缩机的运行管理而言,需要建立严格的运行管理制度,确保设备的正常运行。
通过定期的维护和保养,及时发现和解决压缩机设备的问题,确保设备处于良好的工作状态。
还可以通过对设备运行数据的分析,及时发现异常情况,采取措施进行修复和调整,有效降低喘振的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 压缩机的工作点
因为压缩机是串联在管路中,故当它正常工作 时,必须满足: 1)流过压缩机的气量必须等于流过管路的气 量(指换算到同一状态下); 2)管端压力pe应与压缩机的排压相等。 因此,压缩机的工作点一定是在该压缩机的性 能曲线与管路特性曲线的交点上。
压缩机的工作点
性能曲线 工作点
压缩机的种类
2. 根据压缩机的压缩形式分,可分为往复式压 缩机、回转式压缩机、离心式压缩机和轴流式 压缩机。
往复式和回转式压缩机的压缩原理是减容压缩; 离心式和轴流式压缩机的压缩原理是加速流体 压缩。
第二章 离心压缩机特性
1. 离心压缩机的一般规律 给定转速,排气压力与流量成反比 容积流量与转速成正比 排气压力与转速平方成正比 功率与转速立方成正比
第二章 通用性能图
压缩机入口条件(如温度、压力、分子量)改 变时,压缩机的喘振线会发生变化。 当进气温度升高或者进气压力下降或者气体组 分变轻,都会导致压缩机性能曲线下移。
通用性能图
假如压缩机入口体积流量为qv,入口流量差压 为hs,入口绝对压力为ps,出口绝对压力为pd, 则
通用性能图
控制线
第二部分 D-R压缩机防喘振控制
第一章 概述 第二章 通用性能图
第一章 概述
性能曲线的X轴是流量变量Mθ0.5/δ,范围是0 -100%。这里M是实际的质量流量率,θ是实 际入口温度和参考入口温度的比率,δ是实际 入口压力和参考入口压力的比率。
其中,θ0.5/δ是温度和压力补偿系数。
压缩机防喘振控制方法
压缩机防喘振的控制方法大致可分为固定极限 流量法和可变极限流量法。
1). 固定极限流量法
固定极限流量是使压 缩机的入口流量保持 大于最高转速下的临 界流量,从而避免进 入喘振区运行,但在 低转速下效率太低, 能量浪费太大。
控制线
2). 可变极限流量法
可变极限流量法是为 了减少压缩机的能量 损耗,在压缩机负荷 经常波动的场合采用。
性能曲线
横坐标是压缩机的入口流 量。 纵坐标的选取有三种: 1)出口压力Pd; 2)压力差(Pd-Ps); 3)压力比(Pd/Ps)。 性能曲线是压缩机的固有 特性。
性能曲线
入口流量
2. 管路特性曲线
管路特性曲线就是当管路情况一定时,气流流 过该管路时所需的能头与管路流量Q的关系。 对离心压缩机来说,管路只是指压缩机的排气 侧的管路,在这种管路中,管路所需的能头可 以用管端压力pe(即压缩机出口背压)的大小 来反映。
管路特性曲线
4. 喘振的原因
当压缩机入口气体流量小于压缩机的最小流量 时,会导致压缩机排气管压力比机组内部压力 高,这时气体会发生瞬间倒流,压缩气体倒流 又使得排出侧气体压力降低,机组内部压力升 高,使气体流量恢复,直到出口压力升高,又 重复上述过程,这就是压缩机的喘振。 压缩机性能曲线的最高点压缩同一种气体,同样的进气条件,在 不同的转速下,可以得到一簇性能曲线,把这 些曲线的喘振点连起来,就得到压缩机的喘振 线。
喘振线
喘振线
喘振线右侧为稳定工作区,左侧为喘振区(不稳定区)。 喘振线上压比最大,因此效率最高。
8. 压缩机防喘振控制
最简单,也是最常用的 方法就是安装回流阀 (或放空阀),当压缩 机的入口流量小于喘振 流量时,将出口处的气 体回流到入口处(或放 空)来增大入口流量。
通用性能图
