第二章 参数估计讲课稿
参数估计课件

点估计
点估计
(概念要点)
1. 从总体中抽取一个样本,根据该样本的统计 量对总体的未知参数作出一个数值点的估计
▪ 例如: 用样本均值作为总体未知均值的估计值 就是一个点估计
• 2. 点估计没有给出估计值接近总体未 知参数程度的信息
3. 点估计的方法有矩估计法、顺序统计量法、 最大似然法、最小二乘法等
1.96
0.15 9
21.302,21.498
我们可以95%的概率保证该种零件的平 均长度在21.302~21.498 mm之间
总体均值的区间估计
(非正态总体:实例)
【例】某大学从该 校学生中随机抽取 100 人 , 调 查 到 他 们平均每天参加体 育 锻 炼 的 时 间 为 26 分 钟 。 试 以 95 % 的 置信水平估计该大 学全体学生平均每 天参加体育锻炼的 时间(已知总体方 差为36小时)。
总体1
抽取简单随机样 样本容量 n1 计算X1
所有可能样本 的X1-X2
1 1
2 2
计算每一对样本 的X1-X2
总体2
抽取简单随机样 样本容量 n2 计算X2
1 2
抽样分布
两个总体均值之差的估计
(12、22 已知)
• 1.
假定条件
▪ 两个样本是独立的随机样本
▪ 两个总体都服从正态分布
n(1- p )=60>5,= 0.95,Z/2=1.96
pˆ Z 2
pˆ (1 pˆ ) n
样本。在对其进行访 问 时 , 有 140 人 说 他 们离开该企业是由于
0.7 1.96 0.7(1 0.7) 200
同管理人员不能融洽
0.636,0.764
应用统计学第二章参数估计精品PPT课件

第1页
第二章 参数估计
• 总体分布中常含有参数,一般常用 表示参
数,参数估计问题就是从样本出发构造一些 统计量作为某些未知参数的估计量。通常都 是对总体的期望和方差进行估计
• 参数估计的形式有两种:点估计与区间估计。
第二章 参数估计
第2页
• 设 X1, X2,…, Xn 是来自总体 X 的一个样本,我
(2)样本信息:抽取样本所得观测值提供的信息。
(3)先验信息:人们在试验之前对要做的问题在经 验上和资料上总是有所了解的,这些信息对 统计推断是有益的。先验信息即是抽样(试 验)之前有关统计问题的一些信息。一般说 来,先验信息来源于经验和历史资料。先验 信息在日常生活和工作中是很重要的。
第二章 参数估计
设总体的分 f(x布 ;) 密 2x 度 e x2,为 x0
0, x0
求 的极大似然估计量,它是否是无偏的,一致
的估计量?
第二章 参数估计
第37页
(四) 均方误差
无偏估计不一定比有偏估计更优。 评价一个点估计的好坏一般可以用:点估计值 ˆ
与参数真值 的距离平方的期望,这就是下式给
出的均方误差
第二章 参数估计
第5页
例.1 对某型号的20辆汽车记录其每加仑汽油的行 驶里程(km),观测数据如下:
29.8 27.6 28.3 27.9 30.1 28.7 29.9 28.0 27.9 28.7 28.4 27.2 29.5 28.5 28.0 30.0 29.1 29.8 29.6 26.9
1
2
2
n
(xi
i1
)2
ln
L(,
2)
1
2
2
《参数估计方法》课件

目录
• 参数估计方法概述 • 点估计 • 区间估计 • 最大似然估计法 • 最小二乘估计法 • 贝叶斯估计法
01
参数估计方法概述
参数估计方法的定义
参数估计方法的定
义
参数估计方法是一种统计学中的 方法,它通过分析样本数据来估 计未知的参数值。这些参数可以 描述总体特性的程度,如平均值 、方差等。
使得它容易进行统计推断。
最小二乘估计法的应用场景
线性回归分析
最小二乘估计法是线性回归分析中最常用的 参数估计方法,用于预测一个因变量与一个 或多个自变量之间的关系。
时间序列分析
在时间序列分析中,最小二乘估计法可用于拟合和 预测时间序列数据,例如ARIMA模型。
质量控制
在质量控制中,最小二乘估计法可用于拟合 控制图,以监测过程的稳定性和预测异常情 况。
区间估计
区间估计是一种更精确的参数估计方法,它给出未知参数的一个置信区间,即有较大的把握认为未知参数落在这个区 间内。例如,用样本均值和标准差来估计总体均值的置信区间。
贝叶斯估计
