基站天线的基本原理与及电波传播
天线工作原理

天线工作原理天线是无线通信系统中不可或缺的设备,它起到接收和发送无线信号的作用。
本文将详细介绍天线的工作原理及其相关知识。
一、天线的基本概念天线是将电信号转化为电磁波或将电磁波转化为电信号的设备。
它一般由导电材料制成,如金属,并根据特定的原理进行设计和调整。
天线可以分为接收天线和发射天线两种类型。
二、天线的工作原理天线的工作原理基于电磁波的发射和接收。
下面将分别介绍接收天线和发射天线的工作原理。
1. 接收天线的工作原理接收天线通过接收电磁波将其转化为电信号。
当电磁波经过天线时,它会激发天线中的电荷,产生电流。
这个电流会经过连接到天线的电路,从而实现信号的解调和放大。
最终,这个电信号可以被传递到无线接收器,用于进行进一步的处理和解码。
2. 发射天线的工作原理发射天线将电信号转化为电磁波,以便进行无线传输。
当电信号通过连接到天线的电路时,它会产生交变电流。
这个交变电流会导致天线上的电荷也发生交变,从而产生电磁波。
这些电磁波会在空间中传播,并被接收天线接收到。
同样地,接收天线会将电磁波转化为电信号,以进行进一步的处理和解码。
三、天线的优化设计为了提高天线的工作性能,可以进行一些优化设计。
下面列举一些常见的优化设计方法。
1. 天线长度调整:天线的长度对于接收和发射的频率有直接影响。
通过调整天线的长度,可以使其与所传输的频率匹配,从而提高效率。
2. 天线形状设计:天线的形状对于天线的辐射模式有重要影响。
通过设计合适的天线形状,可以实现不同方向的辐射或接收,以满足具体的通信需求。
3. 天线材料选择:天线的材料对于信号的传输和接收也有一定影响。
根据需要选择导电性能好、损耗小的材料,以提高天线的性能。
四、天线在无线通信中的应用天线广泛应用于各种无线通信系统中,包括移动通信、卫星通信、无线局域网等。
下面列举几个常见的应用场景。
1. 移动通信:天线用于手机、基站等设备中,将电信号转化为电磁波进行传输,以实现无线通信。
天线基本知识

不同频段的电磁波适合采用不同的极化方式进行传播,移动通信系统通常采用垂直极化,而
广播系统通常采用水平极化,椭圆极化通常用于卫星通信。 国标 垂直极化、+/-45度交叉极化
影响因素
振元的摆放,目前天线单元主要由振子(偶极子)和微带缝隙天线两种类型组成,偶极子的
极化方向与振子轴线相同,缝隙天线的极化方向与缝隙长度方向轴线相同,因此极化方向比 较容易判断。
提纲
〔1〕基站天线的分类 〔2〕基站天线的内部结构
〔3〕基站天线的关键指标
〔4〕美化环境天线举例
Page 1
〔1〕基站天线的分类-
全向天线
按照极化 特性划分
指标特性
单极化天线 水平极化
基站天线
按照水平方向 图的特性划分
单极化天线
按照极化 方向划分
垂直极化
定向天线
按照极化特 性划分
垂直/水平 极化
Page 6
〔3〕基站天线关键指标
项目名称 频率范围(MHz) 极化方式(°) 天线增益(dBi) 水平波瓣宽(°) 垂直波瓣宽(°) 前后比(dB) 隔离度(dB) 输入阻抗(Ω) 电压驻波比 接口 最大功率(w) 闪电保护 尺寸(mm) 支撑杆(mm) 16.5 65±6 7.5 ≥25 ≥30 50 ≤1.5 N-型阴头×2 200 直流接地 875×176×63 2300~2500 ±45° 17dBi 60±6 7 指标 2500~2700
影响因素
