第二章 参数估计
数理统计: 参数估计方法

引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ
1 n
n i 1
Xi
X
(
x)
1
e
x
,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi
X
2
;
s
1 n1
n i 1
( xi
第二章 参数估计.pdf

22、设总体 X 在区间 [, +1] 上服从均匀分布,则 的矩估计 ˆ =
;
3
D(ˆ) =
。
23、设总体 X ~ N(, 2 ) ,若 和 2 均未知, n 为样本容量,总体均值 的置 信水平为1 − 的置信区间为 (X − , X + ) ,则 的值为________;
24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置
解: E(ˆ1) = E(ˆ2), D(ˆ1) D(ˆ2) . 12、设ˆ1 和ˆ2 均是未知参数 的无偏估计量,且 E(ˆ12 ) E(ˆ22 ) ,则其中的统计
量 更有效。
13、在参数的区间估计 (1,2 ) 中,当样本容量 n 固定时,精度2 −1 提高时,置
信度1 −
。
14、设 X1, X 2 ,, X n 是来自总体 X ~ N(,1) 的样本,则 的置信度为 0.95 的置
9、什么是最优无偏估计量? 10、什么是一致最小方差无偏估计量? 11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。 14、试述评价一个置信区间好坏的标准。 15、描述区间估计中样本容量、精度、置信度的关系。
三、单选题 1、设总体未知参数 的估计量 满足 E( ) = ,则 一定是 的( )
的关系为
。
6 、 称 统 计 量 T = T ( X1, X 2 ,, X n ) 为 可 估 函 数 g() 的 ( 弱 ) 一 致 估 计 量 是
指
。
7、判断对错:设总体 X ~ N(, 2 ) ,且 与 2 都未知,设 X1, X 2 ,..., X n 是来自
1
该总体的一个样本,设用矩法求得 的估计量为 ˆ1 、用极大似然法求得 的
应用数理统计习题答案_西安交大(论文资料)

应用数理统计答案学号:姓名:班级:目录第一章数理统计的基本概念 (2)第二章参数估计 (14)第三章假设检验 (24)第四章方差分析与正交试验设计 (29)第五章回归分析 (32)第六章统计决策与贝叶斯推断 (35)对应书目:《应用数理统计》施雨著西安交通大学出版社第一章 数理统计的基本概念1.1 解:∵2(,)X N μσ∼ ∴ 2(,)n X N σμ∼∴)(0,1)X N μσ−∼分布∴(1)0.95P X P μ−<=<=又∵ 查表可得0.025 1.96u = ∴ 221.96n σ=1.2 解:(1) ∵ (0.0015)X Exp ∼∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe −−>==−<=−=∫∴ 6个元件都没失效的概率为: 1.267.2()P e e −−==(2) ∵ (0.0015)X Exp ∼∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe−−<===−∫∴ 6个元件没失效的概率为: 4.56(1)P e −=−1.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=−−Π∑==πσμσ1.5证:∵21122)(na a x n x a x ni ni ii+−=−∑∑==∑∑∑===−+−=+−+−=ni i ni i ni i a x n x x naa x n x x x x 1222211)()(222a) 证:)(11111+=+++=∑n ni i n x x n x )(11)(1111n n n n n x x n x x x n n −++=++=++])()1(1 ))((12)[(11)](11[11)(11212111121211212112n n n i n n n i n i n i ni n n n i n i n in x x n n x x x x n x x n x x n x x n x x n S −+++−−+−−+=−+−−+=−+=++=+=+=+=++∑∑∑∑] )(11))1()((12)([112111212n n n n n n n n n x x n x n x x n x x n x x nS n −++−+−+−−++=++++])(11S [1 ])(1[nS 11212n 212n n n n n x x n n n x x n n n −+++=−+++=++ 1.6证明 (1) ∵22112211221()()()2()()()()()nni ii i nni i i i ni i X X X X X X X X X n X X X n X μμμμμ=====−=−+−=−+−−+−=−+−∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====−=−+=−+=−∑∑∑∑∑1.10 解: (1).∑∑====ni i n i i x E n x n E X E 11)(1)1()(p np n=⋅=1np mp x D n x n D X D ni in i i )1()(1)1()(121−===∑∑==))(1()(122∑=−=n i i x x n E S E)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n ni i i n i i n i i −−=+−−+−=+−+=−=−=∑∑∑=== 同理,(2). