第二章---参数估计
数理统计: 参数估计方法

引例
设总体 X 服从参数为 的指数分布, 未知,
X1 , X 2 , , X n 是来自X的样本, x1 , x2 , , xn 是
相应的样本值,求 的矩估计量和矩估计值.
解 因为 E( X ) 所以 用样本矩替换总体矩, 得 的矩估计量
ˆ
1 n
n i 1
Xi
X
(
x)
1
e
x
,
x0
0,
其他.
但参数 未知。已知参数的取值范围,记为 。
给出样本的一组观察值,如何推断总体的分布?
【思路】给出 的估计,则得到对总体分布的推断。
【方法】根据一定的原则,从 中找到一个值(点) 作为的 估计。
点估计
2
点估计定义
设总体 X 的分布函数 F ( x; ) 的形式为已知,
的估计量.
4
二、估计量的评选标准 1. 无偏性
定义 若 X1, X 2 ,, X n 为总体 X 的一个样本,
是包含在总体 X 的分布中的待估参数, 若估计量ˆ ˆ( X1 , X 2 ,, X n )的数学期望 E(ˆ) 存在, 且对于任意 有
E(ˆ) 则称ˆ 是 的无偏估计量,否则称为有偏的.
(2) lim S 2 2 a.s. (强大数定律) n
即样本方差是总体方差2的强相合估计, 也是相合估计.
12
C. 样本标准差
其观察值:
S
S2
1 n1
n i 1
Xi
X
2
;
s
1 n1
n i 1
( xi
第二章参数估计(作业)

3 . 7 0 3 . 3 0
3 . 2 8 3 . 0 5
3 . 3 5 3 . 3 3
3 . 2 0 3 . 2 7
3 . 1 2 3 . 2 8
3 . 2 5 3 . 2 5
2 。构造两个总体方差比 1
2 的 95%的置信区间。 2
2 答案: 已知, x1 =3.33, =0.006, 根据自由度 n1=21-1=20 和 n2=21-1=20, x 2 =3.27, s12 =0.06, s2
z 2
s =3.31± 0.53,则该校大学生平均上网时间 n
的置信区间为(2.78,3.84) 。 当置信水平为 99%时,z/2=2.58 , x 的置信区间为(2.62,0.69,则该校大学生平均上网时间 n
3、在一项家电市场调查中,随机抽取了 200 个居民户,调查他们是否拥有某一品牌的电视 机。其中拥有该品牌电视机的家庭占 23%。求总体比例的置信区间,置信水平分别为 90% 和 95%。 答案:已知 n=200,P=23%,则
第二章参数估计
1、某快餐店想要估计每位顾客午餐的平均花费金额,在为期 3 周的时间里选取 49 名顾客
组成了一个简单随机样本。 (1) 假定总体标准差为 15 元,求样本均值的抽样标准误差; (2) 在 95%的置信水平下,求边际误差; (3) 如果样本均值为 120 元,求总体均值 的 95%的置信区间。
6、生产工序的方差是工序质量的一个重要度量。当方差较大时,需要对工序进行改进以减 小方差。两部机器生产的袋茶重量(单位:g)的数据如下:
机 3 3 器 . . 1 4 2 5 0 机 3 3 器 . . 2 2 3 2 8
3 . 2 2 3 . 3 0
第二章 参数估计.pdf

22、设总体 X 在区间 [, +1] 上服从均匀分布,则 的矩估计 ˆ =
;
3
D(ˆ) =
。
23、设总体 X ~ N(, 2 ) ,若 和 2 均未知, n 为样本容量,总体均值 的置 信水平为1 − 的置信区间为 (X − , X + ) ,则 的值为________;
24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置
解: E(ˆ1) = E(ˆ2), D(ˆ1) D(ˆ2) . 12、设ˆ1 和ˆ2 均是未知参数 的无偏估计量,且 E(ˆ12 ) E(ˆ22 ) ,则其中的统计
量 更有效。
13、在参数的区间估计 (1,2 ) 中,当样本容量 n 固定时,精度2 −1 提高时,置
信度1 −
。
14、设 X1, X 2 ,, X n 是来自总体 X ~ N(,1) 的样本,则 的置信度为 0.95 的置
9、什么是最优无偏估计量? 10、什么是一致最小方差无偏估计量? 11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。 14、试述评价一个置信区间好坏的标准。 15、描述区间估计中样本容量、精度、置信度的关系。
三、单选题 1、设总体未知参数 的估计量 满足 E( ) = ,则 一定是 的( )
的关系为
。
6 、 称 统 计 量 T = T ( X1, X 2 ,, X n ) 为 可 估 函 数 g() 的 ( 弱 ) 一 致 估 计 量 是
指
。
7、判断对错:设总体 X ~ N(, 2 ) ,且 与 2 都未知,设 X1, X 2 ,..., X n 是来自
1
该总体的一个样本,设用矩法求得 的估计量为 ˆ1 、用极大似然法求得 的
第二章 多元正态分布及参数的估计