第三章 防喘振控制
1. 压缩机的性能曲线 2. 管路特性曲线 3. 压缩机的工作点 4. 喘振的原因 5. 喘振分析 6. 喘振周期 7. 喘振线 8. 压缩机防喘振控制方法
1. 压缩机的性能曲线
对于一定的气体而言,在压缩机转速一定时, 每一流量都对应一个压力,把不同流量下对应 的每一个压力连成一条曲线,即为压缩机的性 能曲线。
通用性能图
qv
hs M K1 RTZ ps
这个公式包括了入口温度、压力、分子量的信息。
通用性能图
从上式可以看出,不管压缩机的进气条 件发生怎样的变化,以变量 为 X轴,以变量Pd/Ps为Y轴,可以做出一条 精确而固定的压缩机喘振曲线,这条曲 线叫压缩机通用喘振线,这幅图叫压缩 机通用性能图。
压缩机防喘振控制
第一部分 压缩机防喘振原理
第一章 压缩机的种类 第二章 离心压缩机特性 第三章 防喘振控制
第一章 压缩机的种类
1. 根据压缩机的压缩原理,可以分为减容压 缩和加速流体压缩。 减容压缩是通过减少气体体积来增加气体的 压力; 加速流体压缩是通过把气体的动能转换为势 能来增加气体的压力。
管路特性曲线公式
将上式表示在坐标图上,即为一条二次抛物线, 它是管路端压与进气量的关系曲线,即为管路 特性曲线。
管路特性曲线
压缩机管路特性曲线如图所示。 当管路很短、阀门全开时,阻 力损失很小,管路特性曲线几 乎是一条水平线,如线L1;当 管路很长或阀门关小时,阻力 损失增大,于是变成线L2所示; 阀门开度愈小,曲线变得愈陡, 如线L3;当管网的操作压力下 降,则管路特性曲线下移;当 pr为常压时,管路特性曲线即 为线L4。
离心压缩机特性
2. 喘振 当压缩机的负荷降低到一定程度时,气体排送 会发生往复运动的强烈振荡,从而导致机身的 剧烈振动,称为喘振。这是气体动力装置的一 种特性。
离心式压缩机与轴流式压缩机的比较
离心压缩机适用于中、小流量和中、高压力的 场合。流量约20~2000Nm3/min,大的可达 10000Nm3/min,单缸压比约 3.5~10,多缸 排气压力可高达90MPa以上,多变效率约为 (76~83)%。 轴流压缩机适用于中、大流量和低、中压力的 场合。流量约 800~20000Nm3/min,单缸压 比约2.7~9,双缸排气压力可达3.89MPa,一 般多变效率为(87~91)%。
喘振点
A 喘振点
性能曲线上,喘振点右侧为稳定工作区,左侧为喘振 区(不稳定区)。
5. 喘振分析
如图所示,D点为喘振点。假 设A点为稳定工作点,如果有 某种扰动,使工作点移动到B 点,这时压缩机的压比增大, 使得出口压力高于管网压力, 压缩机仍可正常工作。在D点 压缩机处于临界状态。如流量 继续减少到达D点左侧(如C 点),此时压缩机压比减小使 得压缩机的出口压力减小,从 而使管网压力高于压缩机出口 压力,造成气体倒流,形成喘 振。
喘振分析
喘振的发生主要是由于 管路特性曲线的变化使 工作点移动到喘振点左 侧。如图,假设A点为 稳定工作点,但由于管 路特性曲线发生变化, 使工作点移动到B点, 到达喘振点左侧,从而 引起喘振。
B A
6. 喘振周期
如图所示假设压缩机在A点正常工 作,由于某种原因降低负荷,工作 点会向左移动,当到达B点时,压 缩机进入极限工作点,出口压力比 最大,若负荷继续下降,出口压力 将迅速降低,而与其相连接的工艺 系统瞬间压力没变,气体将会倒流, 工作点迅速到达C点,这时出口压 力与系统压力瞬间相等。由于压缩 机还在运行,出口流量很快增大, 极限工作点很快移到D点,因流量 变大,管路特性曲线变陡,必然会 使工作点回到A点,这就是一个完 整的出口压力波动周期,我们称其 为喘振周期。