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni in i i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E ni i i n i i 1)])()(())()(([1])()([1)(2122122−=+−+=−=∑∑==(3). 2)(1)1()(11b a x E n x n E X E ni i n i i +===∑∑==na b x D nx n D X D ni ini i 12)()(1)1()(2121−===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b nn x E x D n x E x D n x nE x E n S E ni i i n i i −⋅−=+−+=−=∑∑==(4). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx nD X D ni ini i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E ni i i n i i −=+−+=−=∑∑==(5). μ===∑∑==ni ini i x E nx nE X E 11)(1)1()(nx D nx nD X D ni i ni i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅−=+−+=−=∑∑==nn x E x D n x E x D n x nE x E n S E ni i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.17 证:),(~ λαΓX ∵xe x xf λαααλ−−Γ=∴1)()( 令kXY =ke ky k k e ky yf kyky ⋅Γ=⋅Γ=∴−−−−λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β∵),()1()( 11b a B x xx f b a −−−=∴),(),( ),()1()( 11b a B b k a B b a B x x x X E b a k k +=−=∴∫∞+∞−−−),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D −=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+−++++= 1.19 解:∵ (,)X F n m ∼分布2212(1)022()((1))((1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m mm ++−−+≤=+≤=<−Γ=+ΓΓ∫2222122221122()()()1((1()()11(1)(1)(,)n n m n m n m n m n m f y P Y y y y yy y yy B ++−−−−′=≤Γ=+ΓΓ−−−−=∴ 22(1)(,)n mn n Y X X m mβ=+∼分布1.20 解:∵ ()X t n ∼分布122212()()((2(1n n P Y y P X y P X xdxn ++−≤=≤=≤≤=+112211221212122()()()(1)()1()(1(()()n n n n n f y P Y y y y n y y nn n +++−−+−−′=≤Γ=+Γ=+ΓΓ∴ 2(1,)2nY X F =∼分布1.21 解: (1) ∵ (8,4)X N ∼分布∴ 4(8,)25X N ∼ 分布,即5(8)(0,1)2X N −∼ ∴ 样本均值落在7.88.2∼分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P −−−≤≤=≤≤=(2) 样本均值落在7.58∼分钟之间的概率为:5(7.58)5(8)5(88)(7.58)(2225(8)(0 1.25)20.3944X P X P X P −−−≤≤=≤≤−=≤≤= 若取100个样品,样本均值落在7.58∼分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)(2222*(0.84130.5)0.6826X P X P −−−≤≤=≤≤=−= 单个样品大于11分钟的概率为:110.77340.2266P =−= 25个样品的均值大于9分钟的概率为210.97980.0202P =−= 100个样品的均值大于8.6分钟的概率为310.99870.0013P =−= 所以第一种情况更有可能发生1.23 解:(1) ∵ 2(0,)X N σ∼分布 ∴ 2(0,X N nσ∼分布∴ 22)(1)nXχσ∼∵ 222221()(ni i nXa X an X an σσ===∑∴ 21a n σ=同理 21b m σ=(2) ∵2(0,)X N σ∼分布 ∴222(1)X χσ∼分布由2χ分布是可加性得:2221()ni i X n χσ=∑∼()ninX c X t m ==∑∼ ∴c =(3) 由(2)可知2221()ni i X n