基站天线的垂直面波瓣宽度与天线的长度尺寸有关,垂直面波瓣宽度越宽,天线 的长度越小,比如WCDMA天线若垂直面波瓣宽度为6.5度,天线的高度约为1.4m, 而垂直面波瓣宽度为13度的天线其高度约为0.66m。
TD-LTE天线基础-天线原理及参数

波长
h
4
天线原理
• 什么是天线? • 把从导线上传下来的电信号做为无线电波发射到空间…... • 收集无线电波并产生电信号 • 无线通讯系统的关键组成部分之一,选择天线性能直接影响 整个通讯系统的运行状态。
后向功率
前向功率
F/B = 10 log(前向功率/后向功率) typically : 25dB
h
26
天线电参数-集束天线、多频天线
集束天线
多频天线
h
27
天线电参数-集束天线、多频天线
• 3G在实施过程中,寻找新的 基站将会较2G更加困难,且 租金日益昂贵
• 由于环保意识的加强,居民 和团体更加不愿看到更多 的天线架设在其周边环境
• 当天线下倾角超过10度时,天线方向图会严重变 形,此时宜选用带电调下倾的天线
无下倾
电调下倾
机械下倾
城区天线常选用(固定)电子下倾+机械下倾的下倾方式
h
19
天线电参数-下倾方式
• 下倾技术的主要目的是倾斜主波束以降低朝邻 覆盖区域的辐射电平。在这种情况下,虽然在 区域边缘载波电平降低了,但是干扰电平比载 波电平降低更多。
面Hale Waihona Puke 未来的教育技术企业BeiJing Huatec Information Technology CO.,LTD
天线基础
讲师:张强
h
1
课程内容
天线原理及参数
h
2
《天线与电波传播》PPT课件

精选ppt
5
8.1天线基本概念
➢ 二维方向图
精选ppt
6
8.1天线基本概念
➢ 三维方向图
精选ppt
7
8.1天线基本概念
➢ 波束宽度
✓ 方向图中通常都有两个瓣或多个瓣 ❖ 其中最大的瓣称为主瓣,其余的瓣称为副瓣
✓ 波束宽度:主瓣两半功率点间的夹角 ✓ 又称为半功率(角)波束宽度、3dB波束宽度 ✓ 主瓣波束宽度越窄,方向性越好,抗干扰能力越强 ✓ 经常考虑3dB、10dB波束宽度
✓ 参考天线为半波振子天线:增益用dBd表示 ✓ 同一个天线用dBd和dBi分别表示时的转换关系为:
0dBd=2.14dBi
精选ppt
11
8.1天线基本概念
➢ 天线增益
精选ppt
12
8.1天线基本概念
– 天线的极化
➢ 平面波按极化可分为线极化波、圆极化波(或椭 圆极化波)
➢ 极化是指在垂直于传播方向的波阵面上,电场强 度矢量端点随时间变化的轨迹
精选ppt
24
8.1天线基本概念
✓ 基本电振子、半波振子、全波振子天线的增益
天线类型 基本电振子 半波振子 全波振子
增益(dBi) 1.76 2.14 3.80
精选ppt
精选ppt
23
8.1天线基本概念
✓ 几个名词 ❖ 对称振子:两臂长度相等的振子,每臂长度为λ/4 ❖ 全波对称振子:全长与波长相等的振子 ❖ 折合振子:将振子折合起来
✓ 随着长度L的增加,方向图变得比较尖锐 ❖ L≥λ/2时,除了主瓣外还有副瓣 ❖ L=λ时,在垂直于振轴线的方向上没有辐射
✓ λ/2的对称振子在800MHz频段约200mm长;在400MHz 频段约400mm长
天线和电波重点讲义

第三章 天线和电波传播在对移动通信网络进行规划和优化时,我们必须了解移动通信系统所用天线的性能,特别是基站天线的性能,和各种移动环境下的无线电波传播特性。
