深度学习ppt

合集下载

深度学习PPT课件

深度学习PPT课件
3
.
深度学习(DL)
BP 神经网络(BPNNs)网络存在的主要问题: 1. 一般要得到较好的训练效果,隐层数目不能
太少,当图片大的时候,需要的权值会非常多; 2. 对平移、尺度变化敏感(比如数字偏左上角,
右下角时即识别失败); 3. 图片在相邻区域是相关的,而这种网络只是
一股脑把所有像素扔进去,没有考虑图片相关 性。
一般的语音识别多提取每帧长25ms、帧移 10ms的语音对应的MFCC特征,该文提取使用 fBank特征。
8
.
CNN CNN结构图:
9
.
CNN
输入图像: 28*28
卷积层: 均为5*5
采样核大 小:均为 2*2。
在Toolbox的实现中,C1共有6个卷积核,则卷积结果6个特征map;卷 积层的一个map与上层的所有map都关联,如上图的S2和C3,即C3共 有6*12个卷积核,
CNN经典程序下 载:https:///rasmusbergpalm/DeepLearnToolbox
7
.
语音识别
参考:《基于深度学习的语音识别应用研究_ 张建华》
该文献通过深度神经网络提取语音特征的方法、 深度神经网络提取声韵母属性的方法、深度学 习搭建声学模型的方法对比;
假设上一层的map大 小是n*n、卷积核的 大小是k*k,则该层 的map大小是(nk+1)*(n-k+1),比如 上图的24*24的map 大小24=(28-5+1)。
参见网址:/lu597203933/article/details/46575871
11
1991, 通过无导学习的深度学习(Deep Learning,DL)在 实际中可以运用;

深度学习介绍 ppt课件

深度学习介绍 ppt课件

自编码器的建立
建立AutoEncoder的方法是:
对于m个数据的输入,有:
Code编码:使用非线性激活函数,将维输入数据映射到维隐含层(隐含节点表示特 征)
其中W是一个的权重矩阵,b是一个d'维的偏移向量 Decode解码:通过反向映射,对映射后的数据进行重建
hi
yi
SAE网络每一次训练输入都会得到映射后的 与解码后的 。通过对代价函数的最优
深层带来的好处
为什么采用层次网络
预训练与梯度消失现象
主要内容
自编码器结构
单层自动编码器网络(AutoEncoder)实质上是一个三层的反向传播神经网络。它逐 层采用无监督学习的方式,不使用标签调整权值,将输入映射到隐含层上,再经过反 变换映射到输出上,实现输入输出的近似等价。
X1 X2 X3 X4 X5 +1
RBM网络有几个参数,一个是可视层与隐含 层之间的权重矩阵,一个是可视节点的偏移 量b,一个是隐含节点的偏移量c,这几个参 数决定了RBM网络将一个m维的样本编码成 一个什么样的n维的样本。
受限玻尔兹曼机
RBM介绍

RBM训练
一般地,链接权重Wij可初始化为来自正态分布N(0,0.01)的随机数,隐 单元的偏置cj初始化为0; 对于第i个可见单元,偏置bj初始化为log[pi/(1-pi)] 。pi表示训练样本中 第i个特征处于激活状态所占的比率 学习率epsilon至关重要,大则收敛快,但是算法可能不稳定。小则 慢。为克服这一矛盾引入动量,使本次参数值修改的方向不完全由当 前样本似然函数梯度方向决定,而是上一次参数值修改方向与本次梯 度方向的结合可以避免过早的收敛到局部最优点
激活函数
y f (x)

深度学习.ppt

深度学习.ppt

B
5
教学设计中:
首先应该设计出学生学习可以积极参与的学习活动; 如采用基于问题的教学设计,不仅要设计好大的问题, 更要设计好小的问题,这样才能不断的激发学生深入的 去思考,并且注意时时生成新的问题;如任务驱动的教 学设计尽量的让任务情景与学生的生活联系起来,这样 既可以保持学生的参与积极性,同时也更利于学生运用 学生所学的知识。(考验教师课堂掌控能力)
B
6
《义务教育数学课程标准(2011年版)》在总目标中 提出了“四基”“四能”的要求。同时提出了十大核心 词,如果简称为“十核”的话,那么总体上现行的义务 教育数学核心素养及目标是“四基”“四能”“十核”。
十核:分别是数感、符号意识、空间观念、几何直观、
数据分析观念、运算能力、推理能力、模型思想、应用
如何理解深度学习? 怎样做才是走进核心素养?
B
1
B
2
我所理解的深度学习
所谓深度学习:是指在理解学习的基础上学习者能 够批判的学习新的思想和事实,并把它们融入原有的 认知结构中,能将已有的知识迁移到新的情景中去, 并作出决策和解决问题的学习。( 知识建构的过程 )
它鼓励学习者积极地探索、反思和创造,而不是反 复的记忆。我们可以把深度学习理解为一种 基于理解 的学习。
意识和创新意识。如何在教学中落实,是我们所思考的。
B
7
教师在教学过程中应激发学生学习的兴趣,调动学生学习 的积极性主动性,引发学生进行数学思考,鼓励学生的创造 性思维,注意培养学生良好的数学学习习惯,使学生掌握恰 当的数学学习方法。这样学生的学习才能是一个生动活泼、 主动的、富有个性的过程。
试问在这样的学习过程中学生又怎么能不爱上数学学习呢?
B
8

