基站定位原理 实例软件分析
基站故障定位及排障案例分析

主讲人:姚 斌
什么是基站障碍
什么是基站障碍?
Company
Logo
基站障碍是由于基站所属设备发生故障或失 效而影响正常通信的事件。
抢修原则
在多起故障同时发生时,维护单位应遵循“先重点、 后一般”和“先抢通、后修复”的原则,进行修复。
Copyright © by ARTCOM PT All rights reserved.
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
爱立信2202主设备示意图
Company
Logo
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
RBS2202硬件组成
Company
Logo
该套设备从硬 件上分为六个 部分: IDM、 TRU、CDU、 ECU、DXU、 PSU
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
下一部分
IDM的结构
Company
Logo
空气开关单元,控制各模块的电源开关。
Copyright © by ARTCOM PT All rights reserved.
www.art-com.co.kr
爱立信2202主设备DU、FUD、CU部分示意图
Company
Logo
爱立信2202主设备中接收、发射部分:主要查看DU、FUD、CU上有无fault灯 告警。如果有告警与监控中心确认处理。
利用google API在手机上实现基站定位

3、HTTP 发送时,对应的 IP 就是解析 得到的“74.125.71.105”,端口:
80
4、将上述请求的数据组织成 HTTP 数据包格式,才能发送成功。如果手机软件本身已
经集成了 HTTP 协议的相关代码,这一步就省了。由于是在展讯 modem 版本的软件上实现
此功能,HTTP 协议没有被集成,因此必须自己组织 HTTP 数据包。HTTP 数据包包含以下几
式中,d 为距信源的距离,单位为 km;f 为频率,单位为 MHz;k 为路径衰减因子,范围在 2~5 之间。对数一常态分布模型,其路径损耗的计算公式为:
式中,Xσ 是平均值为 O 的高斯分布随机变数,其标准差范围为 4~10;PL(d0),是式(1) 取 d=1 时,算出的 Loss 值。根据式(1)和式(2),得出信号强度为:
利用 google 数据在手机上实现基站定位
利用 google 数据在手机上实现基站定位
定位技术有两种,一种是基于 GPS 的定位,一种是基于移动运营网的基站的定位。 基 于 移 动 运 营 网 手 机 基 站 定 位 服 务 又 叫 做 移 动 位 置 服 务 ( LBS——Location Based Service),它是通过电信移动运营商的网络(如 GSM 网)获取移动终端用户的位置信息 (经纬度坐标),在电子地图平台的支持下,为用户提供相应服务的一种增值业务[1], 在手机上不需要增加任何功能,向运营商开通相关服务就可以实现。
C语言实现基站定位

C语言实现基站定位在现代通信领域中,移动电话网络已经成为人们生活的重要组成部分。
而基站定位技术,则是移动电话网络中一项重要而广泛应用的技术之一。
本文将介绍如何使用C语言来实现基站定位功能。
一、基站定位的原理基站定位是通过手机与基站之间的信号强度以及时延等信息,来确定手机所在位置的一种技术。
在实际应用中,手机与基站之间的信号强度是通过接收到的信号功率来衡量的,而时延则是通过手机与基站之间信号的传输时间来计算得出的。
二、C语言实现基站定位的步骤为了实现基站定位功能,我们可以按照以下步骤进行操作:1. 首先,我们需要获取手机与基站之间的信号强度以及时延信息。
这可以通过手机的硬件接口来实现,比如使用C语言与手机的底层硬件进行交互。
2. 接下来,我们需要对获取到的信号强度进行处理。
可以通过编写C代码来实现信号强度的测量和计算,以得出相应的信号强度数值。
3. 然后,我们需要对时延进行处理。
同样地,可以通过编写C代码来实现时延的测量和计算,以得出相应的时延数值。
4. 在得到信号强度和时延的数值后,我们可以利用这些数据来进行基站定位。
在这一步骤中,可以使用C语言中的数学计算库来实现相应的计算,例如使用三边测量法或其他定位算法。
