ASME Y14.3-2003 投影图和截面图
asme 制图标准

asme 制图标准ASME(美国机械工程师协会)是一个国际性的专业标准制定组织,其制定的标准被广泛应用于工程设计、制造和检验等领域。
ASME制图标准作为其中的一部分,对于工程制图和图纸的规范化具有重要意义。
本文将就ASME制图标准进行介绍和解读,以便广大工程技术人员更好地理解和应用这一标准。
ASME制图标准主要包括ASME Y14.1、ASME Y14.3、ASME Y14.5、ASMEY14.24等多个标准,涵盖了工程制图的各个方面。
其中,ASME Y14.5标准是最为重要和常用的标准之一,它规定了工程制图中的尺寸、公差、符号、线条、投影、视图等内容,为工程设计和制造提供了统一的标准和规范。
在ASME Y14.5标准中,尺寸和公差的表示是其中的重点内容之一。
在工程制图中,尺寸是表示零件大小和形状的重要信息,而公差则是表示零件尺寸允许的偏差范围。
ASME Y14.5标准通过规定统一的符号和标记方法,确保了尺寸和公差的准确表达,避免了因为表达不清晰而导致的误解和错误。
除了尺寸和公差外,ASME Y14.5标准还规定了工程制图中的符号和线条的使用规范。
在制图过程中,各种符号和线条的使用应当符合统一的标准,以确保制图的准确性和规范性。
同时,ASME Y14.5标准还规定了工程制图中的投影、视图的表达方法,确保了不同制图人员所绘制的图纸在表达方式上的一致性,从而方便工程设计人员和制造人员进行沟通和理解。
除了ASME Y14.5标准外,ASME Y14.24标准也是一个重要的制图标准,它规定了工程制图中的数字化表示和数据交换的标准。
随着计算机辅助设计技术的发展,数字化制图已经成为工程设计和制造的主流方式,而ASME Y14.24标准则为数字化制图提供了统一的标准和规范,确保了不同计算机辅助设计软件之间的数据交换的准确性和一致性。
总的来说,ASME制图标准对于工程制图的规范化和标准化起到了重要的作用,它为工程设计、制造和检验提供了统一的标准和规范,为不同制图人员之间的沟通和理解提供了便利。
迈达斯桥梁建模

迈达斯桥梁建模01- 材料的定义通过演示介绍在程序中材料定义的三种方法。
1、通过调用数据库中已有材料数据定义——示范预应力钢筋材料定义。
、通过自定义方式来定义——示范混凝土材料定义。
23、通过导入其他模型已经定义好的材料——示范钢材定义。
无论采用何种方式来定义材料,操作顺序都可以按下列步骤来执行:选择设计材料类型(钢材、混凝土、组合材料、自定义)?选择的规范?选择相应规范数据库中材料。
对于自定义材料,需要输入各种控制参数的数据,包括弹性模量、泊松比、线膨胀系数、容重等。
钢材规范混凝土规范图1 材料定义对话框02-时间依存材料特性定义我们通常所说的混凝土的收缩徐变特性、混凝土强度随时间变化特性在程序里统称为时间依存材料特性。
定义混凝土时间依存材料特性分三步骤操作:1、定义时间依存特性函数(包括收缩徐变函数,强度发展函数)(图1,图2);2、将定义的时间依存特性函数与相应的材料连接(图3);3、修改时间依存材料特性值(构件理论厚度或体积与表面积比)(图4);图1 收缩徐变函数图2 强度发展函数4-2图3 时间依存材料特性连接 图4 时间依存材料特性值修改定义混凝土时间依存材料特性时注意事项:1)、定义时间依存特性函数时,混凝土的强度要输入混凝土的标号强度;2)、在定义收缩徐变函数时构件理论厚度可以仅输入一个非负数,在建立模型后通过程序自动计算来计算构件的真实理论厚度;3)、混凝土开始收缩时的材龄在收缩徐变函数定义中指定,加载时的混凝土材龄在施工阶段定义中指定(等于单元激活时材龄+荷载施加时间);4)、修改单元时间依存材料特性值时要对所有考虑收缩徐变特性的混凝土构件修改其构件理论厚度计算值。
计算公式中的a代表在空心截面在构件理论厚度计算时,空心部分截面周长对构件与大气接触的周边长度计算的影响系数;5)、当收缩徐变系数不按规范计算取值时,可以通过自定义收缩徐变函数来定义混凝土的收缩徐变特性;6)、如果在施工阶段荷载中定义了施工阶段徐变系数,那么在施工阶段分析中将按施工阶段荷载中定义的徐变系数来计算。
国标美标图纸的识读.ppt

英寸公差
(a)当使用单边公差标注且正值或负值均 为零时,其尺寸应表达为相同的小数位以 及前当的正负号。 (b)使用双边公差标注,正值或负值以及尺 寸具有小数点后相同位数。 (b)使用双边公差标注,正值或负值以及尺 寸具有小数点后相同位数。 (c) 当使用极限尺寸标注且最大值或最小 值在小数点后有数字时,另一数值应补充 零以保持统一。
展开后的三视图及度量对应关系
顶视图
宽
长
宽
高
右视图
前视图
3.第三角画法中六个基本视图的配置及尺寸 对应关系
顶视
左视 底视 长
右视
长
高
前视
后视
4. 第三角画法与第一角画法的比较
后 左
顶视
第三角画法 右
上
上 右 后
左视
左
上
主视
前 下
前 上 左
前视
下 后 后 左
俯视
右
前
右视
右 前
下
下
第一角画法
主要有如下区别: (1) 第一角投影:将物体放在观察者与投影面之间,即
一.零件的精度分析 零件图纸上的精度主要体现在以下 三个方面: 1. 2. 3. 尺寸精度 形位精度 表面粗糙度
二.零件的工艺分析 零件图纸上的精度主要体现在以下 三个方面: 1. 2. 3. 尺寸精度 形位精度 表面粗糙度
图例
《ASME Y14.5M—2009》简介
Байду номын сангаас
一、通则: 确定尺寸和公差规则 单位:毫米或英寸、度秒分
人→物→面的相对关系。第三角投影:将投影面放在观察
者与物体之间,即人→面→物的相对关系,假定投影面为 透明的平面。 (2) 第一角投影各投影面展开的方法:H面向下旋转, W面向由后方旋转。第三角投影投影面展开的方法: H面
小径管环缝焊垂直成像投影长度浅析

小径管环缝焊垂直成像投影长度浅析摘要:本文主要通过NB/T20003.3-2010标准中对小径管环焊缝射线检测方法的解析,解剖检测工艺,分析小径管互成60°或120°三次透照垂直成像时在底片上的投影长度及适用范围,以期望给拍片、评片工作起到参考作用。
关键词:小径管、射线检测、垂直成像、一次透照长度、投影长度引言:小径管一般指管径D≤90mm(也有标准规定为D≤100mm)的管子,小径管在核岛、锅炉、压力容器等设备上应用广泛,一般采用焊接的方式实现小径管的连接,对于小径管焊接接头最常采用的无损检测方法是射线检验。
小径管因结构规格等原因,一般采用源在外双壁双影的检测方法。
因检测工艺的缺陷,小径管的透照厚度变化较大,拍摄出的底片黑度变化较大,满足黑度要求的范围较小,且各个标准中对小径管垂直透照的描述基本一致:互成60°或120°方向3次曝光;对细节方面没有过多描述,在实际检验过程中经常出现意见分歧。
1、小径管射线检验垂直成像工艺NB/T20003.3-2010标准中对小径管双壁双影透照的要求如下:当比值D0/t≤10,采用垂直成像方式,至少在互成60°或120°方向透照三次;当比值D0/>10,采用椭圆成像方式或垂直成像方式,椭圆成像至少应在互成90°方向透照两次;椭圆成像时,应控制影像开口宽度(上下焊缝投影最大间距)在1倍焊缝宽度左右。
本文仅讨论采用垂直成像方式检测时情况,垂直成像的透照如图1所示:图1、垂直成像示意图同时,NB/T20003.3-2010标准中的一些关键的通用要求如下:几何不清晰度Ug≤0.3;注1底片黑度:2.0-4.0(单片),2.7-4.5(双片)。
注2滤光板、增感屏、像质计等参数对本文中探讨的内容基本无影响,故不在此列举标准中的要求。
从垂直成像的原理可容易的得出以下结论:1)经过管子中心线的射线穿透的焊缝厚度最小,基本为两倍的焊缝厚度,在底片上成像的黑度最大;2)远离管子中心线的射线穿透的焊缝厚度大,在底片上成像的黑度小;2、一次透照长度及在底片上的投影长度2.1一次透照长度NB/T20003.3-2010标准规定,焊接接头的透照厚度比K应符合以下规定:环向焊接接头:1级,K≤1.06;2、3级,K≤1.1;纵向焊接接头:1级,K≤1.01;2、3级,K≤1.03;通过K值可精确的从理论上计算出检测时的一次透照长度,但显然不适用于垂直成像的方法,垂直成像时K值大于标准中的要求。
焊接SE分析指南

焊接SE分析指南目录1焊接SE分析概述 (1)1.1焊接SE的目的 (1)1.2焊接SE的概念 (1)1.3焊接SE的内容 (1)1.4焊接SE的作用 (1)2焊接SE分析流程 (2)3车身焊接SE分析 (3)3.1车身结构模块设置分析 (3)3.1.1车身模块设置原则 (3)3.1.2轿车车身骨架基本模块设置分析 (3)3.1.3面包车车身骨架基本模块设置分析 (4)3.1.4卡车车身骨架基本模块设置分析 (5)3.1.5越野车车身骨架基本模块设置分析 (6)3.2焊接装配关系分析 (7)3.2.1搭扣设置要求 (7)3.2.2搭扣运用案例 (7)3.3装配干涉分析 (7)3.3.1工序设定原则(八原则) (8)3.3.2装配方向 (8)3.4焊接结构及空间分析 (9)3.4.2点焊空间位置分析 (11)3.5焊接性分析 (14)3.5.1点焊层数及料厚设置分析 (14)3.5.2车身CO2焊技术要求分析 (15)3.5.3CO2塞焊技术要求 (20)3.5.4铜钎焊及MIG钎焊技术要求 (21)3.5.5凸点焊接技术要求 (21)3.5.6点焊搭接分析 (22)3.6数据错误核查分析 (24)3.6.1切边及其它隐性干涉分析 (24)3.6.2料厚数据检查分析 (27)3.7经济性分析 (27)3.7.1零件合并原则性分析 (27)3.7.2降本分析 (28)3.8焊接操作性分析 (32)3.8.1避免非常小的零件的焊接 (32)3.8.2避免非常精确、或防范程度非常高的焊接位置要求 (33)3.8.3避免车身内的焊接 (33)3.8.4减少大型、超大型焊钳的使用 (33)3.8.5减少装配的难度 (34)3.8.6减少焊接过程的磕碰 (34)3.9焊点位置分析 (35)3.9.1焊点布置基本规范 (35)3.9.2外观焊点要求 (37)3.10零件定位分析 (38)3.10.1零件定位原则 (38)3.10.2定位精度分析 (38)3.10.3定位孔的要求分析 (39)3.10.4RPS基准点设置原则及步骤 (41)3.10.5焊装车身定位要求 (41)3.10.6侧围定位分析 (44)3.10.7圆孔&长圆孔定位注意事项 (45)3.10.8槽型件内加强板的定位 (47)4调整装配线SE分析 (50)4.1调整装配性设计分析 (50)4.2装配操作性分析 (52)4.2.1装配要求分析 (52)4.2.2调整装配空间分析 (56)4.2.3装配状态分析 (56)4.2.4装配位置分析 (59)5其他总成SE分析 (60)5.1.1应用范围 (60)5.1.2车身结构要求 (60)5.2前后地板总成SE分析 (61)5.2.1应用范围 (61)5.2.2车身结构要求 (61)5.3左右侧围总成SE分析 (63)5.3.1侧围结构要求 (63)5.4四门两盖总成及包边SE分析 (64)5.4.1门上框总成焊接分总成结构形状要求 (64)5.4.2前门外板装焊工序流程 (64)5.4.3包边工艺分析 (65)6车身密封及粘接分析 (67)6.1焊装用胶功能介绍 (67)6.1.1焊装用胶种类 (67)6.1.2点焊密封胶作用 (68)6.2车身点焊胶密封位置 (68)6.2.1侧裙 (68)6.2.2地板 (68)6.2.3侧围 (68)6.2.4前舱 (69)6.3点焊胶密封位置注意事项 (69)6.4.1膨胀胶作用及使用位置 (70)6.5膨胀减震胶对零件的结构要求 (70)6.6折边胶涂胶分析 (71)6.6.1折边胶作用 (71)6.6.2折边胶使用位置 (72)6.6.3包边设备 (72)6.7外漏洞的防止 (73)7标准件焊接SE分析 (73)7.1标准件焊接空间分析 (73)7.1.1结构空间不足 (73)7.1.2供标准件焊接的钣金平面尺寸不足 (74)7.2结构及尺寸要利于标准件的焊接 (75)7.3标准件之间不能存在焊接干涉 (76)7.4标准件焊接对零件孔径的要求 (76)7.5标准件焊接料厚要求 (77)7.6工序优化 (78)8焊接SE分析文件输出 (78)1.1焊接SE的目的在新车型白车身总成开发过程当中,通过对产品图纸的同步验证(SE活动)确保最佳的设计质量,将开发阶段的问题变成最少,进行各阶段工作的技术指导以及支援,追求最佳的工艺,达到满足开发周期、开发质量等开发目标。