《机器学习与深度学习》PPT课件讲义

《机器学习与深度学习》PPT课件讲义

训练神经元网络 -- Back Propagation
梯度下降迭代算法
输出层误差: δki 隐含层误差: smi
BP 算法
初始化参数 θ 两阶段算法: Two-Pass
前向 Forward-Pass: 给定参数,计算输出值 后向 Backward-Pass: 计算输出层误差, 计算隐含层误差,更新
• 一个BN 是一个由随机变量 组成的有向非循环图
• 一部分变量为可观察已知 变量
• 如何由已知变量推断出非 观察变量的状态
• 调整变量之间连接的参数 优化:最大可能重新生成 观察变量
可信任, 信任什么?
随机的二元单元
(Bernoulli variables)
• 隐含层的神经元的状态 为0或1
• 该神经元激活的概率为 输入层加权和的 sigmoid 函数
什么为最佳匹配?
参数估计方法一: 最小化误差平方和
机器学习背景
RSS()
0
正则化 L2 (Ridge) Regularization
限制参数的大小 , 以避免过拟合
正则化 L1 Regularization (Lasso)
| j | j1...p
No closed form for β 限制参数的大小 , 以避免过拟合
➢ Still Perceptron ➢ 一个特殊的单隐含层网络 ➢ 每个训练案例用于构造一个
特征,该特征用于测量改训 练案例和测试案例的距离 ➢ SVM训练选择自由特征集以 及特征的权重 ➢ 1990-2010 很多让放弃NN, 选择 SVM
深层信任网络(Deep Belief Net,DBN) 是 部分解决了以上问题的神经元网络
小结一个基础的DBN网络

经典深度学习(PPT136页)

经典深度学习(PPT136页)
4th November 2016
美国人工智能战略规划
4th November 2016
美国人工智能研发战略规划
4th November 2016
策略- I : 在人工智能研究领域做长期研发投资
目标:. 确保美国的世界领导地位 . 优先投资下一代人工智能技术
1. 推动以数据为中心的知 识发现技术
. 不是替代人,而是跟人合作,强调人和AI系统之间的互补作用
1. 辅助人类的人工智能技术
• AI系统的设计很多是为人所用 • 复制人类计算,决策,认知
4th November 2016
策略-II: 开发有效的人机合作方法
. 不是替代人,而是跟人合作,强调人和AI系统之间的互补作用
1. 辅助人类的人工智能技术 2. 开发增强人类的AI技术
目标:. 确保美国的世界领导地位 . 优先投资下一代人工智能技术
1. 推动以数据为中心的知识发 现技术
2. 增强AI系统的感知能力
3. 理论AI能力和上限
4. 通用AI 5. 规模化AI系统
6. 仿人类的AI技术 7. 研发实用,可靠,易用的机
器人 8. AI和硬件的相互推动
• 提升机器人的感知能力,更智能的同复 杂的物理世界交互
1. 在人工智能系统广泛使用之前,必须确保系统的安全性 2. 研究创造稳定, 可依靠,可信赖,可理解,可控制的人工智能
系统所面临的挑战及解决办法
1. 提升AI系统 的可解释性和透明度 2. 建立信任 3. 增强verification 和 validation 4. 自我监控,自我诊断,自我修正 5. 意外处理能力, 防攻击能力
1. 推动以数据为中心的知识发 现技术
2. 增强AI系统的感知能力

深度学习基础(PPT36页)

深度学习基础(PPT36页)