5. 最后,我们可以通过输出结果的方式来展示手机所在的位置信息。
可以通过C语言的控制台输出或者其他界面展示方式来呈现。
三、C语言实现基站定位的应用基站定位技术在现代社会中有着广泛的应用。
例如,在物流行业中,基站定位可以帮助企业实时追踪货物的位置,提高物流的管理效率。
在紧急救援领域,基站定位可以帮助快速准确地定位受困人员的位置,提高救援的效果。
此外,基站定位技术还可以用于定位、导航等方面。
例如,我们可以借助基站定位技术来实现手机的导航功能,帮助人们在陌生的城市中找到目的地。
总结:通过上述的介绍,我们了解到C语言可以用于实现基站定位功能。
基站定位技术在现代社会中具有广泛的应用领域,它可以帮助我们准确地确定手机所在的位置,并提供更好的服务和便利。
RTK定位原理概述

一、RTK定位原理概述RTK测量利用的是载波相位差分GPS技术来实时定位的,正是凭借差分改正和载波相位测距两种测量方法才使得动态定位的精度可以到达厘米级。
差分GPS技术是利用了基准站与流动站之间空间的相关性来进行差分改正的,从而将定位的误差削弱。
标准的差分GPS 原理是将基准站架设在高精度的已知点控制点上,通过基准站单点定位确定测站的位置坐标,然后通过实时定位测得的坐标与控制点坐标的比对,从而确定基准站上的定位误差。
但在实际生产中,为了提高测量效率,基准站通常也可以架设在未知点上。
下文就RTK基准站架设的两种情况进行解释。
说明其架设原理。
GPS系统定位采用的是WGS-84坐标系,如下列图所示。
它是一个地心坐标系,所有的GPS接收定位测得的坐标都是基于该坐标系的坐标。
换而言之,GPS接收机只能识别WGS-84坐标。
但是在实际应用过程中,用户基于定位精度、坐标保密、控制变形等原因往往会建立其他坐标系统。
这样就涉及到了坐标系统之间的相互转换,所以这就是为何几乎所有的GPS解算软件中都有坐标系统转换程序的原因。
现就国内坐标系统的应用为基础,介绍一下RTK测量时坐标系统的转换方法。
至今为止,我国使用的平面坐标系统主要有北京54坐标系统、西安80坐标系统和国家2000坐标系统。
这三者之间的本质区别在于采用了不同的椭圆基准。
在实际生产中还存在地方独立坐标系统,它是在上述几种坐标系的基础上建立的。
高程坐标系统主要有1956黄海高程基准和1985国家高程基准两个系统组成。
坐标系统的转换方法主要有七参数、四参数、三参数和一参数等。
根据两套坐标系统之间的几个关系可以采用相应的转换方法。
RTK测量过程中坐标系统的转换分为平面转换和高程转换两个方面。
平面转换主要是采用控制点反算转换参数的方法,根据测区范围和精度的要求采用不同的转换方法。
对于涉及到两个不同椭球基准的坐标系统之间的相互转换,一般都采用七参数进行转换,如果测区面积较小,可近似当做平面时〔约10公时范围〕可采用四参数进行转换。
4g基站定位原理

4g基站定位原理4G基站定位原理是通过多个基站之间的信号传输和计算来确定手机用户的位置。
在4G网络中,手机与基站之间会建立物理连接,通过基站发送和接收信号进行通信。
每个基站都有一个唯一的标识码,称为CID(Cell ID)。
当手机用户在网络中进行通信时,手机会自动搜索最近的基站,并与之建立连接。
手机与基站之间的距离可以通过信号的传播时延来计算。
当手机与多个基站之间传输信号时,每个基站都会记录下手机与其之间的通信时刻,并将这些信息传输给网络的控制中心。
控制中心根据多个基站上传的信息,利用测量所得的信号的强度和传输时延来计算手机用户的位置。
在计算过程中,会采用三角定位法或多边形定位法等数学方法来确定手机用户所在的位置。
具体而言,三角定位法是利用手机与至少三个基站之间的距离来计算用户的位置。
假设手机与基站之间的距离为d1、d2、d3,则用户的位置可以通过测量这三个距离来确定。
通过计算这三个距离构成的三角形的顶点坐标,就可以得到用户的位置。
多边形定位法是利用手机与至少四个基站之间的距离来计算用户的位置。
手机与不同基站之间的距离构成了一个多边形,通过计算这个多边形的顶点坐标,可以确定用户的位置。
4G基站定位原理的精度受到许多因素的影响,例如信号传播的衰减、环境干扰等。
为提高定位的精度,通常会采用增强版的解算算法和引入其他辅助定位的技术,例如GPS定位等。