我们可以利用天线特性来改善移动通信网络的性能,例如利用天线分集可以有效地克服传播环境引起的多径效应,利用天线下倾可以减小蜂窝网络中由于频率复用产生的同频干扰。
另外,不同的蜂窝网络(宏蜂窝、微蜂窝、微微蜂窝)和不同的环境(市区、郊区、农村、山区等)将呈现出不同的无线电波传播特性。
我们可以用不同的传播模式来描述不同环境下的传播特性,预测传播路径损耗,提高覆盖质量。
这一章主要讨论和陆地移动通信有关的基站天线和无线电波传播的特性。
3.1 基站天线在陆地移动通信系统中,基站天线的辐射特性直接影响无线链路的性能。
基站天线的辐射特性主要有:天线的方向性、增益、极化等。
3.1.1 天线基本特性3.1.1.1 方向图当天线作为发射天线时,在空间各个方向上辐射的能量是不均匀的,而当天线作为接收天线时从空间各个方向上接收到的能量也是不均匀的。
天线的这种方向选择性可以用它的辐射方向图来描述。
辐射方向图就是在以天线为球心的等半径球面上,相对场强随坐标变量θ和φ(球面坐标系)变化的图形,如图3.1所示。
由于测试技术的原因,一般天线生产厂家只能提供二维的天线方向图,如图3.2所示。
在︒=0φ或︒90平面上的二维方向图通常称为子午面方向图(或垂直方向图),而在︒=90θ平面上的二维方向图通常称为赤道面方向图(或水平方向图)。
在具体工程设计中一般不使用三维方向图,但在移动通信无线网络优化中,为了能定量评价基站天线下倾后对干扰减少所起的作用,三维方向图是有用的。
图3.1 天线的三维方向图(a) 垂直方向图 (b) 水平方向图图3.2 天线的二维方向图为了完整地确定天线的辐射特性,需要在每一工作频率上,测量或计算出等半径球面上的绝对幅值,然后利用在最大辐射方向上测得的功率值对场的绝对幅度值归一化。
移动通信基站及天线基本知识

波长
天线基本概念
? 对称振子上的电场和磁场
? 最大电压在对称振子末端; 电场线布满其之间。
电压
? 对称振子上的电流与电压大 小相反(馈电点处最大;对 称振子末端处最小),电流 产生磁场。
电场
电流 磁场
天线基本概念
? 对称振子上的电场和磁场
? 电压(电场(E)平面)
电流(磁场(H)平面)
天线基本概念
移动通信基站及其天线
基 本 知识
天线基本概念
? 天线理论 ? 天线术语 ? 天线类型
天线基本概念
? 什么是天线?
? 天线是对两种传输形式电磁波进行相互转换 . ? 天线是接收和发射电磁波的设备 .
? 电缆界限电磁波
空间自由电磁波
天线基本概念
开路的传输线可说明天线的辐射原理
发射机产生的高频振荡功率经过传输线时 电磁波是不能向外辐射的。
单极化天线
天线基本概念
? 隔离度
1000mW ( 即1W)
在这种情况下的隔离为 10log(1000mW/1mW) = 30dB
1mWWWW
双极化天线
天线基本概念
? 三阶互调(Third Order Inter modulation )
天线交调产物是指当两个或多个频率信号经过天线时, 由于天线的非线性而引起的与原信号有一定关系的其它 离散射频信号。
? 表征天线向一定方向辐 射电磁波功率的能力。
? 为将辐射功率沿水平方向集 中到某一区域,应垂直放置 半波对称振子并同相位连接.
? 对称振子数增加两倍时半功 率波瓣宽度大约减少是1/2
? 主方向上增益增加3dB
1λ/2阵子 78°
32° 2λ/2阵子
移动通信中的电波传播与天线第四讲_电波传播模型.