27
北大数学学院
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的定义与基本性质—简单例子
y BxB
0 0 1
1 0 0
100 110
1 2 0
003 100
0 0 1
1 0 0
1 0 1
2 0 1
003 100
2
北大数学学院
第二章 多元正态分布及参数的估计
目录
§2.1 随机向量 §2.2 多元正态分布的定义与
基本性质
§2.3 条件分布和独立性 §2.4 随机矩阵的正态分布 §2.5 多元正态分布的参数估计
3
北大数学学院
第二章 多元正态分布及参数的估计
§2.1 随 机 向
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2的推论
例2.1.1
f (x1, x2
()X1,X212)的e联 12合( x12密 x22度) [1函数x为1 x2e
1 2
(
x12
x22
)
]
我们从后面将给出的正态随机向量的联合密
度函数的形式可知, (X1,X2)不是二元正态随机向 量.但通过计算边缘分布可得出:
本节有关随机向量的一些概念(联合分布, 边缘分布,条件分布,独立性;X的均值向量,X 的协差阵和相关阵,X与Y的协差阵)要求大家 自已复习.
三﹑ 均值向量和协方差阵的性质 (1) 设X,Y为随机向量,A,B为常数阵,则
E(AX)=A·E(X) E(AXB)=A·E(X)·B
6
第二章参数估计

第二章 参数估计【学习目标】1、掌握矩估计的替代原则;会求已知分布中未知参数的矩估计(值)2、熟练掌握极大似然估计的思想及求法3、估计量的评价标准:无偏性、有效性、相合性的定义4、统计量的无偏性的判断;两个无偏估计的有效性判断;会用Fisher 信息量及c-R 下界进行统计量的UMVUE 充分性判断5、掌握区间估计的定义6、单个正态总体均值的区间估计(包括方差已知、方差未知);单个正态总体方差的区间估计(包括均值已知、均值未知)7、两个正态总体均值差的区间估计(方差未知);两个正态总体方差比的区间估计 8、单侧置信区间的求法 【典型例题讲解】例1、设1,,n X X 是来自均匀分布(,1)U θθ+的总体的容量为n 的样本,其中θ-∞<<+∞为未知参数,试证:θ的极大似然估计量不止一个,例如1(1)ˆXθ=,2()ˆ1n X θ=-,3(1)()11ˆ()22n XXθ=+-都是θ的极大似然估计。
解:(,1)U θθ+分布的密度函数为11()0x f x θθ≤≤+⎧=⎨⎩其他似然函数(1)()11()0n x x L θθθ≤≤≤+⎧=⎨⎩其他由于在(1)()1n x x θθ≤≤≤+上()L θ为常数,所以凡是满足:(1)()ˆˆ1n x x θθ≤≤≤+的ˆθ均为θ的极大似然估计。
从而(1)1(1)ˆX θ=满足此条件,故1(1)ˆX θ=是θ的极大似然估计;(2)由于()(1)1n X X -≤,故2()(1)()2ˆˆ11n n X X X θθ=-≤≤=+,所以2()ˆ1n Xθ=-为θ的极大似然估计;(3)由于()(1)1n X X -≤,故(1)()(1)12n X X X +-≤,(1)()()12n n X X X ++≥,从而有3(1)()(1)()(1)()31111ˆˆ()()12222n n n XXXXXXθθ=+-≤≤≤++=+,故3ˆθ也为θ的极大似然估计。
应用多元统计分析 第二章正态分布的参数估计答案

练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
数值分析答案第二章参数估计习题

f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ
−
x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =
用
X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α
第二章 参数估计