综上所述,4G基站定位原理是通过多个基站之间的信号传输和计算来确定手机用户的位置,采用三角定位法或多边形定位法等数学方法来计算用户的位置。
增强版的解算算法和辅助定位技术可以提高定位的精度。
TDOA基站定位算法详细介绍

TDOA基站定位算法详细介绍TDOA(Time Difference of Arrival)基站定位算法是一种利用信号到达时间差来确定目标位置的定位算法。
通过多个接收基站同时接收目标信号,并测量信号到达每个基站的时间差,通过差值计算可以估计目标位置。
下面将详细介绍TDOA基站定位算法的工作原理和算法流程。
TDOA基站定位算法的工作原理是基于时间差测量的。
首先,我们需要确定一个参考点作为参考基站,其他基站的位置相对于参考基站的位置进行测量。
当目标信号到达各个基站时,基站会将到达时间戳发送给一个中央处理单元(Central Processing Unit,CPU)。
CPU根据接收到的时间戳来计算信号的到达时间差,然后通过这个时间差来推测目标的位置。
TDOA基站定位算法的核心思想是通过多个基站之间的信号到达时间差来确定目标位置。
根据波速的常数,我们可以将时间差转化为距离差。
通过计算目标信号到达每个基站的时间差,我们可以得出一组距离差。
根据这些距离差,我们可以构建一个多边形,其中目标位置位于这个多边形的交叉点。
1.确定参考基站和其他测量基站:在定位系统中选择一个基站作为参考基站,其他的基站相对于参考基站进行测量。
2.接收到目标信号:多个基站同时接收到目标信号。
3.计算时间差:各个基站将接收到目标信号的时间戳发送给CPU,CPU通过计算相对于参考基站的时间差来估计目标位置。
4.转换为距离差:根据波速的常数,将时间差转换为距离差。
5.构建多边形:根据距离差,将目标位置可能在的区域构建为一个多边形。
6.确定目标位置:通过求解多边形的交叉点,确定目标的最可能位置。
TDOA基站定位算法的优点是定位精度较高。
由于使用多个基站同时接收信号并计算时间差,相对于单个基站定位算法,TDOA算法能够提供更好的定位精度。
此外,TDOA算法不需要测量信号的功率信息,因此对于弱信号和噪声信号的处理也较为灵活。
然而,TDOA基站定位算法也存在一些限制。
基站定位原理

基站定位原理
基站定位原理是通过基站和手机之间的信号交互来确定手机的位置。
基站是无线通信系统中的一部分,用于发送和接收信号。
它们通常安装在高处,如建筑物的屋顶或山顶。
当手机被打开并与基站连接时,手机会向基站发送一个请求信号,告诉基站它的位置。
基站会通过接收到的信号来计算手机与基站之间的距离。
基站间的距离由计算机算法和信号强度等因素确定。
越接近基站的手机,接收到的信号强度越强。
通过收集不同基站发送回的信号强度数据,可以使用三角测量或多边形覆盖的方法计算手机的位置。
三角测量方法使用手机与三个以上的基站之间的距离来确定手机的位置。
多边形覆盖方法则使用手机与多个基站之间的距离来确定手机的位置。
基站定位原理并不是完全准确的,因为信号在传输过程中可能受到干扰或衰减。
此外,建筑物、地形和天气等因素也可能影响信号的传播和接收质量。
因此,在城市等高密度区域,基站定位的准确性可能会受到限制。
但是,通常来说,基站定位仍然是一种相对准确的定位方法,可应用于移动通信、紧急救援和地理信息服务等领域。
关于RTK的工作原理和精度分析(以南方RTK为例)

关于RTK的工作原理和精度分析(以南方RTK为例)经常有一些客户会打电话给我询问一些有关RTK的精度问题,根据我的总结,这些客户对RTK的原理掌握不够深刻,对一些能反映RTK精度的指标也理解不透.在此我对RTK的原理及精度简要的阐述一下,希望能抛砖引玉,对大家有所帮助.RTK是实时动态测量,其工作原理可分为两部分阐述。
一、实时载波相位差分我们知道,在利用GPS进行定位时,会受到各种各样因素的影响(见上节中的GPS误差源),为了消除这些误差源,必须使用两台以上的GPS接收机同步工作.GPS静态测量的方法是各个接收机独立观测,然后用后处理软件进行差分解算。
那么对于RTK测量来说,仍然是差分解算,只不过是实时的差分计算。
也就是说,两台接收机(一台基准站,一台流动站)都在观测卫星数据,同时,基准站通过其发射电台把所接收的载波相位信号(或载波相位差分改正信号)发射出去;那么,流动站在接收卫星信号的同时也通过其接收电台接收基准站的电台信号;在这两信号的基础上,流动站上的固化软件就可以实现差分计算,从而精确地定出基准站与流动站的空间相对位置关系。