χσ=∑∼2221122211(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∼∴ md n=1.25 证明:∵ 211(,)X N μσ∼分布 ∴ 2211((1)i X μχσ−∼∴ 1221111(()n i i X n μχσ=−∑∼同理 2222212(()n i i Y n μχσ=−∑∼ 1122222112211111222221122112()()(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====−−=−−∑∑∑∑∼ 第二章 参数估计2.1 (1) ∵ ()X Exp λ∼分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为: ˆ1X λ= (2) ∵ (,)X U a b ∼分布∴ ()2a bE X +=2()()12b a D X −=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =−++==∑ (22211n i i X X S n =−=∑)解得a 和b 的矩估计为:ˆˆaX bX =−=(3) 110()1E X x x dx θθθθ−=∗=+∫令 1ˆˆ1A X θθ==+∴ˆ1XXθ=− (4) 110()(1)!kk x kE X x x e dx k βββ−−=∗=−∫令ˆkX β= ∴ ˆkXβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X a a A S X λλλ+==++==+解得λ和a 的矩估计为:ˆˆaX λ==(6) ∵ (,)X B m p ∼ ∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆXpm= 2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p −==−故p 的似然函数为: 1()(1)ni i x nnL p p p =−∑=−对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+−−∑令 1ln ()1()01nii L p n x n p p p =∂=−−=∂−∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它01 1)(Nk N k x p2)(NX E =矩估计: 令 7102=∧N1420=∴∧N 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它07101 1)(NN N L ∵要使)(N L 最大,则710=N710=∴∧N 2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+−Φ=∴=−Φ−∧∧∧−σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=−=R ∵0215.005.04299.05=×==∴∧d Rσ(2)将所有数据分为三组如下所示:1x 2x 3x 4x5x 6x i R1 2.14 2.10 2.15 2.13 2.12 2.13 0.05 2 2.10 2.15 2.12 2.14 2.10 2.13 0.05 32.11 2.14 2.10 2.11 2.15 2.10 0.050197.005.03946.005.0)05.005.005.0(316=×==∴=++=∴∧d R R σ 2.7 解:(1)⎩⎨⎧+<<=其它 01x 1)(θθx f ∵ θθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=−∧θθ(2) θ=−21(X E ∵ 21−=∴∧X θ是θ的无偏估计(3)22))(()())(()(θθθθ−+=−+=∧∧X E X D E D MSE41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i ∵∵2132121X X +=∴∧μ最有效2.9证: )(~λp X ∵ λλ==∴)( )(X D XEX ∵是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计)()1()())1((2*2*S E X E S X E αααα−+=−+∴λλααλ=−+=)1(∴2*)1(SX αα−+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ∗∗+−=+−=+−−=+−−−=+−=− 所以 2(1)X S αα∗+−是λ的无偏估计量2.15 解:因为ˆθ是θ的有效估计量ˆˆˆ()()()E uE a b aE b a b u θθθ=+=+=+= 221ˆˆˆˆ()()()()D u D a b a D a D θθθ=+=≤ (其中,1ˆθ是θ的任意无偏估计量中的一个)所以 ˆu是u 的有效估计量 2.26 解: 因为总体服从正态分布,所以)01X U N μσ−=∼(,)对于给定的1α−,查标准正态分布表可得2u α,使得2()1P U u αα<=−即:22()1P X p X ααα−<<=−区间的长度2d L α=<,所以 22224u n L ασ>2.28 解:因为总体服从正态分布,所以)01X U N μσ−=∼(,), 222(1)nS V n χσ=−∼由因为U 和V 是相互独立的,所以(1)X T t n =−∼对于给定的1α−,查标t 分布表可得t α,使得 2()1P U t αα<=−,即:22()1P X X ααμα<<+=− 当30n =,35X =,15S =时,第一家航空公司平均晚点时间μ的95%的置信区间为:(29.3032,40.6968)对于给定的1α−,查标t 分布表可得t α,使得 ()1P U t αα>=−, 即:()1P X αμα<+=− 故μ的具有单侧置信上限的单侧置信区间为(,)X α−∞+ 所以经计算可得:第一家航空公司的单侧上限置信区间为(,39.7327)−∞第二种航空公司的单侧上限置信区间为(,36.3103)−∞所以选择第二家航空公司。