0
x 2de
x
2xe
x
dx
2
xde
x
0
x
0
0
2 e dx 2 2
0
9
例4:设X1, … , Xn为取自 N ( , 2 ) 总体的
样本,求参数 , 2 的矩估计。
: E( X ) D( X ) 2 E( X 2 ) [E( X )]2
极大似然法是由德国数学家G.F.Gauss在1821年提 出的.然而这个方法通常归于英国统计学家 R.A.Fisher,因为他在1912年里发现了这一方法,并 且首先研究了这种方法的性质.
设总体的密度函数为f(x,θ), θ为待估参数,θ∈Θ,Θ
为参数空间.当给定样本观察值 x (x1, x2 , xn )后,f(x,
以随便给的,所以根据统计思想建立各种点估计方法
和评价点估计的好坏标准便是估计问题的研究中心.
这里先介绍三个常用的标准:无偏性、有效性和一致
性.
1
有效性
^
^
设 i i ( X1,, X n ), i 1, 2分别是参数 的两个无偏估计,
^
^
^
^
若D 1 D 2 至少有一个n使 成立 , 则称 1比 2 有效.
总体k阶矩 样本k阶矩
k E(Xk )
Ak
1 n
n i 1
X
k i
的矩估计量是
约定:若
是未知参数的矩估计,则u()的矩
估计为u(
),
6
例2、:设X1, … , Xn为取自参数为的指数分布 总体的样本,求的矩估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 参数估计一、填空题1、总体X 的分布函数为);(θx F ,其中θ为未知参数,则对θ常用的点估计方法有 , 。
2、设总体X 的概率密度为(),(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为_______3、设321,,X X X 是来自总体X 的简单随机样本,且μ=)(X E ,记3211313131X X X ++=μ,3212214141X X X ++=μ 2132121X X +=μ, 3214414141X X X ++=μ则哪个是μ的有偏估计 ,哪个是μ的较有效估计 。
4、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和极大似然估计量的关系为 。
5、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和最优无偏估计量的关系为 。
6、称统计量),,,(21n X X X T T =为可估函数)(θg 的(弱)一致估计量是指 。
7、判断对错:设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,...,,21是来自该总体的一个样本,设用矩法求得μ的估计量为1ˆμ、用极大似然法求得μ的估计量为2ˆμ,则1ˆμ=2ˆμ。
_________________8、ˆn θ是总体未知参数θ的相合估计量的一个充分条件是_______ .解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 9、已知1021,,x x x 是来自总体X 的简单随机样本,μ=EX 。
令∑∑==+=1076181ˆi i i i x A x μ,则当=A 时,μˆ为总体均值μ的无偏估计。
10、 设总体()θ,0~U X ,现从该总体中抽取容量为10的样本,样本值为0.51.30.61.7 2.21.20.81.5 2.01.6, , , , , , , , , 则参数θ的矩估计为 。
11、 设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ .解:1212ˆˆˆˆ()(), ()()E E D D θθθθ=<. 12、设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
13、在参数的区间估计),(21θθ中,当样本容量n 固定时,精度12θθ-提高时,置信度α-1 。
14、设n X X X ,,,21 是来自总体)1,(~μN X 的样本,则μ的置信度为0.95的置信区间为 。
15、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则μ的置信度为0.95的置信区间为 。
16、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中μ未知,则2σ的置信度为0.95的置信区间为 。
17、设X 服从参数为λ的指数分布,)2(,,,,21>n X X X n 是来自总体X 的样本,X 为其样本均值,则X n λ2服从 分布。
18、设总体服从正态分布)1,(μN ,且μ未知,设n X X X ,...,,21为来自该总体的一个样本,记∑==ni i X n X 11,则μ的置信水平为1α-的置信区间公式是___________________________________;若已知95.01=-α,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取多大_______。
18、为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。
则大学生近视眼所占的百分比的95%的置信区间为 。
19、设总体X 未知参数为λ,X 为样本均值, X N(0,1),则λ的一个双侧近似1-α置信区间为 。
20、设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
21、设总体212~(,),,,...,n X N X X X μσ为样本,μ、2σ 未知,则2σ的置信度为1-α的置信区间为 。
22、设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;D。
)ˆ(θ=23、设总体),(~2σμN X ,若μ和2σ均未知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________;24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二、简述题1、描述矩估计法的原理。
2、描述极大似然估计法的原理。
3、极大似然估计法的一般步骤是什么?4、评价估计量好坏的标准有哪几个?5、什么是无偏估计?6、什么是较有效?7、什么叫有效估计量?8、判断可估函数)(θg 是有效估计量的充要条件是什么? 9、什么是最优无偏估计量?10、什么是一致最小方差无偏估计量?11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。
14、试述评价一个置信区间好坏的标准。
15、描述区间估计中样本容量、精度、置信度的关系。