在这一过程中,由于观测条件、信号源等的影响会有误差,即为仪器标定误差,一般为平面1cm+1ppm,高程2cm+1ppm.二、坐标转换空间相对位置关系不是我们要的最终值,因此还有一步工作就是把空间相对位置关系纳入我们需要的坐标系中。
GPS直接反映的是WGS-84坐标,而我们平时用的则是北京54坐标系或西安80坐标系,所以要通过坐标转换把GPS的观测成果变成我们需要的坐标。
这个工作有多种模型可以实现,我们的软件采用的是平面与高程分开转换,平面坐标转换采用先将GPS测得成果投影成平面坐标,再用已知控制点计算二维相似变换的四参数,高程则采用平面拟合或二次曲面拟合模型,利用已知水准点计算出该测区的待测点的高程异常,从而求出他们的高程。
坐标转换也会带来误差,该项误差主要取决于已知点的精度和已知点的分布情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、CellMap
全景地图 相邻基站
轨迹
总结:
1、当前基站信息,相邻基站及强度 2、地图定位 3、趋近报警 4、轨迹重现
乒乓切换
乒乓切换,即手机在服 务小区和相邻小区来回进行 切换的现象。
切换过程采用偷帧发送 切换命令,连续的偷帧导致 话音质量极不清晰,影响用 户感受,且大量小区乒乓切 换比例较大时会增加系统负 荷,导致切换失败。
4、载波故障,导致载频输出信号明显减弱。某小区BCCH载 波信号强度正常,而TCH载波有故障,导致占用该载波通 话后,通过正常的定位算法发现周边信号较强,因此切换 小区,后来又因同样的方法切回本小区,连续不断导致乒 乓切换。
5、外部切换参数设置不匹配
KHYST为信号强度算法定义小区边界的滞后参数, 可以用来避免乒乓切换,默认设置一般为3,即是说邻小 区电平必须比当前服务小区电平高KOFFSET+3db且保持 宽度 一定的时间才会进行切换根据切换。对于一些切换比较 频繁且切换丢失率较高的相邻小区,我们通过适当加大 KHYST,可以减少它们相互间的切换次数。
理想的小区切换边界应当避开繁忙的高话务区域,当 然由于分担话务的需要,将一个高话务区域分摊给多个小 区时常是必要的。在这种情况下,将有很多切换伴随存在。
2、直放站造成的,直放站信源是基站的其他小区,但是覆 盖与现在小区交叉,由于信号波动导致的切换。
3、天馈系统故障,天馈的信号输出不稳定,导致信号波动 较大。硬件故障,导致占用或者切入后电平质量不好导致 切出,处理硬件故障。
乒乓切换原因(以GSM网为例):
在LOCATING过程中,如果最终的候选队列中出现高于服 务小区的邻小区或紧急情况出现时,就意味着将有切换发生。 多个小区重叠覆盖、外部干扰大、硬件故障、参数设置不合 理都有可能导致乒乓切换。
1、多个小区重叠覆盖,没有主导小区
如果手机处于多个信号强度差不多的小区的覆盖区域 内,那么它就有了产生来回切换的充分条件。首先,在这 种情况下各小区的信号质量都不会很好,另外,由于无线 信号的强度总是变化的,因此大量的切换在所难免。
室外路测
显示当前通讯基站的位置、方位角、信号强 度、距离、邻区信息,显示历史基站
显示室外路测轨迹
室外打点
每隔10ms打点
室内测试
室内打点测试(导入楼层平面图),评测楼宇内的 信号覆盖情况
基站查询
网络查询
本机查询
查询标注
单ID查询
基站/Wifi信息
当前所连基站信息
Wifi信号和信道分布
趋近报警
在网络优化当中需要调整小区的边界,不可避免地要修改KOFFSET。但是可 能同时引入三角切换。
我们给CELLA 与 CELLC 加一个负的 KOFFSET,且KOFFSET 的绝对值大于其KHYST, 得到一个新的CELLA 与 CELLC 的边界。由 KOFFSET 的原理可知, 其值的改变直接对应于 相应边界的平行推移
1、基站查询结果在显示前会提示是否需要设置趋近报警,设定之后将 在距该目标位置1km时进行震动报警。默认不设定。趋近报警只在GPS 定位完成后有效。 2、在进出目标基站服务区时进行震动和声音报警。
下倾角估算