贝叶斯估计是一种基于贝叶斯定理的参数估计方法,它根据先验信息和样本数据来推断未知参数的后验 概率分布。贝叶斯估计能够综合考虑先验信息和样本数据,给出更加准确的参数估计结果。
贝叶斯估计法的性质
01
02
03
贝叶斯估计法是一种主观概率估 计方法,因为它依赖于先验信息 的可信度和准确性。
先验信息的不确定性可以通过引 入一个先验分布来表达,该分布 描述了先验信息中未知参数的可 能取值及其概率。
贝叶斯估计法的后验概率分布可 以用于推断未知参数的估计值和 不确定性程度。
贝叶斯估计法的应用场景
3
参数估计PPT课件

高维数据问题
随着数据维度的增加,参数估计的准确性和稳定性面临更大的挑战 。
异方差性和非线性问题
在实际应用中,数据往往存在异方差性和非线性关系,这增加了参 数估计的难度。
参数估计的发展趋势与未来研究方向
1 2 3
贝叶斯推断
区间估计是一种统计推断方法, 它利用样本信息来估计未知参数 的可能取值范围。
区间估计的性质
区间估计给出的是未知参数的一 个可能取值范围,而不是一个具 体的点估计值。
区间估计的优缺点
优点
区间估计能够给出未知参数的一个可能取值范围,从而为决 策者提供更多的信息,有助于理解参数的不确定性。
缺点
由于区间估计给出的范围较宽,可能会引入较大的误差。此 外,对于某些复杂模型,构造有效的区间估计可能比较困难 。
在贝叶斯估计中,先验分布代表了我们对未知参数的先验知识或信念,而后验分布 则是结合先验信息和样本数据后对未知参数的更新信念。
贝叶斯估计的核心思想是将参数看作随机变量,并利用概率论来描述我们对参数的 认知不确定性。
贝叶斯估计的优缺点
优点
贝叶斯估计能够综合考虑先验信息和样本数据,给出参数的后验分布,从而为决 策提供更全面的信息。此外,贝叶斯估计方法灵活,可以适用于不同类型的数据 和问题。
点估计的优缺点
总结词
点估计的优缺点
详细描述
点估计的优点在于它提供了一个简洁的表示未知参数的方法,并且可以利用各种统计方法进行推断和分析。然而 ,点估计也存在一些缺点,如它可能会受到样本误差的影响,导致估计结果不够准确;另外,当样本容量较小时 ,点估计的效果可能会较差。
点估计的常见方法:矩估计、最小二乘法等
应用统计方法第二章参数估计

2
1 1
2 x 1 1
2 2
2 dx
1 12
(
2
1 ) 2
令
X
S 2
1 2
(1
2
)
1 12
( 2
1)
解上述关于
1
,
2
的方程得
1 2
X X
3S 3S
8
.
Example 2.4 贝努利试验中,事件 A 发生的频率是该事件 发生概率的矩法估计。 Solution 此处,实际上我们视总体 X 为“唱票随机变量”, 即 X 服从两点分布:
此,必须采用求极值的办法,即对对数似然函数关于 i 求导, 再令之为 0,即得
ln L( ) i
(Xi
X )2
S2
记为ˆ 2 S 2 .第三步等号再一次用到习题 1.4.
7
.
Example 2.3 设 X 为[1, 2 ]上的均匀分布, X1, X 2 ,, X n
为样本,求1, 2 的矩估计。
Solution
a 1
2 xdx
1 2 1
2 2
12
2( 2 1 )
1 2
(
1
2)
2
.
Chapter 2 参数估计
(Parameter Estimation)
1
.
§2.1 点估计(Point Estimation) §2.2 估计量的评价准则 §2.3 区间估计(Interval Estimation)
2
.
§2.1 点估计(Point Estimation)
一、 矩估计法
若总体 X 的期望存在,E(X ) , X1, X 2 ,, X n 是出 自X 的样本,则由柯尔莫哥洛夫强大数定律,以
参数估计的意义PPT课件

Xi
1 5
5 i 1
Xi
(矩估计量)
x
1 5
5 i 1
xi
= 1(2.3 2.2 1.8 1.7 2) 2 (矩估计值) 5
第11页/共59页
二、矩估计法
例2 设随机变量X
B(m, p), X1,
,
X
为样本
n
(1) 若m已知,p未知,求p的矩法估计量 p.
解: 对于总体X:EX mp,根据矩估计
,
b X
3Sn X
3 n
n i 1
(Xi
X
)2
2.