工程图学(机械篇)

工程图学(机械篇)工程图学是机械设计中的重要部分,是设计师能够将设计思路转化为现实的伟大工具。
它包含了特定的语言符号和约定来描述各种机械部件的几何形状和尺寸,以及部件间相互作用的特性,同时它也是其他工程领域的重要工具。
本文将为大家介绍机械工程图学的基础知识、常用图形和标准。
一、机械工程图学的基础知识机械工程图学是机械设计师使用的语言,表示三维模型的设计概念、形状和尺寸。
机械工程师必须了解和掌握绘制机械工程图的工具和技术。
机械工程图学的基础知识包括:图纸、投影、尺寸、符号和标准。
在掌握这些基础知识后,机械设计师能够绘制准确的工程图,以确保设计按照规定的标准和要求进行。
1. 图纸图纸是机械工程师在设计过程中最基本的工具之一。
机械图纸包含了所有的信息,包括模型几何特征、标准符号和尺寸、装配工艺以及其他相关信息。
每个图纸都应该包含工程题目、日期、质量等紧要的信息。
2. 投影投影是指将三维模型或物体的轮廓在纸面上进行表现。
机械工程图学中有两种投影方式:正面投影和侧面投影。
正面投影是物体的正面向前,反面朝后;而侧面投影则是物体的侧面向前,反面则与之相同。
在机械工程图学中,人们更多地使用正面投影(俯视图、左视图和右视图)来描述物体。
采用正面投影能够保证物体的形状和尺寸的精准性。
3. 尺寸尺寸是指定义物体尺寸和特征的值。
机械图纸上的尺寸是基于一些标准来定义的,这些标准包括长度(毫米、英寸等)和角度。
尺寸是机械工程设计中的重要指标,需要精确描述,以确保制造工人和机器操作员按照规定的尺寸完成工作。
4. 符号和标准机械工程图学中采用了一套独特的符号和标准来描述部件间的相互作用关系。
符号是确定物体构成和操作方式的标志,而标准则是确立符号使用的规则和程序。
机械工程师需要熟练地掌握这些符号和标准以确保工程图的准确性。
二、常用图形机械图学中有很多种图形,其中最常用的是:平面图、曲线图、投影图和截面图等等。
下面将简要介绍一些常用的图形。
ASME_Y14[1].36M
ACME is the registered trademark of The American Society of Mechanical Engineers.
This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Consensus Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment which provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.
This revision is also based on a review of and conforms in most respects with the international standard I S 0 1302:1992, Technical Drawings-Method of Indicating Surface Texture.
ASME Y1 96
ASME Y14.5-2018 尺寸与公差标注 – 1.0版 _23AUG19
目录前言 ......................................................................................................................................... v i 第1章范围 . (1)1.1 引言 (1)1.2 概述 (1)1.3 对本标准的引用 (1)1.4 ASME Y14系列标准的惯例 (1)1.5 不引用标准的图纸 (2)1.6 对检具标准的引用 (3)1.7 符号 (3)第2章引用文件 (4)2.1 引言 (4)2.2 引用标准 (4)2.3 额外资源(未引用) (4)第3章术语定义 (5)第4章基本规则、缺省的公差标注与尺寸标注实践方式 (13)4.1 基本规则 (13)4.2 计量单位 (14)4.3 尺寸标注的类型 (14)4.4 尺寸的应用 (14)4.5 要素的尺寸标注 (16)4.6 要素的位置 (19)第5章公差标注、极限的解释、尺寸极限与实体状态修饰符 (34)5.1 概述 (34)5.2 直接公差标注法 (34)5.3 公差表达式 (34)5.4 极限的解释 (35)5.5 标注单一极限公差的尺寸 (35)5.6 表面之间的公差累积 (35)5.7 相对于原点的尺寸 (36)5.8 尺寸极限 (36)5.9 修饰符在几何公差值与基准参照要素中的应用 (37)5.10 螺纹 (39)5.11 齿轮与花键 (39)5.12 边界状态 (39)5.13 倾斜的表面 (39)5.14 圆锥 (39)5.15 楔形块 (39)5.16 半径 (40)5.17 贴切平面 (40)5.18 统计公差标注 (40)第6章符号 (55)6.1 概述 (55)6.2 使用注示补充符号 (55)6.3 符号的构成 (55)6.4 公差框格符号 (58)6.5 公差框格的布置 (59)6.6 公差带形状 (59)6.7 表格公差 (59)第7章基准参照系 (71)7.1 概述 (71)7.2 自由度 (71)7.3 由RMB的第一基准约束的自由度 (71)7.4 零件自由度的约束 (71)7.5 对应的理论几何要素 (71)7.6 对应的理论几何要素与实际基准要素模拟器 (72)7.7 基准参照系 (72)7.8 基准要素 (72)7.9 基准要素的控制 (73)7.10 按一定的优先级顺序规定基准要素 (73)7.11 基准的建立 (74)7.12 公共基准要素 (78)7.13 数学定义的表面 (79)7.14 多重基准参照系 (79)7.15 功能基准要素 (79)7.16 绕基准轴线或基准点的转动约束 (80)7.17 MMB、LMB与RMB在不规则尺寸要素上的应用 (81)7.18 基准要素选择的实际应用 (81)7.19 同时要求 (81)7.20 约束状态 (82)7.21 基准参照系的定义 (83)7.22 自定义基准参照系的构建 (83)7.23 自定义基准参照系的应用 (83)7.24 基准目标 (84)第8章形状公差 (149)8.1 概述 (149)8.2 形状控制 (149)8.3 规定形状公差 (149)8.4 形状公差 (149)8.5 平均直径 (151)第9章方向公差 (164)9.1 概述 (164)9.2 方向控制 (164)9.3 规定方向公差 (164)9.4 贴切平面 (165)9.5 替代的实践方式 (165)第10章位置度公差 (180)10.1 概述 (180)10.2 位置度公差标注 (180)10.3 位置度公差标注的基本规则— I (180)10.4 位置度公差标注的基本规则— II (183)10.5 成组位置 (185)10.6 同轴要素控制 (188)10.7 对称关系的公差标注 (189)第11章轮廓度公差 (241)11.1 概述 (241)11.2 轮廓度 (241)11.3 公差带边界 (241)11.4 轮廓度的应用 (242)11.5 与轮廓度控制相关的实体状态与边界状态修饰符 (243)11.6 复合轮廓度 (243)11.7 多行单层轮廓度公差标注 (244)11.8 组合控制 (244)11.9 作为进一步要求的线轮廓度 (245)11.10 动态轮廓度公差修饰符 (245)第12章跳动度公差 (288)12.1 概述 (288)12.2 跳动度 (288)12.3 跳动度公差 (288)12.4 跳动度公差的类型 (288)12.5 跳动度公差与尺寸 (289)12.6 应用 (289)12.7 规范 (290)规范性附录I 替代的实践方式 (307)资料性附录A 规则的变化与改进 (311)B 位置度公差标注的计算公式 (316)C 符号的形状、比例与对比 (320)D 废止的实践方式 (328)前言本版本是ASME Y14.5-2009,尺寸与公差标注的修订版。
ASME-第V卷《无损检测》
ASME 2010 第V卷《无损检测》新内容美国机械工程师学会(ASME)于2010年7月1日发布的最新版ASME第V卷《无损检测》,增添的新内容大多是围绕焊缝超声检测(UT)展开的,可见UT方法中隐含着大量鲜活的科技新信息新技能,无一不与当今高速发展的计算机技术息息相关。
充分熟悉新版新内容,熟练掌握新技能新要求,为承压设备制造质量提供安全可靠和高效的检测数据,是当今无损检测人员与时俱进,接受时代挑战的重要使命。
以下先介绍新版ASME有关承压设备无损检测的一般新内容,而后重点介绍有关超声检测新技术的新规定新要求。
1 一般要求(第一章)检测结果评定(T-180)指出:ASME第V卷中各种无损检测方法所提供的验收标准,应符合相关卷的要求,并优先采用相关卷的规定。
2 焊缝超声检测(第四章)2.1 概述(T-420)指出:本章“焊缝超声检测方法”要求应与第V卷第一章“一般要求”并驾齐驱,这是指以下四方面的内容:(1)粗晶焊缝UT的特殊要求,按T-451。
(2)计算机成像技术(简称CITs)的特殊要求,按T-452。
(3)TOFD(超声衍射时差)技术,按本章强制性附录Ⅲ。
(4)相控阵手工光栅式扫查技术,按本章强制性附录Ⅳ。
2.2 试块曲率(T-434.1.7)有三点要求:(1)工件直径D>500mm时,可用平面状基本校验试块。
(2)工件直径D≤500mm时,应使用曲面试块。
一个曲面试块可用于检测0.9-1.5倍直径的范围。