第二章参数估计

第二章 参数估计【学习目标】1、掌握矩估计的替代原则;会求已知分布中未知参数的矩估计(值)2、熟练掌握极大似然估计的思想及求法3、估计量的评价标准:无偏性、有效性、相合性的定义4、统计量的无偏性的判断;两个无偏估计的有效性判断;会用Fisher 信息量及c-R 下界进行统计量的UMVUE 充分性判断5、掌握区间估计的定义6、单个正态总体均值的区间估计(包括方差已知、方差未知);单个正态总体方差的区间估计(包括均值已知、均值未知)7、两个正态总体均值差的区间估计(方差未知);两个正态总体方差比的区间估计 8、单侧置信区间的求法 【典型例题讲解】例1、设1,,n X X 是来自均匀分布(,1)U θθ+的总体的容量为n 的样本,其中θ-∞<<+∞为未知参数,试证:θ的极大似然估计量不止一个,例如1(1)ˆXθ=,2()ˆ1n X θ=-,3(1)()11ˆ()22n XXθ=+-都是θ的极大似然估计。
解:(,1)U θθ+分布的密度函数为11()0x f x θθ≤≤+⎧=⎨⎩其他似然函数(1)()11()0n x x L θθθ≤≤≤+⎧=⎨⎩其他由于在(1)()1n x x θθ≤≤≤+上()L θ为常数,所以凡是满足:(1)()ˆˆ1n x x θθ≤≤≤+的ˆθ均为θ的极大似然估计。
从而(1)1(1)ˆX θ=满足此条件,故1(1)ˆX θ=是θ的极大似然估计;(2)由于()(1)1n X X -≤,故2()(1)()2ˆˆ11n n X X X θθ=-≤≤=+,所以2()ˆ1n Xθ=-为θ的极大似然估计;(3)由于()(1)1n X X -≤,故(1)()(1)12n X X X +-≤,(1)()()12n n X X X ++≥,从而有3(1)()(1)()(1)()31111ˆˆ()()12222n n n XXXXXXθθ=+-≤≤≤++=+,故3ˆθ也为θ的极大似然估计。
应用多元统计分析 第二章正态分布的参数估计答案

练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
数值分析答案第二章参数估计习题

f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ
−
x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =
用
X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α
第二章 参数估计

0
x 2de
x
2xe
x
dx
2
xde
x
0
x
0
0
2 e dx 2 2
0
9
例4:设X1, … , Xn为取自 N ( , 2 ) 总体的
样本,求参数 , 2 的矩估计。
: E( X ) D( X ) 2 E( X 2 ) [E( X )]2
极大似然法是由德国数学家G.F.Gauss在1821年提 出的.然而这个方法通常归于英国统计学家 R.A.Fisher,因为他在1912年里发现了这一方法,并 且首先研究了这种方法的性质.
设总体的密度函数为f(x,θ), θ为待估参数,θ∈Θ,Θ
为参数空间.当给定样本观察值 x (x1, x2 , xn )后,f(x,
以随便给的,所以根据统计思想建立各种点估计方法
和评价点估计的好坏标准便是估计问题的研究中心.
这里先介绍三个常用的标准:无偏性、有效性和一致
性.
1
有效性
^
^
设 i i ( X1,, X n ), i 1, 2分别是参数 的两个无偏估计,
^
^
^
^
若D 1 D 2 至少有一个n使 成立 , 则称 1比 2 有效.
总体k阶矩 样本k阶矩
k E(Xk )
Ak
1 n
n i 1
X
k i
的矩估计量是
约定:若
是未知参数的矩估计,则u()的矩
估计为u(
),
6
例2、:设X1, … , Xn为取自参数为的指数分布 总体的样本,求的矩估计。
参数估计2

n
e n
i
x !
i 1 n i 1
ii ) ln L( x1 , x 2 ,..., x n ; ) xi ln n ln xi !
i 1
xi ln L( x1 , x2 ,...,xn ; ) i 1 n 0 iii)令 : 1 n iv)解之得 : xi x为 的极大似然估计值 , n i 1 1 n X i X 为 的极大似然估计量 . n i 1
(1)正态分布N (u, 2 ) (2)指数分布Z ( ) (3)均匀分布U (a, b) (4)二项分布B(n, p) (3)泊松分布 ( ) 试求其中未知参数的矩 估计. 解 : (1)
因为X ~ N ( , 2 ), E ( X ) , D( X ) 2 故有 X ,
注2
若 为 的矩估计量, g ( )为 的连续函数, 亦称g ( )为g ( )
2 2 例如S n 为总体方差D( X )的矩估计量, 则S n S n 为标准差 D( X )
的矩估计量. 的矩估计量.