已知条件天线高度H,所希望得到的覆盖半径R,天线 垂直平面的半功率角A,需确定天线倾角B。 说明:不考虑路径损耗,D点功率电平是C点的一半,即小 3dB。由此计算覆盖半径不完全合理。但是厂家只提供半 功率角指标。实际作天线倾角时,比B值大1到2度更合理 些。
KOFFSET用于移置信号强度算法(k-k)定义的边界, 正偏置时边界向小区外移,负偏置时小区向内移。在反 位置 方向KOFFSET是绝对值相同但加一个相反的符号。拥塞 的小区可以通过调整KOFFSET分散话务量。
如果参与切换的两个小区分别处于两个BSC,那么就必须保持两边邻 小区参数定义的一致性。
Signalsitemap 功能最齐全
1、室外测试时,了解周边的地理信息、基站分布、 相邻基站、了解信号覆盖的大致情况;
2、室内测试时,评测楼宇内的信号覆盖情况,为基 站建设和优化提供指导。
3、支持打点记录、趋近报警、wifi信息。5、基Leabharlann Wifi监测软件Wifi、网络
历史记录
1、显示当前基站信息、相邻基站、信号强度, 能在地图上显示当前基站的位置、半径 2、实时监测基站、WiFi信号,不提供报警功能
例如:在BSC1 中,外部切换关系CELLA-CELLB 定义为KHYST=3、 KOFFSETN=8;而在BSC2 中,外部切换关系CELLB-CELLA 定义为 KHYST=3、KOFFSETP=0。
如果手机在CELLA 起呼且CELLA 的信号强度为-70DBM,CELLB 的信号强度为-74DBM 时,在BSC1 的LOCATING 计算中将得到以下结果 KRANK(CELLA)= - 70,KRANK(CELLB)= - 74+8 - 3= - 69,在最终 的CANDIDATE LIST 中,CELLB 将排在CELLA 的前面,从而触发从 CELLA 到CELLB 的切换。
接着,在BSC2 的LOCATING 计算中将得到以下结果: KRANK(CELLB)=-74,KRANK(CELLA)= - 70 - 3=-73,在最终的 CANDIDATE LIST 中,CELLA 将排在CELLB 的前面,从而又触发从 CELLB 到CELLA 的切换……形成乒乓切换。
三角切换 koffset不能大于khyst,否则会出现乒乓切换
KOFFSET=0
6、切换的惩罚值设得过小、时间过短,当紧急切 换发生时,目标小区是比源小区差的小区,如果没 有惩罚,将立即返回源小区,从而形成乒乓切换。
由于差质量紧急条件而放弃的小区会加一个惩罚值,它是在每个 小区定义。 该值如果设置太高,那么这个小区将很难再作为候选小 区。
紧急切换。包括TA过大紧急切换、质量差(BQ)紧急切换、快速 电平下降紧急切换、干扰切换。
1、通过在该区域增加信号源覆盖,通过优化手段调整两 个小区的覆盖范围,在该区域形成主覆盖小区 2、调整天线工程参数,比如调整天线方位角、下倾角、 天线挂高来控制切换带的范围。 3、天线技术改造,比如使用室内定向板状天线来控制天 线覆盖范围,保证切换 4、调整两小区间的KOFFSETP/N值,即小区切换偏移及 KHYST小区切换迟滞 5、增加惩罚时间,控制切换频率。
谢谢
质量差(BQ)紧急切换:电平低于干扰切换门限,并且通话质量 低于质量差切换门限触发。
快速电平下降切换:在呼叫中电平突然下降时触发 干扰切换:电平高于干扰切换门限并且通话质量差,低于干扰切 换质量等级。
当紧急切换发生时,目标小区是比源小区差的小区,如果没有惩 罚,将立即返回源小区,从而形成乒乓切换。
乒乓切换的解决办法
接收方
经纬度/基站
位置
2、NetMonster 界面简洁,显示当前基站、历史记录,无地图
3、基站实测 显示当前基站,查询基站,趋近报警,无地图
当前基站
查询会显示基站所在地及 附近主要建筑
报警
4、Signalsitemap基站信号路测(非VIP)
室外路测(在线地图) 室外路测(离线地图) 室内测试(手动打点) 基站/wifi(图表信息) 基站查询 经纬度查询 基站监测 下倾角估算 工参导入
基站定位
李璟莹 2014211317
主要内容
FindMe
NetMonster
1、基站监测软件
基站实测 Signalsitemap基站信号路测
基站Wifi监测
CellMap
2、乒乓切换
原因 解决办法
1、FindMe
未开网络
输入对方号码,启动服务,当此号码呼入时,本机会 发送一条位置信息给对方
打开网络