例如,D = 200mm的曲面试块,可用于校验D=180-300mm的曲面范围。
D=24-500mm的曲面范围,则需6种曲面试块(见图1)。
(3)管子校验试块:检测管焊缝时,基本校验试块的结构和反射体应按图2;曲率要求与上述(2)同。
试块尺寸与反射体位置应适合于所用斜探头校验。
500375250125125250375500333200120724326233967108180300500工件曲面直径/ mm试块曲面直径/ m mAM NA :基本校验试块M :0.9 倍限值线N :1.5 倍限值线图1 试块-工件曲面比限值弧长标称壁厚T堆焊层(如有则加)﹡线槽离试块边缘或线槽与线槽间距不得小于壁厚T 或25mm (取两者中较大值)。
PROE工程图设置文件选项详解
PROE⼯程图设置⽂件选项详解⼯程图设置⽂件选项(变量)利⽤⼯程图设置⽂件选项可以控制⼯程图的尺⼨⾼度、注释⽂本、⽂本定向、⼏何公差标准、字型属性、拔模标准、箭头长度等属性。
⽤户通常需要根据⾃⾝的要求,通过修改“选项”对话框中选项的参数来配置⼯程图的设置⽂件选项。
选择下拉菜单命令,系统弹出图1所⽰的菜单,选择命令,系统弹出图2所⽰的“选项”对话框。
表1就是⽤于⼯程图环境的⼯程图设置⽂件选项。
图2 “选项”对话框图1 “⽂件属性”菜单表1 配置⽂件选项配置选项配置值参数说明yes 2d_region_colunms_ fit_textno* 确定⼆维重复区域中的每⼀栏,是否⾃动调整⼤⼩以适应最长的⽂本段 yes* all_holes_in_hole_ tableno 在孔表中是否标准和草绘孔 yes allow_3D_dimensionsno* 在等轴测视图中是否显⽰尺⼨horizontal* 以⽔平⽅式显⽰⾓度尺⼨⽂本,且⽂本位于引线之间parallel_outside⽆论引线的⽅向如何,显⽰⽂本都平⾏于引线 horizontal_outside 在尺⼨外⽔平显⽰⽂本parallel_above 平⾏于尺⼨圆弧,在其上显⽰⽂本angdim_text_ orientationparallel_fully_outside平⾏于导线显⽰⾓度尺⼨⽂本(带正/负公差)(续)配置选项配置值参数说明on_gtol* 控制连接到直径尺⼨的设置基准的位置 asm_dtm_on_ dia_dim_gtolon_dim 根据ASME 标准将设置基准放置在⼏何公差上yes* 将草绘尺⼨与草绘图元关联起来 associative_dimensioningno 中断草绘尺⼨和草绘图元的关联性 yes可从中间修剪轴axis_interior_clippingno* 必须遵循ANSI Y14.2M 的标准,只允许修剪轴端点axis_line_offset <值> 设置直轴线延伸超出其相关特征的默认距离yes blank_zero_toleranceno*如果公差值设置为零,确定是否不显⽰正负公差值broken_view_offset<值>设置破断视图两部分之间的偏距距离,如下图jis* chamfer_45deg_dim_textiso/din控制绘图中45°倒⾓尺⼨的显⽰控制倒⾓尺⼨导引类型⽽不影响⽂本std_asme_ansi*采⽤美国机械⼯程师协会(ASME)/美国国家标准协会(ANSl)std_din 采⽤德国标准协会(DIN)Deutsches lnstitutfur Normung std_iso 采⽤国际标准组织 (ISO) chamfer_45deg_leader_ style std_jis采⽤⽇本⼯业规格 (JIS)circle_axis_offset<值>设置圆⼗字叉丝轴超出圆边的默认距离,如下图yes* clip_diam_dimensionsno 控制详细视图中直径尺⼨的显⽰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MULTIVIEW AND SECTIONAL VIEW DRAWINGSASME Y14.3-2003[Revision of ASME Y14.3M-1994 (R1999)]An American National StandardEngineering Drawingand RelatedDocumentationPractices[Revision of ASME Y14.3M-1994 (R1999)]ASME Y14.3ADOPTION NOTICEASME Y14.3,Multiview and Sectional View Drawings,was adopted on9August1994for use by the Department of Defense,DoD.Proposed changes by DoD activities must be submitted to the DoD Adopting Activity:Com-mander,U.S.Army RDECOM-ARDEC,ATTN:AMSTA-AR-QAW-E,Picatinny Arsenal,NJ07806-5000.Copies of this document may be purchased from The American Society of Mechanical Engineers(ASME),22Law Drive, PO Box2900,Fairfield,NJ07007-2900;.Custodians:Adopting Activity:Army—AR Army—ARNavy—SAAir Force—16(Project DRPR-0327)DLA—DHReview Activities:Army—AT,CR,MINavy—AS,CH,EC,MC,TDAir Force—13,99NSA—NSAMSC N/A AREA DRPR DISTRIBUTION STATEMENT A.Approved for public release;distribution is unlimited.A N A M E R I C A N N A T I O N A L S T A N D A R DMULTIVIEW ANDSECTIONAL VIEWDRAWINGSASME Y14.3-2003[Revision of ASME Y14.3M-1994(R1999)]Date of Issuance:April1,2004The next edition of this Standard is scheduled for publication in2008.There will be no addenda or written interpretations of the requirements of this Standard issued to this edition.ASME is the registered trademark of The American Society of Mechanical Engineers.This code or standard was developed under procedures accredited as meeting the criteria for American National Standards.The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate.The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry,academia, regulatory agencies,and the public-at-large.ASME does not“approve,”“rate,”or“endorse”any item,construction,proprietary device,or activity.ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document,and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent,nor assumes any such ers of a code or standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,is entirely their own responsibility.Participation by federal agency representative(s)or person(s)affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies,which precludes the issuance of interpretations by individuals.No part of this document may be reproduced in any form,in an electronic retrieval system or otherwise,without the prior written permission of the publisher.The American Society of Mechanical EngineersThree Park Avenue,New York,NY10016-5990Copyright©2004byTHE AMERICAN SOCIETY OF MECHANICAL ENGINEERSAll rights reservedPrinted in U.S.A.CONTENTSForeword (v)Committee Roster (vi)1General (1)2Multiview Drawing Applied (7)3Sectional Views (12)4Conventional Representation (23)Figures1Orthographic Projection to Form an Orthographic View (2)2Space and Orthographic Arrangement of Views(Third Angle Projection) (3)3Space and Orthographic Arrangement of Views(First Angle Projection) (4)4Third Angle Projection Standard Arrangement of the Six Principal Orthographic Views (5)5First Angle Projection Standard Arrangement of the Six Principal Orthographic Views (5)6Arrow Method—Principal Views (6)7Arrow Proportions (6)8Projection Symbol (7)9Removed View (8)10Arrow Method—Removed View (8)11Rotated View (9)12Arrow Method—Rotated View (9)13Rotation Arrow (9)14Removed View on Multiple Sheet Drawing (10)15One View Drawings (11)16Two View Drawing (11)17Three View Drawing of a Casting (11)18Three View Drawing of a Stamping (12)19Front View and Partial Auxiliary Views (12)20Partial Auxiliary View (13)21Partial Auxiliary View,Partial Front View,and Right Side View (13)22Partial Primary and Secondary Auxiliary Views (14)23Detail (14)24Phantom Lines for Related Parts (15)25Section Lining (15)26Zone Referencing,Removed Section (16)27Full Section,Cutting Plane Omitted (16)28Half Section,Cutting Plane Omitted (17)29Identifying Sections (17)30Arrow Method—Identifying Sections (18)31Bent and Offset Cutting Planes (18)32Full Section (19)33Half Section,Assembly (19)34Omission of Visible Lines (20)35Omission of Hidden Lines (20)36Offset Section (21)37Aligned Section (21)38Removed Section (22)39Removed Sections on Center Lines (22)iii40Revolved Sections (22)41Broken-Out Section (23)42Auxiliary Section (23)43Section Through Ribs (24)44Conventional Representation of Ribs (24)45True Geometry Through Ribs (25)46Section Across Ribs (25)47Section Through Shafts,Keys,Bolts,Nuts,and Like Items (26)48Spokes in Section (26)49Rotated Features (27)50Conventional Representation of Rotated Features (27)51Intersections in Section (28)52Line Precedence (28)53Rotated Features to Show True Shape (29)54Small Intersections (29)55Large Intersections (30)56Conventional Representation,Filleted and Rounded Corners (30)57Conventional Representation,Fillets,Rounds,and Runouts (31)58Conventional Representation,Breaks in Elongated Features (32)Nonmandatory AppendicesA Space Geometry (33)B Space Analysis and Applications (38)ivFOREWORDThis revision of ASME Y14.3M-1994was initiated in response to industry and DOD requests that international practices and CAD capabilities be accommodated.The work on this revision of the standard began at the St.Louis meeting of the ASME Y14Subcommittee3in October2000. Significant revisions include(a)the International Organization for Standardization(ISO)practice of view identification was added as an alternative practice and is identified as the reference arrow method.This was added to permit compliance with this ASME Standard while working in an international market that may also require compliance with ISO standards.(b)the utilization of true geometry views is shown as the preferred practice with conventional practices allowable.This revision is made to better utilize the solid modeling and view generation capabilities of CAD software.(c)a representation of the solid geometry is included in many of the figures.The successful revision of this Standard is attributed to the commitment of the committee members and the support of their sponsoring companies.The commitment of time and their contributed expertise are gratefully acknowledged.Suggestions for improvement of this Standard are welcomed.They should be sent to The American Society of Mechanical Engineers,Attention:Secretary,Y14Main Committee,Three Park Avenue,New York,NY10016.This Standard was approved as an American National Standard on April24,2003.vASME Y14COMMITTEE Engineering Drawing and Related DocumentationPractices(The following is the roster of the Committee at the time of approval of this Standard.)OFFICERSF.Bakos,Jr.,ChairK.E.Wiegandt,Vice ChairC.J.Gomez,SecretaryCOMMITTEE PERSONNELA.R.Anderson,Dimensional Control Systems,Inc.F.Bakos,Jr.,ConsultantJ.V.Burleigh,The Boeing Co.W.A.Kaba,Alternate,The Boeing Co.R.A.Chadderdon,Southwest ConsultantsM.E.Curtis,Jr.,Rexnord Corp.D.E.Day,Monroe Community CollegeB.Dinardo,U.S.Department of the Army,ARDECK.Dobert,Engineering Animation,Inc.C.W.Ferguson,WM Education ServicesL.W.Foster,L.W.Foster Associates,Inc.C.J.Gomez,The American Society of Mechanical EngineersB.A.Harding,Purdue UniversityD.H.Honsinger,ConsultantK.S.King,Naval Surface Warfare Center,Dahlgren DivisionA.Krulikowski,General Motors Powertrainchut,ConsultantP.J.McCuistion,Ohio UniversityJ.D.Meadows,James D.Meadows&Associates,Inc.E.Niemiec,MTD Products,Inc.J.M.Smith,Caterpillar Inc.K.E.Wiegandt,Sandia National LaboratoryB.A.Wilson,The Boeing Co.SUBCOMMITTEE3—MULTIVIEW AND SECTIONAL VIEWDRAWINGSB.A.Wilson,Chair,The Boeing Co.K.S.King,Vice Chair,Naval Surface Warfare Center,Dahlgren DivisionJ.V.Burleigh,The Boeing Co.M.E.Curtis,Jr.,Rexnord Corp.B.Dinardo,U.S.Department of the Army,TACOM-ARDECD.Ellis,General Dynamics Land SystemsP.J.McCuistion,Ohio UniversityD.H.McCurry,Nonvoting Liaison,GEIAJ.D.Meadows,Institute for Engineering and Design Inc.R.H.Settle,Naval Surface Warfare CenterJ.M.Smith,Caterpillar Inc.M.P.Wright,ConsultantviASME