热分析动力学
热分析(结晶动力学)

95 100 105 110 115 120 125
Temperature,oC
G R t
CHANGZHOU UNIVERSITY
影响结晶速度的因素
➢ 结晶过程主要分为成核与生长两个过程, 因此, 影 响成核和生长过程的因素都对结晶速度有影响
➢ 主要包括: 结晶温度 外力, 溶剂, 杂质 分子量
不过绝大多数处理非等温结晶动力学的方法或理论是在等温结晶 动力学的 基础上发展演变来的。
※ 等温结晶动力学 (Isothermal)
※ 非等温结晶动力学 (Non-isothermal)
结晶速度与测量方法
CHANGZHOU UNIVERSITY
➢ 结晶动力学主要研究聚合物的结晶速度(Rate of Crystallization), 分析其结晶过程
➢ 生长过程: 涉及分子链向晶核扩散与规整堆砌; 温度越 低, 分子链(链段)的活动能力越小, 生长速度越慢
➢ 总结晶速度: 在Tg~Tm之间可以结晶, 但结晶速度在低 温时受生长过程控制, 在高温时受成核过程控制, 存在 一个最大结晶速度温度
等温结晶动力学
CHANGZHOU UNIVERSITY
测试方法
CHANGZHOU UNIVERSITY
在高纯氮气保护下,氮气流量为 50ml/min,样品重量为2 mg-6mg。 将样品以20℃/min的速度加热至熔 点以上20度左右后,恒温10min, 以便消除样品的热历史和受力历史。 然后以100℃/min的速度迅速降至 某一设定的结晶温度Tc,记录所有 DSC曲线。
CHANGZHOU UNIVERSITY
研究目的:
为高分子加工过程提供理论依据,而高分子材料的实际生产过程 (如挤出(Extrusion)、注射(Injection)、模压(Molding)等成型过 程)常常是在动态、非等温条件下进行并完成的,因此定量地研究 其非等温结晶动力学过程对选择合适的加工成型条件、制备性能良 好的高分子材料或制品具有十分重要的现实意义。
热解动力学计算

(4.4)
可得:
d /dt Aexp( E/RT)f ()
(4.5)
式中:A—频率因子;
E—活化能;
R—气体常数;
T—绝对温度;t—反应时间;
—样品转化率
在恒定的程序升温速率下,升温速率dT/dt
d /dT (A/ )exp( E/RT)f()
64.17
63.93
A(min-1)
8.0XO12
2.9X010
1.1X09
6.5X08
由不同干燥速率下的表观活化能可知,当污泥干燥的表观活化能和指前因子 在污泥干燥升温速率较小时,受干燥速率影响较大;而在污泥干燥速率较大时, 受污泥干燥速率影响不大。这就要求在设计干燥流程时,不能只考虑效率,还应 该考虑到能源消耗
呼号
称
机刃
駅分璐式值时
筱廿形式用1)
7
牝学彌
(!-«)5
2(1 fR
相边罷应应・园林聒想
B
鄰R.,統谨帮d-t曲
特F1*—
2
1・Q■住H
2(1-品
9
圧应圾敛
ir-2
l-(l-tf)?
)0
反丽纲計
旷3
1-(1-a)J
Mampcl Power注
1
11
01曲霰法腹〕
■ rr =—
3
1ai
Munpel Power4
污泥干燥研究过程以升温速率为3C/min为例来说明。经过拟合筛选,表4.1
所示的七个动力学机理函数较接近污泥干燥的动力学函数
表4.1污泥干燥的机理函数
机理函数
12
G1()131
G3()11
G4( )11
热分析动力学

热分析动力学一、 基本方程对于常见的固相反应来说,其反应方程可以表示为)(C )(B )(A g s s +→ (1)其反应速度可以用两种不同形式的方程表示:微分形式 )(d d ααf k t= (2) 和积分形式t k G =)(α (3)式中:α――t 时物质A 已反应的分数;t ――时间;k ――反应速率常数;f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。
由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为:ααααd /)]([d 1)('1)(G G f == (4)k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示:)/exp(RT E A k -= (5)式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。
方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式:t T T β0+= (6)即:β/=t d dT式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。
于是可以分别得到:非均相体系在等温与非等温条件下的两个常用动力学方程式:)E/RT)f(A t d d αexp(/-=α (等温) (7))/exp()(βd d RT E f AT -=αα (非等温) (8)动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)对于反应过程的DSC 曲线如图所示。
在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。
二、 微分法2.1 Achar 、Brindley 和Sharp 法:对方程)/exp()(βd d RT E f AT -=αα进行变换得方程:)/exp(d d )(βRT E A Tf -=αα (9)对该两边直接取对数有:RTEA T f -=ln d d )(βln αα (10)由式(11)可以看出,方程两边成线性关系。
热分析动力学实验报告