CNN的优点
参数减少与权值共享 如下图所示,如果我们有1000x1000(每个隐层神经元都连接图像的每一个像素点),就有 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 = 1 0 1 2个连接,也就是10^12个权值参数。
局部连接网络,每一个节点与上层节点同位置附近10x10的窗口相连接, 则1百万个隐层神经元就只有 16 0100 18 0,即10^8个参数。其权值连 接个数比原来减少了四个数量级。
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
人脑的视觉机理
1981年的诺贝尔医学奖获得者 David Hubel和Torsten Wiesel发现了视觉系统的信息处理机制,他们发现了一 种被称为“方向选择性细胞的神经元细胞,当瞳孔发现 了眼前的物体的边缘,而且这个边缘指向某个方向时, 这种神经元细胞就会活跃。
由此可知人的视觉系统的信息处理是分级的,高 层的特征是低层特征的组合,从低层到高层的特征表示 越来越抽象,越来越能表现语义或者意图,抽象层面越 高,存在的可能猜测就越少,就越利于分类。
与神经网络的异同
深度学习与神经网络的异同
神经网络
深度学习
深度学习与神经网络的异同
相同点
二者均采用分层结构,系统包括输入层、隐层(多层)、 输出层组成的多层网络,只有相邻层节点之间有连接,同 一层以及跨层节点之间相互无连接,每一层可以看作是一 个logistic 回归模型。

深度学习技术介绍PPT课件

深度学习技术介绍PPT课件
根据Marr(1982)年理论,理解一个信息处理系统,具有三个被称为分析层面的内容: 计算理论(computational theory)对应计算目标和任务的抽象定义。 表示和算法(representation and algorithm)是关于输人和输出如何表示和从输入到输
出变换的算法说明。 硬件实现(hardware implementation)是系统的实物物理实现。
29
29
M40 GPU加速特性
30
GPU与CPU连接
通过PCIe与CPU连接, 最大理论带宽8GB/s(gen2.0)、16GB/s(gen3.0) CPU称为主机(host), 显卡(GPU)称为设备(device)
31
31
最优连接数量:4
32
32
目前的GPU使用方案
33
33
CPU困境
34
机器学习还可以进行压缩(compression)。用规则拟合数据,我们能得到比数据更简 单的解释,需要的存储空间更少,处理所需要的计算更少,例如,一旦你掌握了加法 规则,你就不必记忆每对可能数字的和是多少。
机器学习的另一种用途是离群点检测(outlier detection),即发现那些不遵守规则的 例外实例。在这种情况下,学习规则之后,我们感兴趣的不是规则,而是规则未能覆 盖的例外,他们可能暗示出我们需要注意的异常,如诈骗等。
具体应用-人脸识别
对于人脸识别(face recognition)。输入是人脸 图像,类是需要识别的人,并且学习程序应当 学习人脸图像与身份之间的关联性。人脸会有 更多的类,输入图像也更大一些,并且人脸是 三维的,不同的姿势和光线等都会导致图像的 显著变化。另外,对于特定人脸的输人也会出 现问题,比如说眼镜可能会把眼睛和眉毛遮住 ,胡子可能会把下巴盖住等。