Y14.3-2003 ENGINEERING DRAWING AND RELATED DOCUMENTATION PRACTICES MULTIVIEW AND SECTIONAL VIEW DRAWINGS1GENERAL1.1ScopeThis Standard establishes the requirements for creat-ing orthographic views for item description.The topics covered include the multiview system of drawing,selec-tion,and arrangement of orthographic views,auxiliary views,sectional views,details,and conventional draw-ing practices.Space geometry and space analysis and applications are included in the appendices for informa-tional purposes.1.2ReferencesThe following documents form a part of this Standard to the extent specified herein.The latest issue shall apply. ASME Y14.1,Drawing Sheet Size and Format1ASME Y14.1M,Metric Drawing Sheet Size and Format1 ASME Y14.2M,Line Conventions and Lettering1 Publisher:The American Society of Mechanical Engi-neers(ASME International),Three Park Avenue,New York,NY10016-5990;ASME Order Department:22 Law Drive,Box2300,Fairfield,NJ07007-2300ISO128-30,Technical Drawings—General Principles of Presentation—Part30:Basic Conventions for Views1 Publisher:International Organization for Standardiza-tion(ISO),1rue de Varembe´,Case Postale56,CH-1211,Gene`ve20,Switzerland/Suisse1.3Definitionsadjacent views:two adjoining orthographic views aligned by projectors.related views:two views that are adjacent to the same intermediate view.true geometry views:views that show the actual shape description,and when it is a section view it shows the actual shape cut by the cutting plane.1.4Orthographic ProjectionOrthographic projection is a system of drawing com-posed of images of an object formed by projectors from the object perpendicular to desired planes of projection.1May also be obtained from the American National Standards Institute(ANSI),25West43rd Street,New York,NY10036.11.5Orthographic ViewAn orthographic view is the figure outlined upon the projection plane by means of the system of orthographic projection.Such a view shows the true shape of a surface parallel to the projection plane(area ABCD with hole in Fig.1).When an area is not parallel to the plane,the view of the area will be foreshortened(area BCEF in Fig.1).1.6Projection SystemsThe two internationally recognized systems of projec-tion are third angle projection and first angle projection. Unless otherwise stated,this Standard features third angle projection.1.6.1Third Angle Projection.Third angle projection is the formation of an image or view upon a plane of projection placed between the object and the observer. Third angle projection is the accepted method used in the United States.See Fig.2.1.6.2First Angle Projection.First angle projection places the object between the observer and the plane of projection.This method of projection used in some countries is herein described,in consideration of the need to interchange engineering drawings in an interna-tional market.See Fig.3.1.6.3View Relationships.Note that the orthographic views of the object have the same configuration in both the first and third angle projections,but the placement of the views with respect to one another is different.The visibility of lines is always taken from the observer’s point of view.See Figs.4and5.1.6.3.1Alternative Practice,Reference Arrow Method.When it is desired to achieve compliance with ISO practices,reference arrows and view letters may be used for all views.These practices are in agreement with ISO128-30.View identification for the reference arrow method does not include the word VIEW,and the identi-fying letter is placed above the view.Reference arrows may be shown in the CAD model,in an axonometric view,or on one of the principal orthographic views. When the reference arrow method is used,it shall be used for all views within the drawing.See Fig.6.Refer-ence arrow proportions are defined in Fig.7.ASME Y14.3-2003MULTIVIEW AND SECTIONAL VIEW DRAWINGSFig.1Orthographic Projection to Form an Orthographic View2Fig.2Space and Orthographic Arrangement of Views(Third Angle Projection)3Copyright ASME InternationalFig.3Space and Orthographic Arrangement of Views(First Angle Projection)4Copyright ASME Internationalof the Six Principal Orthographic ViewsFig.5First Angle Projection Standard Arrangementof the Six Principal Orthographic Views5Copyright ASME InternationalFig.6Arrow Method —PrincipalViewsFig.7Arrow Proportions1.6.4Projection Symbols.The projection symbols shown in Figs.2,3,4,and 5are internationally recog-nized.They may be used on drawings to be interchanged internationally to identify the projection method used in preparing the drawing.See Fig.8for proportional sizes and allowable orientations.1.7Principal ViewsThere are six principal views:top,front,bottom,right side,left side,and rear.The standard arrangement of