热分析动力学实验报告1 实验简介该实验的样品为六硝基芪,分子式为[C6H2(NO2)3CH]2,是—种低感度单体猛炸药,代号为HNS。
升温速率分别为2 K/min,5 K/min,10 K/min,15 K/min 和20 K/min。
2 实验数据处理根据实验采集并处理后的数据可以得到HNS在5个不同升温速率下热分解的TG和DSC图谱。
如图1、图2所示:图1 HNS热分解的TG图谱图2 HNS热分解的DSC图谱根据图1的TG 图谱,可得到5个升温速率下HNS 的相对失重量,起始温度和终止温度,具体如表1所示:表1 HNS 的TG 图谱解析表升温速率β 相对失重量/%起始温度/K 终止温度/K2 K/min 70.56 553.15 698.155 K/min 69.69 10 K/min 68.05 15 K/min 68.15 20 K/min 69.34根据图2中的DSC 图谱,可得到5个不同升温速率下HNS 热分解的峰值温度T p ,如表2所示:表2 峰值温度T p升温速率β 峰值温度T p /K2 K/min 598.15 5 K/min 608.15 10 K/min 620.65 15 K/min 630.65 20 K/min635.65根据实验采集并处理后的数据,可以得到HNS 分别在5个升温速率的条件下转化率随温度变化而变化的曲线,如图3所示:图3 HNS 转化率曲线根据图3的转化率曲线可以得到在不同升温速率下,转化率为10%,20%,30%,40%,50%,60%,70%,80%和90%对应的温度,如表3-表7所示:表3 升温速率为2 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K579585589591593595598602626表4 升温速率为5 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K586592596600603606609616641表5 升温速率为10 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K592599604608612615619625650表6 升温速率为15 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K596604610615619623626631650表7 升温速率为20 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K6026096156206246286326376553 活化能计算3.1 Ozawa 法已知Ozawa 法的方程为lg lg(/()) 2.3050.4567/AE RG E RT βα=--将lg β与1/T 作图,然后经过线性拟合可得该拟合直线的斜率,如图4所示,得到的斜率值即为-0.4567E/R 的值。
热分析动力学基础知识

(26)
式中:
u 2 1 2 P (u ) e e 1 u u u 并设 f ( ) (1 ) ,则有 d A RT 2 RT 1 e (1 ) β E E
d (1 ) dt
n
( E ) dT (1) Ae RT dt d E dT d Ae n(1 ) dt RT dt dt dT E d dt An ( 1 ) e dt RT A(1 ) e
热分析动力学
一、 基本方程
对于常见的固相反应来说,其反应方程可以表示为
A ( s ) B( s ) C( g )
其反应速度可以用两种不同形式的方程表示: 微分形式 和 积分形式
(1)
d k f ( ) dt
(2)
G ( ) k t
(3)
式中:α――t 时物质 A 已反应的分数; t――时间; k――反应速率常数; f(α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。 由于 f(α)和 G(α)分别为机理函数的微分形式和积分形式,它们之间的 关系为:
(10)
由式(11)可以看出,方程两边成线性关系。 通过试探不同的反应机理函数、不同温度 T 时的分解百分数,进行线性回 归分析,就可以试解出相应的反应活化能 E、指前因子 A 和机理函数 f(α).
2.2
Kissinger 法
Kissinger 在动力学方程时,假设反应机理函数为 的动力学方程表示为:
Y[E, f( )] ( B C D )e A
式中:
2 EU
2 RT E 0 RT 1
热分析动力学汇总

热分析动力学一、 基本方程对于常见的固相反应来说,其反应方程可以表示为)(C )(B )(A g s s +→ (1)其反应速度可以用两种不同形式的方程表示:微分形式 )(d d ααf k t= (2) 和积分形式t k G =)(α (3)式中:α――t 时物质A 已反应的分数;t ――时间;k ――反应速率常数;f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。
由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为:ααααd /)]([d 1)('1)(G G f == (4)k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示:)/exp(RT E A k -= (5)式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。
方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式:t T T β0+= (6)即:β/=t d dT式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。
于是可以分别得到:非均相体系在等温与非等温条件下的两个常用动力学方程式:)E/RT)f(A t d d αexp(/-=α (等温) (7))/exp()(βd d RT E f AT -=αα (非等温) (8)动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)对于反应过程的DSC 曲线如图所示。
在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。
二、 微分法2.1 Achar 、Brindley 和Sharp 法:对方程)/exp()(βd d RT E f AT -=αα进行变换得方程:)/exp(d d )(βRT E A Tf -=αα (9)对该两边直接取对数有:RTEA T f -=ln d d )(βln αα (10)由式(11)可以看出,方程两边成线性关系。
热分析动力学