深度学习详解37页PPT文档

深度学习详解37页PPT文档
深度学习与浅层学习的区别
强调了模型结构的深度,通常有5-10多层的隐层节点;
明确突出了特征学习的重要性,通过逐层特征变换,将 样本在原空间的特征表示变换到一个新特征空间,从而 使分类或预测更加容易。与人工规则构造特征的方法相 比,利用大数据来学习特征,更能够刻画数据的丰富内 在信息。
深度学习的训练方法
深度学习的训练过程
自下而上的非监督学习:从底层开始,一层一层的往 顶层训练,分别得到各层参数。
采用无标签数据分层训练各层参数(可以看作是特征学习 的过程)。
自上而下的监督学习
基于第一步的得到的各层参数进一步调整整个多层模型的 参数,这一步是一个有监督的训练过程。
深度学习的几种常用模型
Auto Encoder(自动编码器) Sparse Coding (稀疏编码) Restricted Boltzmann Machine(限制玻尔兹曼机) Deep Belief Networks (深度信任网络) Convolutional Neural Networks (卷积神经网络)
深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
深度学习的实质
通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。
Convolutional Neural Networks(CNN)
Convolutional Neural Networks(CNN)
卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领 域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网 络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现 的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的 特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层 感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度 不变性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Convolutional Neural Networks(CNN)
卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领 域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网 络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现 的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的 特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层 感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度 不变性。
卷积神经网络避免了显式的特征取样,隐式地从训练数据中进行学习。 这使得卷积神经网络明显有别于其他基于神经网络的分类器,通过结构重组 和减少权值将特征提取功能融合进多层感知器。它可以直接处理灰度图片, 能够直接用于处理基于图像的分类。
卷积神经网络较一般神经网络在图像处理方面有如下优点: a)输入图像和网络的拓扑结构能很好的吻合; b)特征提取和模式分类同时进行,并同时在训练中产生; c)权重共享可以减少网络的训练参数,使神经网络结构变得更简单,适应 性更强。
受到大脑结构分层的启发,神经网络的研究发现多隐
层的人工神经网络具有优异的特征学习能力,学习得 到的特征对数据有更本质的刻画,从而有利于可视化 或分类;而深度神经网络在训练上的难度,可以通过 “逐层初始化”来有效克服。 深度学习可以通过学习一种深层非线性网络结构,实 现复杂函数逼近,表征输入数据分布式表示,并展现 了强大的从少数样本中集中学习数据及本质特征的能 力。
Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces
P300检测
P300检测:检测P300的响应。
二分类:信号呈一个P300波形,则认为检测到;否则,检
神经网络拓扑结构
网络拓扑结构是分类器的关键特征。 网络由五层组成,每一层由一个或多个特征图组成。一个特征
图代表一层的本质,含有一个特殊的语义:
1.第一层隐层的每个特征图代表一个电极通道的特征。 2.第二层隐层时间域上对信号进行下采样和变换。
神经网络拓扑结构
CNN的学习规律
在卷积神经网络的学习过程当中,主要运用前向传播和反向传播两种学 习法则来优化权值,学习到一个最优的滤波器来提取特征。 (1) 前向传播 如果用l来表示当前的网络层,那么当前网络层的输出为:
机器学习
机器学习(Machine Learning)是一门专门研究计算机
怎样模拟或实现人类的学习行为,以获取新的知识或 技能,重新组织已有的知识结构市值不断改善自身的 性能的学科,简单地说,机器学习就是通过算法,使 得机器能从大量的历史数据中学习规律,从而对新的 样本做智能识别或预测未来。 机器学习在图像识别、语音识别、自然语言理解、天 气预测、基因表达、内容推荐等很多方面的发展还存 在着没有良好解决的问题。
深度学习的训练方法
与神经网络的异同
深度学习与神经网络的异同
神经网络 深度学习
深度学习与神经网络的异同
相同点 二者均采用分层结构,系统包括输入层、隐层(多层)、 输出层组成的多层网络,只有相邻层节点之间有连接,同 一层以及跨层节点之间相互无连接,每一层可以看作是一 个logistic 回归模型。 不同点:采用不同的训练机制 神经网络:采用BP算法调整参数,即采用迭代算法来训 练整个网络。随机设定初值,计算当前网络的输出,然后 根据当前输出和样本真实标签之间的差去改变前面各层的 参数,直到收敛; 深度学习:BP算法不适合深度神经网络,如果对所有层 同时训练,时间复杂度会太高,如果每次训练一层,偏差 逐层传递会出现过拟合。因此深度学习整体上是是一个分 层训练机制。