X
1
X
2
第19页/共59页
四、极大似然估计
极大似然估计法是在总体类型已知条件下使用 的一种参数估计方法 .
它首先是由德国数学家高斯在 1821年提出的. 然而,这个方法常
归功于英国统计学家费歇 .
Gauss
Fisher
费歇在1922年重新发现了这 一方法,并首先研究了这种方法 的一些性质 .
点估计常用方法: 1. 顺序统计量估计法 2. 矩估计法 3. 极大似然估计 4. 最小二乘法
第7页/共59页
二、矩估计法
矩估计法是英国统计学家K.皮尔逊最早提出来 的. 由辛钦大数定律 ,
若总体 的数学期望
有限, 则有
第8页/共59页
二、矩估计法
这表明,当样本容量很大时,在统计上,可以 用样本矩去估计总体矩. 这一事实导出矩估计法.
一、参数估计的意义
参数估计问题是利用从总体抽样得到的信息 来估计总体的某些参数或者总体的某些数字特征.
参数估计的两个研究方向:
1. 在已知总体分布类型的前提下,由样本信息 估计出总体未知参数的近似值,从而近似估计总 体分布.
统计学参数估计PPT课件

在应用参数估计时,需要注意样本的代表性、数据的准确性和可靠性等问题, 以保证估计的准确性和可靠性。
对未来研究的建议
01
进一步探讨参数估计的理论基础
可以进一步探讨参数估计的理论基础,如大数定律和中心极限定理等,
以更好地理解和掌握参数估计的方法和原理。
02
探索新的估计方法
随着统计学的发展,可以探索新的参数估计方法,以提高估计的准确性
指导决策
评估效果
基于参数估计结果,制定科学合理的 决策。
利用参数估计,评估政策、项目等实 施效果。
预测未来
通过参数估计,预测未来的趋势和变 化。
02
参数估计的基本概念
点估计
定义
点估计是用一个单一的数值来估 计未知参数的值。
举例
在调查某班级学生的平均身高时, 我们可能使用所有学生身高的总 和除以人数来估计平均身高,这 里的总和除以人数就是点估计。
最小二乘法的缺点是假设误差项独立 同分布,且对异常值敏感,可能影响 估计的稳定性。
最小二乘法的优点是简单易行,适用 于线性回归模型,且具有优良的统计 性质。
贝叶斯估计法
贝叶斯估计法是一种基于贝叶 斯定理的参数估计方法,通过 将先验信息与样本数据相结合 来估计参数。
贝叶斯估计法的优点是能够综 合考虑先验信息和样本数据, 给出更加准确的参数估计。
高维数据的参数估计问题
1 2 3
高维数据对参数估计的影响
随着数据维度的增加,参数估计的复杂度和难度 也会相应增加,容易出现维度诅咒等问题。
高维数据参数估计的方法
针对高维数据,可以采用降维、特征选择、贝叶 斯推断等方法进行参数估计,以降低维度对估计 的影响。
2.1第二章参数估计共36页文档

对于不同的 p , L (p)不同, 见下图
Lp
0.01 0.008 0.006 0.004 0.002
p
pˆ 0.2 0.4 0.6 0.8 1
现经过一次试验,事件
( X 1 x 1 ,X 2 x 2 , ,X n x n )
发生了, 则 p 的取值应使这个事件发生 的概率最大.
在容许范围内选择 p ,使L(p)最大 注意到,ln L(p)是 L 的单调增函数,故若
若 X 为离散型随机变量, 其分布律为
数值
ˆk ( x1 , x 2 , , x n )
称数 ˆ1 L , ˆk 为未知参数 1,L ,k 的估计值 对应统计量 为未知参数 1,L ,k 的估计量
问 如何构造统计量?
题 如何评价估计量的好坏?
常用的点估计方法 频率替换法
利用事件A 在 n 次试验中发生的频率
n A / n 作为事件A 发生的概率 p 的估计量
设 X1, X2,…, Xn为总体的一个样本 构造 k 个统计量:
1( X 1, X 2 , , X n ) 2 ( X 1, X 2 , , X n )
随机变量
k ( X 1, X 2 , , X n )
当测得样本值(x1, x2,…, xn)时,代入上述 统计量,即可得到 k 个数:
ˆ1 ( x1 , x 2 , , x n ) ˆ2 ( x1 , x 2 , , x n )
与方差 2 存在, 则它们的矩估计量分别为
ˆ
1 n
n i1
Xi
X,
ˆ2 1nin1(Xi X)2 Sn2
注意:不是S 2 !