all principal views in third angle orthographic projection6is shown in Fig.4.The standard arrangement of all principal views in first angle projection is shown in Fig.5.A standard arrangement is not required when using the reference arrow method.1.7.1Placement and Orientation of Views.Alterna-tive positions of views may be used to conserve space,but they should be properly oriented to each other.For example,the right-or left-side view might be placed adjacent to and in alignment with the top view.The rearCopyright ASME InternationalFig.8Projection Symbolview is sometimes placed in alignment with and to the right of the right-side view.1.7.2Removed Views.Under certain conditions it may be impracticable to place a view in its normal aligned position.In this instance,viewing indicators are used to indicate from where the view was taken,and the view is removed to another location on the field of the drawing.See Fig.9.Removed views are preferably shown on the same sheet from which the view has been taken.The removed view is identified using the view letters.The removed view may be drawn at the same scale as the view from which it is taken,or it may be drawn at a noted scale.It is also permissible to use a combination of numbers and letters for removed view identification.1.7.3Identifying Removed Views.To relate the view-ing plane or cutting plane to its removed view,capital letters such as A,B,C,etc.,are placed near each arrow-head.The corresponding removed views are identified as VIEW A-A,VIEW B-B,VIEW C-C,etc.View letters should be used in alphabetical order excluding I,O,Q, S,X,and Z.When the alphabet is exhausted,additional removed views shall be identified by double letters in alphabetical order,as in AA-AA,AB-AB,AC-AC,etc. 1.7.4Removed Views Alternative Practice.When using the reference arrow method,a single reference arrow and view letter are used to identify removed views.See Fig.10.71.7.5Rotated Views.Due to the large size of depicted items and limitations on the height or width of the drawing format,a view may be rotated within the boundaries of a drawing sheet rather than maintain the orientation and split the view over two or more sheets. The angle and direction of rotation shall be placed beneath the view title.See Fig.11.1.7.6Rotated Views Alternative Practice.When using the reference arrow method,the direction of rotation is indicated by an arc and arrow.The angle of rotation is noted adjacent to the arc.See Fig.12.Arc and arrow proportions are shown in Fig.13.The view letter is placed to the left,and the angle is placed to the right of the arc.Character sizes are in accordance with ASME Y14.2.1.7.7Cross-Referencing of Views.Cross-reference zoning may be used to indicate the location of an indi-cated view,and to reference a view back to the viewing location.When views are located on different sheets,the sheet number as well as the zone of the cross-reference location shall be indicated.See Fig.14.One method of cross-referencing is shown in the figure.Additional methods of cross-referencing may be used.2MULTIVIEW DRAWING APPLIED2.1Purpose of Multiview DrawingsMultiview drawings represent the shape of an object using two or more views.These views,together withCopyright ASME InternationalFig.9RemovedViewFig.10Arrow Method —Removed Viewnecessary notes and dimensions,are sufficient for the part to be fabricated without further information con-cerning its shape.Consideration should be given to the choice and number of views that will completely define the true shape of the part.2.2Choice of ViewsThe front or principal view of the part is generally shown in a natural or assembled position.The minimum number of views necessary to describe the part are8shown.Views are selected to show the fewest hidden lines and yet convey maximum clarity.2.3Necessary ViewsThe number of views required to describe a part is controlled by the complexity of the part.Simple parts may require only a short word description.Others may require one or two views.Three or more views may be required for more complex parts to facilitate readingCopyright ASME InternationalFig.11Rotated ViewFig.12Arrow Method—Rotated ViewFig.13Rotation Arrow9Copyright ASME InternationalFig.14Removed View on Multiple Sheet Drawing10Copyright ASME InternationalFig.15One ViewDrawingsFig.16Two View Drawingand permit dimensioning to visible outlines in their true-shape view.2.4One View DrawingsTwo adjacent views are normally considered the mini-mum requirement to describe a three dimensional object.However,the third dimension of some objects (washers,shafts,bushings,spacers,etc.)may be specified by a note and the drawing reduced to a single view.See Fig.15.2.5Two View DrawingsMany items may be adequately