作图,用最小二乘法进行线性回归,由斜率可求得在该转化率a时活 化能E旳数值。
KAS法
把温度积分旳C-R近似式代入,得
ln T 2 ln AR EG E RT
当以为f(ap)与无关,对于全部旳动力学模型函数,其值近似等于1, 所以在不同升温速率下由对作图,可得一条直线,由直线斜率和截
距可分别求算得到活化能E和指前因子A旳数值。
Flynn-Wall-Ozawa (FWO)法
把温度积分旳Doyle近似式代入,得
ln ln AE RG 5.3308 1.0516 E RT
单升温速率法(非等温法)
一般根据所选方程是源于微分式还是源于积分式将单升温速率法分 为微分法和积分法两大类。
两类措施各有利弊:
微分法不涉及难解旳温度积分,形式简朴,但要用到精确旳转化率 对反应时间或温度旳一阶微商数据;
积分法能够直接用转化率对反应时间或温度旳数据,但不能回避温 度积分问题及由此产生旳近似措施旳误差。
2. 非均相反应实际上包括多种基元反应平行、连续进行。其转化百 分率是多种基元反应综合旳成果,需要对非均相反应旳复杂本质进 行进一步认识。
非等温法研究动力学过程旳不足
3. 采用Arhenius公式描述热分解反应速率常数与热力学温度T关系时, 首先遇到旳问题是Arhenius公式能否合用于非等温非均相体系,寻 找更合适旳关系式一直是关注旳焦点。其次是怎样解释Arhenius公 式中两个参数指前因子A和活化能E旳物理含义,求算得到旳活化能 E旳数值随转化率发生变化也是一种不容回避旳事实。
Pu
u
eu
u2
du
式中 u = E/RT
热分析动力学汇总