深度学习
自2006年,深度学习(Deep Learning)已经成为机器
学习研究中的一个新兴领域,通常也被叫做深层结构 学习或分层学习。其动机在于建立、模拟人脑进行分 析学习的神经网络,它模拟人脑的机制来解释数据, 例如图像,声音和文本,深度学习是无监督学习的一 种。 深度学习的概念源于人工神经网络的研究,含多隐层 的多层感知器就是一种深度学习结构。深度学习通过 组合低层特征形成更加抽象的高层表示属性类别或特 征,已发现数据的分布式特征表示。
Deep Learning
目录
深度学习简介 深度学习的训练方法 深度学习常用的几种模型和方法 Convolutional Neural Networks卷积神经网络
卷积神经网络(CNN)在脑机接口中的应用
What is Deep Learning?
A brief introduce of deep learning
测不到。 挑战性: 尽管我们可以从实验中的范例得知P300的预期响应在什么 时候,但是P300的响应取决于被试者。 实际上,即使一个P300响应可以被预测为在一个特定的时 间点,但是被试者很可能不会在像人工产品一样在正确的 时刻产生P300响应。
输入正则化
原始信号:由电极采集的EEG信号 输入数据正则化:
x l f (u l ),其中u l W l x l 1 bl
其中, f (.) 为网络的输出激活函数。输出激活函数一般选用sigmoid函 数或者选用双曲线正切函数。 (2) 反向传播算法 我们假设训练集有N个训练样本,一共分成2类。对于每一个训练样本, 我们会给予一个标签,通过调整网络输出与给定标签之间的误差来训练与 改变权值。在代价函数方面,我们选择采用平方误差代价函数。因此N个 训练样本的代价函数如下:
CNN的Convolution过程
如图,原图像是5*5大 小,有25个神经元,用一 个3*3的卷积核对它进行 卷积,得到了如右图所示 的卷积后的Feature map。 该特征图大小为3*3。
假设一种卷积核只提取出图像的一种特征,所以一般要多个卷积核 来提取不同的特征,所以每一层一般都会有多张Feature map。 同一张Feature map上的神经元共用一个卷积核,这大大减少了网络 参数的个数。
深度学习的实质 通过构建具有很多隐层的机器学习模型和海量的训练数 据,来学习更有用的特征,从而最终提升分类或预测的 准确性。因此,“深度模型”是手段,“特征学习”是 目的。 深度学习与浅层学习的区别 强调了模型结构的深度,通常有5-10多层的隐层节点; 明确突出了特征学习的重要性,通过逐层特征变换,将 样本在原空间的特征表示变换到一个新特征空间,从而 使分类或预测更加容易。与人工规则构造特征的方法相 比,利用大数据来学习特征,更能够刻画数据的丰富内 在信息。
深度学习的训练过程
自下而上的非监督学习:从底层开始,一层一层的往
顶层训练,分别得到各层参数。
采用无标签数据分层训练各层参数(可以看作是特征学习 的过程)。
自上而下的监督学习 基于第一步的得到的各层参数进一步调整整个多层模型的 参数,这一步是一个有监督的训练过程。
深度学习的几种常用模型
Auto Encoder(自动编码器)
Sparse Coding (稀疏编码) Restricted Boltzmann Machine(限制玻尔兹曼机)
Deep Belief Networks (深度信任网络)
Convolutional Neural Networks (卷积神经网络)
Convolutional Neural Networks(CNN)
卷积神经网络原理图
如图所示,输入图像(Input)通过和三个可训练的卷积核和可加偏置进行 卷积,卷积后在C1层产生三个特征映射图(Feature map)然后,C1层的 Feature map在经过子采样(Subsampling)后,加权值,加偏置,再通过一个 Sigmoid函数得到三个S2层的特征映射图。
4. S4 层是在C3层基础上进行下采样,前面已述。在后面的层中每一层节 点个数比较少,都是全连接层,这里不再赘述。 小结: 经过计算,LeNet-5系统总共需要大约13万个参数,这与前面提到的全 连接系统每个隐藏层就需要百万个参数有着天壤之别,极大地减少了计算 量。 在以上的识别系统中,每个特征图提取后都紧跟着一个用来求局部平均 与二次提取的亚取样层。这种特有的两次特征提取结构使得网络对输入样 本有较高的畸变容忍能力。也就是说,卷积神经网络通过局部感受野、共 享权值和亚取样来保证图像对位移、缩放、扭曲的鲁棒性。
特征的自学习
传统的模式识别方法:
通过传感器获取数据,然后经过预处理、特征提取、特 征选择、再到推理、预测或识别。 特征提取与选择的好坏对最终算法的确定性齐了非常关 键的作用。而特征的样式目前一般都是靠人工提取特征。 而手工选取特征费时费力,需要专业知识,很大程度上 靠经验和运气,那么机器能不能自动的学习特征呢?深 度学习的出现就这个问题提出了一种解决方案。
人脑的视觉机理
1981年的诺贝尔医学奖获得者 David Hubel和Torsten Wiesel发现了视觉系统的信息处理机制,他们发现了一 种被称为“方向选择性细胞的神经元细胞,当瞳孔发现 了眼前的物体的边缘,而且这个边缘指向某个方向时, 这种神经元细胞就会活跃。
由此可知人的视觉系统的信息处理是分级的,高层的特 征是低层特征的组合,从低层到高层的特征表示越来越 抽象,越来越能表现语义或者意图,抽象层面越高,存 在的可能猜测就越少,就越利于分类。
1.从EEG信号样本中提取子样本,从而降低数据的大小以便分析。 等同于把信号用120HZ的抽样率采样。 2.用0.1到20HZ的带通滤波器处理输入数据 CNN的输入: 一个 矩阵。其中 是我们采集EEG信号时所 有的电极的数量。 是每个电极采集到的EEG信号正则化以后 长度。我们令 。 每个样本代表一部分经过650ms频闪灯后采集的信号。
经典例子:文字识别系统LeNet-5
相关文档
最新文档