described by showing only two views.These views shall be aligned in any standard position that will clearly illustrate the object.See Fig.16.2.6Three View DrawingsThe majority of multiview drawings consist of front,top,and side views arranged in their standard positions.11Fig.17Three View Drawing of a CastingAny three adjacent views that best suit the shape of the part may be employed.See Figs.17and 18.A partial third view may be used when the missing portion of the incomplete view is adequately described in other views.See Figs.19and 20.2.7Auxiliary ViewsAuxiliary views are used to show true shape and relationship of features that are not parallel to any of the principal planes of projection.See Figs.19,20,21,and 22.2.7.1Primary Auxiliary Views.A primary auxiliary view is one that is adjacent to and aligned with a princi-pal view.Primary auxiliary views are identified as frontCopyright ASME InternationalFig.18Three View Drawing of aStampingFig.19Front View and Partial Auxiliary Viewsadjacent,side adjacent,or top adjacent auxiliary views to indicate the principal view with which it is aligned.See Fig.22.2.7.2Secondary Auxiliary Views.A secondary auxil-iary view is one that is adjacent to and aligned with a primary auxiliary view or with another secondary auxiliary view.See Fig.22.2.7.3Alignment of Auxiliary Views.Auxiliary views are aligned with the views from which they are pro-jected.A center line or projection line may continue between the adjacent views to indicate the alignment.See Figs.19,20,21,and 22.Alignment is not required in the case of a removed view or when using the reference arrow method.2.8Partial ViewsPartial auxiliary views or partial principal views may show only pertinent features not described by true pro-jection in the principal or other views.They are used in lieu of complete views to simplify the drawing.See Figs.19,20,21,and 22.122.9DetailsIn areas where clarification is necessary or to better illustrate a complex configuration,a detail is shown elsewhere on the drawing to show small features at an increased scale and provide additional information.See Fig.23.Figure 23shows a detail.It also shows additional information since the fastening device is included.View and zone referencing as described in paras.1.7.2and 1.7.7may be used.The scale of the detail shall be noted.2.10Related PartsWhere the relationship between mating parts is important,the relative position of the detailed part to the related part is shown by using phantom lines to outline the related part.Notes may be added to indicate the functional relationship of these parts.See Fig.24.3SECTIONAL VIEWS 3.1Principles3.1.1Sectional Views.Sectional views,also called sections,are used to clarify interior construction thatCopyright ASME InternationalFig.20Partial Auxiliary ViewFig.21Partial Auxiliary View,Partial Front View,and Right Side View13Fig.22Partial Primary and Secondary AuxiliaryViewsFig.23Detailcannot be clearly described by hidden lines in exterior views.A sectional view is obtained by an imaginary cutting plane passed through the object perpendicular to the direction of sight.The portion of the object between the cutting plane and the observer is assumed to be removed.When section lining is used,the exposed cut surfaces of the object are indicated by section lining (cross sectioning).See Fig.25.The graphic depiction of the cut surface may be the exact part cross section,creat-ing a true geometric view,or it may be modified according to conventions defined in this Standard.CAD practices usually result in the exact cross section while14manual practices often rely on conventions.Section lin-ing may be omitted where drawing clarity is not affected.See ASME Y14.2M.3.1.2Section View Location.A sectional view should appear on the same drawing sheet with the cutting plane view and be projected from and perpendicular to the cutting plane in conformity with the standard arrange-ment of views.This will result in the section view being placed behind the cutting plane in a properly projected position.Where space does not permit placement in the standard position,a removed or rotated section may beFig.24Phantom Lines for RelatedPartsFig.25Section Liningused.Views shall be oriented according to the cutting plane orientation,unless clearly noted as described in paras.1.7.5and3.8.3.1.3Cross-Referencing of Sections.Cross-reference zoning may be used to indicate the location of an indi-cated section,and to reference a section back to the viewing location.When sections are located on different sheets,the sheet number and zone of the cross-reference location shall be indicated.See Fig.26.Sections shall be oriented according to the cutting plane orientation, unless clearly noted