事实上,按矩法原理,令
X1 n
ni1
Xi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 参数估计一、填空题1、总体X 的分布函数为);(θx F ,其中θ为未知参数,则对θ常用的点估计方法有 , 。
2、设总体X 的概率密度为(),(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩而12,,,n X X X L 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为_______3、设321,,X X X 是来自总体X 的简单随机样本,且μ=)(X E ,记3211313131X X X ++=μ,3212214141X X X ++=μ 2132121X X +=μ, 3214414141X X X ++=μ则哪个是μ的有偏估计 ,哪个是μ的较有效估计 。
4、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和极大似然估计量的关系为 。
5、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和最优无偏估计量的关系为 。
6、称统计量),,,(21n X X X T T Λ=为可估函数)(θg 的(弱)一致估计量是指 。
7、判断对错:设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,...,,21是来自该总体的一个样本,设用矩法求得μ的估计量为1ˆμ、用极大似然法求得μ的估计量为2ˆμ,则1ˆμ=2ˆμ。
_________________8、ˆn θ是总体未知参数θ的相合估计量的一个充分条件是_______ .解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 9、已知1021,,x x x Λ是来自总体X 的简单随机样本,μ=EX 。
令∑∑==+=1076181ˆi i i i x A x μ,则当=A 时,μˆ为总体均值μ的无偏估计。
10、 设总体()θ,0~U X ,现从该总体中抽取容量为10的样本,样本值为0.51.30.61.7 2.21.20.81.5 2.01.6, , , , , , , , , 则参数θ的矩估计为 。
11、 设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ .解:1212ˆˆˆˆ()(), ()()E E D D θθθθ=<. 12、设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
13、在参数的区间估计),(21θθ中,当样本容量n 固定时,精度12θθ-提高时,置信度α-1 。
14、设n X X X ,,,21Λ是来自总体)1,(~μN X 的样本,则μ的置信度为0.95的置信区间为 。
15、设n X X X ,,,21Λ是来自总体),(~2σμN X 的样本,其中2σ未知,则μ的置信度为0.95的置信区间为 。
16、设n X X X ,,,21Λ是来自总体),(~2σμN X 的样本,其中μ未知,则2σ的置信度为0.95的置信区间为 。
17、设X 服从参数为λ的指数分布,)2(,,,,21>n X X X n Λ是来自总体X 的样本,X 为其样本均值,则X n λ2服从 分布。
18、设总体服从正态分布)1,(μN ,且μ未知,设n X X X ,...,,21为来自该总体的一个样本,记∑==ni i X n X 11,则μ的置信水平为1α-的置信区间公式是___________________________________;若已知95.01=-α,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取多大_______。
18、为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。
则大学生近视眼所占的百分比的95%的置信区间为 。
19、设总体X 未知参数为λ,X 为样本均值, X N(0,1),则λ的一个双侧近似1-α置信区间为 。
20、设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
21、设总体212~(,),,,...,n X N X X X μσ为样本,μ、2σ 未知,则2σ的置信度为1-α的置信区间为 。
22、设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;=)ˆ(θD 。
23、设总体),(~2σμN X ,若μ和2σ均未知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________;24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二、简述题1、描述矩估计法的原理。
2、描述极大似然估计法的原理。
3、极大似然估计法的一般步骤是什么?4、评价估计量好坏的标准有哪几个?5、什么是无偏估计?6、什么是较有效?7、什么叫有效估计量?8、判断可估函数)(θg 是有效估计量的充要条件是什么? 9、什么是最优无偏估计量?10、什么是一致最小方差无偏估计量?11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。
14、试述评价一个置信区间好坏的标准。
15、描述区间估计中样本容量、精度、置信度的关系。
三、单选题1、设总体未知参数θ的估计量θ)满足()E θθ=),则θ)一定是θ的( )A 极大似然估计B 矩估计C 无偏估计D 有效估计2、设总体未知参数θ的估计量θ)满足()E θθ≠),则θ)一定是θ的( )A 极大似然估计B 矩估计C 有偏估计D 有效估计3、设n X X X ,,,21Λ为来自均值为μ的总体的简单随机样本,则),,2,1(n i X i Λ=( )A .是μ的有效估计量B .是μ的一致估计量C .是μ的无偏估计量D .不是μ的估计量4、估计量的有效性是指( ) A.估计量的抽样方差比较小 B.估计量的抽样方差比较大 C.估计量的置信区间比较宽 D.估计量的置信区间比较窄5、若置信水平保持不变,当增大样本容量时,置信区间( ) A .将变宽 B .将变窄 C .保持不变 D .宽窄无法确定6、一个95%的置信区间是指( ) A .总体参数有95%的概率落在这一区间内 B .总体参数有5%的概率未落在这一区间内C .在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D .在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数7、置信度α-1表示区间估计的( ) A .精确性 B .显著性 C .可靠性 D .准确性8、抽取一个容量为100的随机样本,其均值为x =81,标准差s =12。