第5章移动通信系统中的场强预测模型☐场强预测——所谓场强预测是指根据移动通信的不同环境得到通信范围内的场强分布(路径损耗),建立电波传播的模型,以便对通信网进行规划和设计(天线、基站站址、小区半径、频率……)☐传播模式——分为经验模式、半经验或半确定模式、确定性模式。
经验模式是根据大量测量结果统计分析后导出的公式,应用经验模式可以容易和快速地预测路径损耗,不需要有关环境的详细信息,但是不能提供非常精确的路径损耗估算值。
确定性模式是对具体现场环境直接应用电磁场理论进行计算,如射线追踪方法,环境的描述可以从地形地物数据库中得到。
半经验或半确定模式是基于把确定性方法用于一般的市区或室内环境中导出的公式,为了改善半经验或半确定模式和实验结果的一致性,有时需要根据实验结果对公式进行修正,得到的公式是天线周围某个规定特性的函数。
传播环境——蜂窝移动通信的最大特点就是小区制。
小区的大小和范围直接和传播条件有关,可以根据需要选择小区的大小和范围。
移动通信系统中主要采用宏小区、微小区(微蜂窝)和微微小区(微微蜂窝)三种形式。
经验模式或半经验模式对具有均匀特性的宏小区是合适的。
半经验模式还适用于均匀的微小区,在那里模式所考虑的参数能很好的表征整个环境。
确定性模式适合于微小区和微微小区不管它们的形状如何。
确定性模式对宏小区是不能胜任的,因为对这种环境所需的计算机CPU时间使人无法忍受☐四种电波传播模型——电波传播模型是指通过对电波传播的环境进行不同方法的分析后所得到的电波传播的某些规律、结论以及具体方法。
利用电波传播模型不仅可以估算服务区内的场强分布,而且还可以对移动通信网进行规划与设计。
统计模型(Statistical Model)——通过对移动通信服务区内的场强进行实地测量,在大量实测数据中用统计的方法总结出场强中值随频率、距离、天线高度等因数的变化规律并用公式或曲线表示出来。
实验模型(Empirical Model)——通过实验方法得出某些电波传播规律,但不像统计模型那样用公式或曲线表示出来。
天线与电波传播_完整版

§1.1 辅助函数法
在远场区
E jA E jA E jA Er 0
1 j ˆE ˆ A H r r
天线辐射问题分析过程
§1.2 电基本振子
什么是电基本振子? 一段通有高频电流的直导线,当导线长度远远小于
§1.2 电基本振子
近区场的性质:由于电场和磁场相差90度,故坡印 廷矢量的平均值等于零,这说明无电磁场能量辐射, 称为感应场。 远区场:当 kr 1 时称为远场区,电磁场主要由 kr 的低次幂项决定,故可略去 kr 的高次幂项,得
Er E H r H 0 jkr kI 0l e E j sin 4 r kI 0l e jkr H j sin 4 r
§1.2 电基本振子
电基本振子的场辐射
§1.3 磁基本振子
麦克斯韦电磁理论获得了巨大的成功。电和磁的 对称性问题,至今尚未解决。 电的基本单元是电荷。正负电荷可以分开,自由 电荷能单独存在,因而我们可以引进电荷密度和电 流密度的概念。 磁的基本单元是磁偶极矩,它可以看作是正负磁 荷的组合。然而,正负磁荷却不能分开,自由磁荷 不能单独存在。所以,在电磁理论中我们不能引入 磁荷密度和磁流密度等概念。
天线发展简史
五、2000, 移动/手持天线(Mobile/Hand - held Antenna) 工作于800MHz的手持蜂窝电话天线随处可见。 从马可尼时代直到20世纪40年代,天线主要是以 导线为辐射单元,工作频率也提高到UHF。 进入二战期间,随着1GHz以上微波源(如调速 管、磁控管)的发明,天线开始了一个新的纪元。 波导口径天线、喇叭天线和反射面天线等如雨后春 笋般出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基站天线的基本原理与及电波传播
Lucent Technologies Proprietary
1
内容
• 天线知识概述
– – – – – 天线的定义 典型的基站天线类型 基站天线的主要电气特性 基站天线的主要机械特性 基站天线的主要环境特性
• 天线的基本原理 • 电波传播基本知识
Lucent Technologies Proprietary
7
基站天线的主要机械特性
• • • • • • • 天线尺寸 天线重量 天线罩材 构造特点 安装附件,配合抱杆、外墙等多种安装方式使用 安装附件,可供现场调整下倾角使用 接头的类型和位置
Lucent Technologies Proprietary
Lucent Technologies Proprietary
15
天线带宽 • Cellular系统天线的带宽 • PCS系统天线的带宽 • 双波段天线
Lucent Technologies Proprietary
16
天线方向图
• 垂直面方向图
- 天线方向图的侧视图 - 典型的带宽为4-15度