otherwise.The sheet number and zone cross reference may be in any format,provided that it is easily understood.3.2Cutting Plane3.2.1Cutting Plane Location.The location of the cut-ting plane is shown by a cutting plane line that repre-sents the edge view of the cutting plane.The cutting plane may be omitted when its location is obvious as shown in Figs.27and28.3.2.2Identifying Sections.To relate the cutting planeto its sectional view,capital letters such as A,B,C,etc., are placed near each arrowhead.Placement near one15arrowhead is permitted when cutting planes are contin-uous between arrowheads and clarity is achieved.The corresponding sectional views are identified as SEC-TION A-A,SECTION B-B,SECTION C-C,etc.Section letters should be used in alphabetical order excluding I,O,Q,S,X,and Z.When the alphabet is exhausted, additional sections should be indicated by double letters in alphabetical order,as in AA-AA,AB-AB,AC-AC,etc. See Fig.29.It is also permissible to use a combination of numbers and letters for sectional view identification.3.2.3Reference Arrow Method for Identifying Sec-tions.Arrowheads are pointed toward the cutting plane line when using the reference arrow method.The view letters are placed at the ends of the cutting plane.The section view identification letters are placed above the view.See Fig.30.3.2.4Section View Arrangement.When two or more sections appear on the same sheet,they should be arranged in positions determined by the relative loca-tions of the cutting planes to the extent made possible by view geometry and drawing sheet size.See Fig.29.3.2.5Showing Cutting Planes.The cutting plane line is always shown when the cutting plane is bent,offset, or when the resulting section is nonsymmetrical.See Fig.31.The cutting plane should be shown through an exterior view and not through a sectional view.3.3Section LiningWhere section lining is used,a uniformly patterned appearance should be evident.In most cases,only the general purpose section lining(uniformly spaced lines) is shown on the drawing.See Fig.25.3.4Full SectionsWhen the cutting plane extends straight through the object,usually on the center line of symmetry,a fullFig.26Zone Referencing,Removed Section16Fig.28Half Section,Cutting Plane OmittedFig.29Identifying Sections17Fig.30Arrow Method—Identifying Sections18Fig.32FullSectionFig.33Half Section,Assemblysection is obtained as in Fig.32.In this figure,the repre-sentation of the cutting plane is omitted as its locationis obvious.The portion of the object between the observer and the cutting plane is assumed to be removed exposing the cut surface and visible background linesof the remaining portion.3.5Half SectionsThe view of a symmetrical object or one very nearly symmetrical which represents both the interior and exte-rior features by showing one-half in section and the other half as an external view is known as a half section. See Fig.33for a half sectioned assembly.This half section is obtained by passing two cutting planes,at right angles to each other,through the object so that the intersection line of the two cutting planes is coincident with the axis of symmetry of the object.Thus, one-fourth of the object is considered removed and the interior exposed to view.Cutting plane lines,arrows,19and section letters may be omitted where cutting planes are coincident with the center lines.A center line is used to divide the sectioned half from the unsectioned half of a half sectional view.3.6Lines Behind the Cutting Plane3.6.1Visible Lines.Visible lines behind the cutting plane are generally shown.Selected lines may be omit-ted when greater clarity is gained.For example,Spokes A and B in Fig.34.It is permissible to display only the elements cut by the cutting plane.3.6.2Hidden Lines.Hidden lines behind the cutting plane are generally not shown.See Fig.35.Hidden lines may be shown when greater clarity is gained.3.7Offset and Aligned Sections3.7.1Offset Sections.In order to include features not located in a straight line,the cutting plane may be stepped or offset(generally at right angles)to pass through these features.The section is drawn as if the offsets were in one plane.Such a section is called an offset section.The offsets are not indicated in any manner in the sectioned view.See Fig.36.3.7.2Aligned Sections.When the features lend them-selves to an angular change in the direction of the cutting plane(less than90deg),the sectional view is drawn as if the bent cutting plane and features were rotated into a plane perpendicular to the line of sight of the sec-tional view.Such sections are called aligned sections,whether the features are rotated into the cutting plane or the cutting plane is bent to pass through them.See Fig.37.。