三、单选题1、设总体未知参数θ的估计量θ满足()E θθ=,则θ一定是θ的( ) A 极大似然估计 B 矩估计 C 无偏估计 D 有效估计2、设总体未知参数θ的估计量θ满足()E θθ≠,则θ一定是θ的( )A 极大似然估计B 矩估计C 有偏估计D 有效估计3、设n X X X ,,,21 为来自均值为μ的总体的简单随机样本,则),,2,1(n i X i =( )A .是μ的有效估计量B .是μ的一致估计量C .是μ的无偏估计量D .不是μ的估计量4、估计量的有效性是指( ) A.估计量的抽样方差比较小 B.估计量的抽样方差比较大 C.估计量的置信区间比较宽 D.估计量的置信区间比较窄5、若置信水平保持不变,当增大样本容量时,置信区间( ) A .将变宽 B .将变窄 C .保持不变 D .宽窄无法确定6、一个95%的置信区间是指( ) A .总体参数有95%的概率落在这一区间内 B .总体参数有5%的概率未落在这一区间内C .在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D .在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数7、置信度α-1表示区间估计的( ) A .精确性 B .显著性 C .可靠性 D .准确性8、抽取一个容量为100的随机样本,其均值为x =81,标准差s =12。
总体均值μ的99%的置信区间为( )其中:58.2995.0=U 。
A 81±1.97B 81±2.35C 81±3.09D 81±3.52四、计算题 1、设1,,n X X 是来自总体X 的样本X 的密度函数为,0(),00,0x e x f x x λλλ-⎧>=>⎨≤⎩试求λ的极大似然估计量。
2、设总体X 服从参数为λ的泊松分布,求未知参数λ的矩估计量。
3、 设总体X 服从参数为λ的泊松分布,求未知参数λ的有效估计量。
4、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21 是来自X 的样本,求θ的矩估计量1θ∧5、设n X X X ,...,,21是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<=elsex xx f ,00,2)(2θθ其中 未知, >0。
试求 的矩估计和极大似然估计。
6、设n X X X ,...,,21 是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<-=else x x xx f ,00),(6)(3θθθ 其中θ 未知,0>θ 试求θ的矩估计θˆ。
7、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21 是来自X 的样本,(1)求θ的矩估计量1θ∧;(2)求θ的最大似然估计量2θ∧;(3)1θ∧和2θ∧是不是θ的无偏估计量(说明原因)?8、设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,,,21 为来自总体的一个样本,设∑==n i i X n X 11,∑=-=n i i X X n S 122)(1。
求μ与2σ的极大似然估计量9、设总体X 的概率分布为其中)30(<<θθ是未知参数,利用总体X 的如下样本值0,1,1,0,2,0,2,1,1,2(1)求θ的矩估计值;(2)求θ的最大似然估计值。
10、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(1) 当1=α时, 求未知参数β的矩估计量; (2) 当1=α时, 求未知参数β的最大似然估计量; (3) 当2=β时, 求未知参数α的最大似然估计量.11、 设)2(,,,21>n X X X n 为来自总体N (0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1) i Y 的方差(),1,2,,i D Y i n =;(2)1Y 与n Y 的协方差).,(1n Y Y Cov(3)若21)(n Y Y c +是2σ的无偏估计量,求常数c.12、设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(1) 求θ的矩估计;(2)求θ的最大似然估计13、设总体X 的概率密度为1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他n X X X ,,,21 为来自总体X 的简单随机样本,X 是样本均值.(1)求参数θ的矩估计量θ;(2)判断24X 是否为2θ的无偏估计量,并说明理由.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-.(2)222211141 (4)44[()]4()424E X EX DX EX DX DX n n θθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22 (4)E X θ>.故24X 不是2θ的无偏估计量.14、设总体X 服从)0](,0[>θθ上的均匀分布,n X X X ,...,,21是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他,似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.15、 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,...,,21是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n x θθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为1111ln ni i x n θ==-∑.16、设总体的概率密度为101,,(;).0,x x f x θθθ-<<⎧=⎨⎩其它 (0)θ>试用来自总体的样本n X X X ,...,,21,求未知参数θ的矩估计和极大似然估计. 解:先求矩估计1101EX x dx θθμθθ===+⎰111μθμ∴=- 故θ的矩估计为1XX θ=-再求极大似然估计11111(,,;)()nn n i n i L x x x x x θθθθθ--===∏1ln ln (1)ln nii L n x θθ==+-∑1ln ln 0nii d L n x d θθ==+∑所以θ的极大似然估计为111ln ni i x n θ==-∑.17、已知分子运动的速度X 具有概率密度22(),0,0,()0,0.x x f x x αα-⎧>>=≤⎩n X X X ,...,,21为X 的简单随机样本(1)求未知参数α的矩估计和极大似然估计; (2)验证所求得的矩估计是否为α的无偏估计。