总体均值μ的99%的置信区间为( )其中:58.2995.0=U 。
A 81±1.97B 81±2.35C 81±3.09D 81±3.52四、计算题1、设1,,n X X K 是来自总体X 的样本X 的密度函数为,0(),00,0x e x f x x λλλ-⎧>=>⎨≤⎩ 试求λ的极大似然估计量。
2、设总体X 服从参数为λ的泊松分布,求未知参数λ的矩估计量。
3、 设总体X 服从参数为λ的泊松分布,求未知参数λ的有效估计量。
4、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21Λ是来自X 的样本,求θ的矩估计量1θ∧5、设n X X X ,...,,21是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<=elsex xx f ,00,2)(2θθ其中 未知, >0。
试求 的矩估计和极大似然估计。
6、设n X X X ,...,,21 是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<-=else x x xx f ,00),(6)(3θθθ其中θ 未知,0>θ试求θ的矩估计θˆ。
7、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21Λ是来自X 的样本,(1)求θ的矩估计量1θ∧;(2)求θ的最大似然估计量2θ∧;(3)1θ∧和2θ∧是不是θ的无偏估计量(说明原因)?8、设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,,,21Λ为来自总体的一个样本,设∑==n i i X n X 11,∑=-=n i i X X n S 122)(1。
求μ与2σ的极大似然估计量9、设总体X 的概率分布为其中)30(<<θθ是未知参数,利用总体X 的如下样本值0,1,1,0,2,0,2,1,1,2(1)求θ的矩估计值;(2)求θ的最大似然估计值。
10、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21Λ为来自总体X 的简单随机样本,(1) 当1=α时, 求未知参数β的矩估计量; (2) 当1=α时, 求未知参数β的最大似然估计量; (3) 当2=β时, 求未知参数α的最大似然估计量.11、 设)2(,,,21>n X X X n Λ为来自总体N (0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-=求:(1) i Y 的方差(),1,2,,i D Y i n =L ; (2)1Y 与n Y 的协方差).,(1n Y Y Cov(3)若21)(n Y Y c +是2σ的无偏估计量,求常数c.12、设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(1) 求θ的矩估计;(2)求θ的最大似然估计13、设总体X 的概率密度为1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他n X X X ,,,21Λ为来自总体X 的简单随机样本,X 是样本均值.(1)求参数θ的矩估计量θ);(2)判断24X 是否为2θ的无偏估计量,并说明理由.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-.(2)222211141 (4)44[()]4()424E X EX DX EX DX DX n n θθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22 (4)E X θ>.故24X 不是2θ的无偏估计量.14、设总体X 服从)0](,0[>θθ上的均匀分布,n X X X ,...,,21是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他,似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩L 其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥L ,所以{}12ˆmax ,,,n X X X θ=L 是θ的极大似然估计.15、 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,...,,21是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏L L1ln ln(1)ln nii L n x θθ==++∑1ln ln 01ni i d L nx d θθ==++∑@解似然方程得θ的极大似然估计为$1111ln ni i x n θ==-∑.16、设总体的概率密度为101,,(;).0,x x f x θθθ-<<⎧=⎨⎩其它 (0)θ>试用来自总体的样本n X X X ,...,,21,求未知参数θ的矩估计和极大似然估计. 解:先求矩估计1101EX x dx θθμθθ===+⎰111μθμ∴=- 故θ的矩估计为$1X X θ=-再求极大似然估计11111(,,;)()nn n i n i L x x x x x θθθθθ--===∏L L1ln ln (1)ln nii L n x θθ==+-∑1ln ln 0ni i d L n x d θθ==+∑@所以θ的极大似然估计为$111ln ni i x n θ==-∑.17、已知分子运动的速度X 具有概率密度22(),0,0,()0,0.x x f x x αα-⎧>>=≤⎩n X X X ,...,,21为X 的简单随机样本(1)求未知参数α的矩估计和极大似然估计; (2)验证所求得的矩估计是否为α的无偏估计。