热分析动力学汇总热分析动力学是指研究物质在升温或降温过程中的热物性变化规律及其与化学反应动力学之间的关系。
它通过测量热量或温度随时间的变化,结合热学或动力学理论,从而揭示了化学反应的机理和动力学参数。
本文将对热分析动力学的概念、基本原理、应用领域及研究方法等方面进行详细阐述。
一、热分析动力学的概念和基本原理热分析动力学的实验方法主要有热量计法、差示扫描量热法(DSC)和热重法(TG)。
其中,热量计法通过测量材料的热量变化,得到热分解反应的热效应曲线,从而确定反应的速率等动力学参数。
差示扫描量热法是比较常用的实验方法,它通过比较样品和参比样品的热量变化,得到样品的热效应曲线,从而确定热分解反应的动力学参数。
热重法是通过测量材料在升温或降温时的质量变化,得到热分解反应的质量曲线,从而探索反应的动力学参数。
二、热分析动力学的应用领域热分析动力学在材料科学、化学工程、药学和环境科学等领域都有重要应用。
在材料科学中,热分析动力学可以用于研究材料的热性质、热稳定性和热分解反应等方面,从而指导材料的合成和加工。
在化学工程中,热分析动力学可以用于优化工艺参数、预测反应过程和评估化学工艺的安全性。
在药学中,热分析动力学可以用于研究药物的热性质和稳定性,从而指导药物的贮存和运输。
在环境科学中,热分析动力学可以用于研究污染物在环境中的分解和转化过程,从而指导环境监测和治理。
三、热分析动力学的研究方法热分析动力学的研究方法包括实验方法和理论方法。
实验方法主要是通过实验测定材料的热效应曲线或质量曲线,从而确定反应的动力学参数。
理论方法主要是通过热学和动力学理论进行模拟和计算,以预测热效应曲线或质量曲线,从而确定反应的动力学参数。
在实验方法方面,热分析动力学主要使用差示扫描量热法和热重法。
差示扫描量热法通过比较样品和参比样品的热量变化,得到样品的热效应曲线,从而确定反应的速率等动力学参数。
热重法通过测量材料在升温或降温时的质量变化,得到热分解反应的质量曲线,从而探索反应的动力学参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火灾学课程
热分析动力学
(Thermal Analysis Kinetics)
定义
¾热分析动力学:
用热分析技术研究某种物理变化或化学反应(以下统称反应)的动力学
热分析技术的定量化方法
热分析动力学的目的 理论上:探讨物理变化或化学反应
的机理(尤其是非均相、不等温)
生产上:提供反应器设计参数
应用上:建立过程进度、时间和温
度之间的关系,可用于预测材料的
使用寿命和产品的保质稳定期,评
估含能材料的危险性,从而提供储
存条件。
可估计造成环境污染物质
的分解情况…
发展历史
化学动力学
源于19世纪末-20世纪初
热分析动力学
始于20世纪30年代、盛于50年代(评估高分子材料在航空航天应用中的稳定性和
使用寿命研究的需要)
)
动力学模式(机理)函数
均相反应: f ( c)= ( 1 -c)n
非均相反应:根据控制反应速率的“瓶颈”
气体扩散
相界面反应
成核和生长
常见固态反应的机理函数(理想化)1. Acceleratory(The shape of a ~T curve) Symbol f(a)g(a)
n(α)1-1/n α 1/n
P
n
α lnα
E
1
2. Sigmoid
m(1−α)[−ln(1−α)]1−1/m[-ln(1-a)]1/m A
m
α(1−α) ln[α/(1−α)] B
1
(1/2)(1−α)[−ln(1−α)]−1 [−ln(1−α)]2 B
2
(1/3)(1−α)[−ln(1−α)]−2[−ln(1−α)]3 B
3
(1/4)(1−α)[−ln(1−α)]−3 [−ln(1−α)]4 B
4
3. Deceleratory
2(1−α)1/21−(1−α)1/2
R
2
3(1−α)2/31−(1−α)1/3
R
3
1/2α α2
D
1
[−ln(1−α)]−1(1−α)ln(1−α)+α D
2
D
(3/2)(1−α)2/3[1−(1−α)2/3]−1[1−(1−α)1/3]2 3
(3/2)[(1−α)−1/3−1]−11−2α/3−(1−α)2/3 D
4
D
(−3/2)(1−α)2/3[(1−α)1/3−1]−1[(1−α)1/3−1]2 5
D
(3/2)(1−α)4/3[(1−α)−1/3−1]−1 [(1−α)−1/3−1]2 6
F
* 1−α −1n(1−α) 1
(1-α) 21/(1-α) F
2
(1-α) 3/2(1/1−α) 2 F
3
2(1−α) 3/2(1−α) −1/2 F
(3/2)
(2/3)(1−α) 5/2(1−α) −3/2 F
(5/2)
*F1 is the same as A1
Sestak-Berggren empirical function(1971)
f (α ) = αm (1−α) n
2. 热分析动力学方法
按动力学方程形式:
微商法
积分法
按加热速率方式:
单个扫描速率法(single scanning method)
多重扫描速率法(multiple scanning method) (等转化率法,iso-conversional)
Kissinger-Akahira-Sunose equation
Anal. Chem., 29(1957)1702
作多重加热速率β下的测定,选择TA 曲线峰值对应的温度T p
由线性方程斜率——E ,然后由截矩——A 注:1. Kissinger(1956): 在最大速率处,适于n 级反应
2.Akahira-Sunose(1969): 指定α处亦可
3. Ozawa: 不限于n 级反应p
p
RT E E AR T /)/ln()/ln(2−=β非等温实验:特征点法
举例:CaCO3热解动力学分析
Friedman equation (model
free )
J. Polym. Sci. Part C, 6(1964)183
作多重加热速率β下的测定,选择等α处斜率——E ;截矩——若则:斜率——E ; 截矩——A
RT E Af dT d /)](ln[)]/(ln[−=ααβn
f )1()(αα−=)
1ln(ln )](ln[αα−+=n A Af )]
(ln[αAf
温度积分的近似表达式
¾Doyle 近似式(J. Appl. Polym. Sci.,6(1962)639 )
¾
Schlomlich 展开级数(Doyle , Nature, 207(1965)290 )¾经验公式(Zsaco , J. Thermal Anal. 8(1975)593))
1()1()3)(2(2211[)1()(−+⋅⋅⋅−+⋅⋅⋅−++++−+=−n x n x x x x x e x p n x )2)(/()(−−≈−x d x e x p x )844/(162
+−=x x d x
x p 4567.0315.2)(lg −−≈)6020(≤≤x
2u u 2222(1)(1)u E RT e ART RT e u u E
E β−−−=−2[1]}RT E E RT −−
ADN的不等温热分解反应动力学参数
模式 E / kJ mol-1lnA/ min-1γP4 24.5 3.9 0.9783 P3 35.1 6.9 0.9813 P2 56.2 12.7 0.9837 P2/3 182.9 46.2 0.9862 D1 246.2 62.8 0.9865 F1 139.4 35.70.9928 A4 29.5 5.3 0.9903 A3 41.7 9.0 0.9913 A2 66.1 15.9 0.9921 D3 269.1 67.4 0.9928 R3 131.0 32.0 0.9924 R2 127.6 31.3 0.9910
Flynn-Wall-Ozawa equation (model free )
Bull. Chem. Soc. Jpn.,38(1965)1881
取不同β下曲线的等α处之温度T
作lg β~1/T 图,由斜率——E
注:Ozawa (1965): 在最大转化速率处
Flynn-Wall (1966): 指定α处亦可
RT E Rg AE /4567.0315.2)
(lg lg −−=αβ
参考书籍
胡荣祖等. 《热分析动力学》(第二版) . 北京
科学出版社, 2008.。