例1.1
设X 1 , X 2 ,..., X n为来自正态总体 X 的样本, X的分布为
i 1 n n
( X为连续型)
(1.4) (1.5)
或
L( x1 , x2 ,..., xn ) PX i xi ;
i 1
( X为离散型)
达到最大值
L( x1 , x2 ,..., xn ; ) max L( x1 , x2 ,..., xn ; )
(1) 利用求导法求极大然估 计步骤 i )建立似然函数: L( x1 , x 2 ,..., x n ; 1 , 2 ,..., r ) f ( xi ; 1 , 2 ,..., r )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 参数估计一、填空题1、总体X 的分布函数为);(θx F ,其中θ为未知参数,则对θ常用的点估计方法有 , 。
2、设总体X 的概率密度为(),(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为_______3、设321,,X X X 是来自总体X 的简单随机样本,且μ=)(X E ,记3211313131X X X ++=μ,3212214141X X X ++=μ 2132121X X +=μ, 3214414141X X X ++=μ则哪个是μ的有偏估计 ,哪个是μ的较有效估计 。
4、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和极大似然估计量的关系为 。
5、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和最优无偏估计量的关系为 。
6、称统计量),,,(21n X X X T T =为可估函数)(θg 的(弱)一致估计量是指 。
7、判断对错:设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,...,,21是来自该总体的一个样本,设用矩法求得μ的估计量为1ˆμ、用极大似然法求得μ的估计量为2ˆμ,则1ˆμ=2ˆμ。
_________________8、ˆn θ是总体未知参数θ的相合估计量的一个充分条件是_______ .解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 9、已知1021,,x x x 是来自总体X 的简单随机样本,μ=EX 。
令∑∑==+=1076181ˆi i i i x A x μ,则当=A 时,μˆ为总体均值μ的无偏估计。
10、 设总体()θ,0~U X ,现从该总体中抽取容量为10的样本,样本值为0.51.30.61.7 2.21.20.81.5 2.01.6, , , , , , , , , 则参数θ的矩估计为 。
11、 设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ .解:1212ˆˆˆˆ()(), ()()E E D D θθθθ=<. 12、设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
13、在参数的区间估计),(21θθ中,当样本容量n 固定时,精度12θθ-提高时,置信度α-1 。
14、设n X X X ,,,21 是来自总体)1,(~μN X 的样本,则μ的置信度为0.95的置信区间为 。
15、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则μ的置信度为0.95的置信区间为 。
16、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中μ未知,则2σ的置信度为0.95的置信区间为 。
17、设X 服从参数为λ的指数分布,)2(,,,,21>n X X X n 是来自总体X 的样本,X 为其样本均值,则X n λ2服从 分布。
18、设总体服从正态分布)1,(μN ,且μ未知,设n X X X ,...,,21为来自该总体的一个样本,记∑==ni i X n X 11,则μ的置信水平为1α-的置信区间公式是___________________________________;若已知95.01=-α,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取多大_______。
18、为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。
则大学生近视眼所占的百分比的95%的置信区间为 。
19、设总体X 未知参数为λ,X 为样本均值, X N(0,1),则λ的一个双侧近似1-α置信区间为 。
20、设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
21、设总体212~(,),,,...,n X N X X X μσ为样本,μ、2σ 未知,则2σ的置信度为1-α的置信区间为 。
22、设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;=)ˆ(θD 。
23、设总体),(~2σμN X ,若μ和2σ均未知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________;24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二、简述题1、描述矩估计法的原理。
2、描述极大似然估计法的原理。
3、极大似然估计法的一般步骤是什么?4、评价估计量好坏的标准有哪几个?5、什么是无偏估计?6、什么是较有效?7、什么叫有效估计量?8、判断可估函数)(θg 是有效估计量的充要条件是什么? 9、什么是最优无偏估计量?10、什么是一致最小方差无偏估计量?11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。
14、试述评价一个置信区间好坏的标准。
15、描述区间估计中样本容量、精度、置信度的关系。