• 水平面方向图
Lucent Technologies Proprietary
2
天线知识概述
天线知识概述
Lucent Technologies Proprietary
3
天线的定义
• 天线是一种将传输线送来的高频传导电流转变成空间电磁 波或反向过程的装置。 • 天线是无源而非有源器件。
• 天线的增益是指它与各向同性(isotropic)天线相比,能量 集中的增大倍数(dBi)。或与偶极子(dipole)天线相比, 能量集中的增大倍数(dBd)。
8
基站天线的主要环境特性
• • • • • • • • • •
9
盐雾, IEC 68-2-1 冰雪, IEC 68-2-1 热, IEC 68-2-2 太阳辐射, IEC 68-2-5 震动, IEC 68-2-6 热冲击, IEC 68-2-14 淋雨, IEC 68-2-18 机械冲击, IEC 68-2-27 湿度, IEC 68-2-30 最大可承载风速
5
基站天线的主要电气特性 (1)
• 天线增益 Gain(单位:dBd 或 dBi) • 带宽 Bandwidth(单位:MHz ) • 方向图 Pattern
– 水平波瓣宽度(单位:degree) – 垂直波瓣宽度(单位:degree)
• • • •
6
前后比 Front-to-Back Ratio(单位:dB) 驻波比VSWR 回损 Return Loss(单位: dB) 功率容量 Maximum Input Power(单位:Watt)
Lucent Technologies Proprietary
14
dBd与dBi 的对比 •
天线增益是一个相对的概念。
• 大多数VHF/UHF天线厂商使用偶极子做为参考(单位:dBd)。 • 微波天线厂商常用各向同性源做为参考。(单位:dBi) • 天线增益( dBi ) = 天线增益 ( dBd )+ 2.15
Lucent Technologies Proprietary
基站天线的主要电气特性 (2)
• • • • • 极化方式 Polarization 下倾角 Downtilt(单位:degree) 三阶互调 Intermodulation(单位:dBc) 阻抗 Independence (单位:ohms) 雷电防护 Lightning protection
12
天线增益的含义 • 天线阵列(辐射线性阵列) • 基本单元:半波偶极子 • 增加一倍半波偶极子个数,增益增加3dB。
Lucent Technologies Proprietary
13
天线增益-全向天线
Radome (fibre glas, plastics)
Four connected Half-wave dipoles
One element: 2.1 dBi / 0 dBd Two elements: 5.1 dBi / 3 dBd Four elements: 8.1 dBi / 6 dBd Eigth elements: 11.1 dBi / 9 dBd 一般来说,并不推荐更高的增益,因为高增 益会使偶极子的间距太小并且天线太大。 天线一般是垂直极化。
Lucent Technologies Proprietary
天线基本原理
天线基本原理
Lucent Technologies Proprietary
10
知识点
• 天线辐射
• • • • • • • • • • 天线增益 的含义 dBd与dBi的对比 基站天线的增益要求 天线带宽 天线方向图 增益和波瓣宽度的关系 驻波比VSWR 与回损的关系 前后比 互调 下倾角
Lucent Technologies Proprietary
19
驻波比VSWR 与回损
• 驻波比VSWR定义如下:
Lucent Technologies Proprietary
4
典型的基站天线类型
• 全向天线 • 定向天线 – 按结构分
• 板状天线 • 对数周期天线
– 按极化方式分
• 单极化天线 • 双极化天线
– 交叉极化(垂直和水平) – 斜极化(+45 度和 -4ies Proprietary
Lucent Technologies Proprietary
11
天线辐射
• 天线接通信号源后,辐射元件产生电场与磁场
• 电场方向与辐射元件方向一致 • 磁场环绕在以辐射元件为圆心的轴上,其方向与电场正交 • 电磁波的方向分别正交于电场E和磁场H
Lucent Technologies Proprietary
- 天线方向图的俯视图 - 典型的带宽为20-360度
Lucent Technologies Proprietary
17
天线方向图示例
Lucent Technologies Proprietary
18
增益和波瓣宽度的关系 增益可用以下公式简略表示: G (dBi) = 10 log(29000/) = 天线的水平带宽(度) = 天线的垂直带宽(度)