三、单选题1、设总体未知参数θ的估计量θ满足()E θθ=,则θ一定是θ的( )A 极大似然估计B 矩估计C 无偏估计D 有效估计2、设总体未知参数θ的估计量θ满足()E θθ≠,则θ一定是θ的( )A 极大似然估计B 矩估计C 有偏估计D 有效估计3、设n X X X ,,,21 为来自均值为μ的总体的简单随机样本,则),,2,1(n i X i =( )A .是μ的有效估计量B .是μ的一致估计量C .是μ的无偏估计量D .不是μ的估计量4、估计量的有效性是指( ) A.估计量的抽样方差比较小 B.估计量的抽样方差比较大 C.估计量的置信区间比较宽 D.估计量的置信区间比较窄5、若置信水平保持不变,当增大样本容量时,置信区间( ) A .将变宽 B .将变窄 C .保持不变 D .宽窄无法确定6、一个95%的置信区间是指( ) A .总体参数有95%的概率落在这一区间内 B .总体参数有5%的概率未落在这一区间内C .在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D .在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数7、置信度α-1表示区间估计的( ) A .精确性 B .显著性 C .可靠性D .准确性8、抽取一个容量为100的随机样本,其均值为x =81,标准差s =12。
总体均值μ的99%的置信区间为( )其中:58.2995.0=U 。
A 81±1.97B 81±2.35C 81±3.09D 81±3.52四、计算题 1、设1,,n X X 是来自总体X 的样本X 的密度函数为,0(),00,0x e x f x x λλλ-⎧>=>⎨≤⎩ 试求λ的极大似然估计量。
2、设总体X 服从参数为λ的泊松分布,求未知参数λ的矩估计量。
3、 设总体X 服从参数为λ的泊松分布,求未知参数λ的有效估计量。
4、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21 是来自X 的样本,求θ的矩估计量1θ∧5、设n X X X ,...,,21是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<=elsex xx f ,00,2)(2θθ其中 未知, >0。
试求 的矩估计和极大似然估计。
6、设n X X X ,...,,21 是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<-=else x x xx f ,00),(6)(3θθθ 其中θ 未知,0>θ试求θ的矩估计θˆ。
7、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21 是来自X 的样本,(1)求θ的矩估计量1θ∧;(2)求θ的最大似然估计量2θ∧;(3)1θ∧和2θ∧是不是θ的无偏估计量(说明原因)?8、设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,,,21 为来自总体的一个样本,设∑==n i i X n X 11,∑=-=n i i X X n S 122)(1。
求μ与2σ的极大似然估计量9、设总体X 的概率分布为其中)30(<<θθ是未知参数,利用总体X 的如下样本值0,1,1,0,2,0,2,1,1,2(1)求θ的矩估计值;(2)求θ的最大似然估计值。
10、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(1) 当1=α时, 求未知参数β的矩估计量; (2) 当1=α时, 求未知参数β的最大似然估计量; (3) 当2=β时, 求未知参数α的最大似然估计量.11、 设)2(,,,21>n X X X n 为来自总体N (0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1) i Y 的方差(),1,2,,i D Y i n =;(2)1Y 与n Y 的协方差).,(1n Y Y Cov(3)若21)(n Y Y c +是2σ的无偏估计量,求常数c.12、设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(1) 求θ的矩估计;(2)求θ的最大似然估计13、设总体X 的概率密度为1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他n X X X ,,,21 为来自总体X 的简单随机样本,X 是样本均值.(1)求参数θ的矩估计量θ;(2)判断24X 是否为2θ的无偏估计量,并说明理由.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-.(2)222211141 (4)44[()]4()424E X EX DX EX DX DX n n θθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22 (4)E X θ>.故24X 不是2θ的无偏估计量.14、设总体X 服从)0](,0[>θθ上的均匀分布,n X X X ,...,,21是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他,似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.15、 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,...,,21是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1l n l n (1)l nnii L n x θθ==++∑1ln ln 01nii d L nx d θθ==++∑解似然方程得θ的极大似然估计为1111ln ni i x n θ==-∑.16、设总体的概率密度为101,,(;).0,x x f x θθθ-<<⎧=⎨⎩其它 (0)θ>试用来自总体的样本n X X X ,...,,21,求未知参数θ的矩估计和极大似然估计. 解:先求矩估计1101E X x d xθθμθθ===+⎰111μθμ∴=- 故θ的矩估计为1XX θ=-再求极大似然估计11111(,,;)()nn n i n i L x x x x x θθθθθ--===∏1l n l n (1)l nnii L n x θθ==+-∑1ln ln 0nii d L n x d θθ==+∑所以θ的极大似然估计为111ln ni i x n θ==-∑.17、已知分子运动的速度X 具有概率密度22(),0,0,()0,0.x x f x x αα-⎧>>=≤⎩n X X X ,...,,21为X 的简单随机样本(1)求未知参数α的矩估计和极大似然估计; (2)验证所求得的矩估计是否为α的无偏估计。